
Introduction to Contextual Logic Programming

Nuno Lopes

February 4, 2008

Modularity in Prolog

Module systems:

re-use of code

development of libraries

No unique module system for Prolog:

SICStus Prolog

SWI Prolog

Logtalk (OOP)

CIAO Prolog

XSB

...

Modularity in Prolog

Module systems:

re-use of code

development of libraries

No unique module system for Prolog:

SICStus Prolog

SWI Prolog

Logtalk (OOP)

CIAO Prolog

XSB

...

Contextual Logic Programming (CxLP)

Contextual Logic Programming, L. Monteiro and A. Porto
(1989)

standard predicates and goals
modules (a.k.a. units)
contexts (sequence of units)
“extended” goal derivation system

Units and contexts

Unit Set of clauses associated by a name

Context Sequence of units

calling context
execution context

Context resolution Executing a goal G in a context C (calling
context)

Locate the first unit u, in C , that contains a
definition of G
Execute G ’s body, in the context C ′ (remainder
of C that starts with unit u: execution context)

Units and contexts

Unit Set of clauses associated by a name

Context Sequence of units

calling context
execution context

Context resolution Executing a goal G in a context C (calling
context)

Locate the first unit u, in C , that contains a
definition of G
Execute G ’s body, in the context C ′ (remainder
of C that starts with unit u: execution context)

CxLP vs OOP

Context and object instance: A context is a list of units which can
be described as an object instance

Predicate and method: A predicate present in a unit is equivalent
to a method definition in OO

Goal and message: a goal executed in a context can be interpreted
as sending a message to an object

GNU Prolog/CX

GNU Prolog/CX

implementation of CxLP

introduces unit arguments to CxLP:
act as a “unit global” variable
allow for contexts and units to be parametrized
similar to instance variables in OOP, variables whose scope is
the entire unit

GNU Prolog/CX

GNU Prolog/CX

implementation of CxLP

introduces unit arguments to CxLP:

act as a “unit global” variable
allow for contexts and units to be parametrized
similar to instance variables in OOP, variables whose scope is
the entire unit

GNU Prolog/CX

GNU Prolog/CX

implementation of CxLP

introduces unit arguments to CxLP:
act as a “unit global” variable
allow for contexts and units to be parametrized
similar to instance variables in OOP, variables whose scope is
the entire unit

Context Operators

Context manipulation:

U :> G Context extension: extends the current context with
U and evaluates G

C :< G Context switch: evaluates G in the context C

:ˆ G Supercontext: evaluates G in the parent context

Context query:

:< C Current context: unifies C with the current context

:> C Calling context: unifies C with the calling context

Context Operators

Context manipulation:

U :> G Context extension: extends the current context with
U and evaluates G

C :< G Context switch: evaluates G in the context C

:ˆ G Supercontext: evaluates G in the parent context

Context query:

:< C Current context: unifies C with the current context

:> C Calling context: unifies C with the calling context

GNU Prolog/CX

Units:

:- unit(foo(A)).

item(A).

:- unit(bar(B)).

item(B).

item(A) :- :^ item(A).

Contexts:

?- foo(b) :> item(X). X = b

?- foo(1) :> bar(a) :> item(X). X = a ;

X = 1

GNU Prolog/CX

Units:

:- unit(foo(A)).

item(A).

:- unit(bar(B)).

item(B).

item(A) :- :^ item(A).

Contexts:

?- foo(b) :> item(X).

X = b

?- foo(1) :> bar(a) :> item(X). X = a ;

X = 1

GNU Prolog/CX

Units:

:- unit(foo(A)).

item(A).

:- unit(bar(B)).

item(B).

item(A) :- :^ item(A).

Contexts:

?- foo(b) :> item(X). X = b

?- foo(1) :> bar(a) :> item(X). X = a ;

X = 1

GNU Prolog/CX

Units:

:- unit(foo(A)).

item(A).

:- unit(bar(B)).

item(B).

item(A) :- :^ item(A).

Contexts:

?- foo(b) :> item(X). X = b

?- foo(1) :> bar(a) :> item(X).

X = a ;

X = 1

GNU Prolog/CX

Units:

:- unit(foo(A)).

item(A).

:- unit(bar(B)).

item(B).

item(A) :- :^ item(A).

Contexts:

?- foo(b) :> item(X). X = b

?- foo(1) :> bar(a) :> item(X). X = a

;

X = 1

GNU Prolog/CX

Units:

:- unit(foo(A)).

item(A).

:- unit(bar(B)).

item(B).

item(A) :- :^ item(A).

Contexts:

?- foo(b) :> item(X). X = b

?- foo(1) :> bar(a) :> item(X). X = a ;

X = 1

Examples

:- unit(dict(ST)).

dict(ST).

lookup(KEY, VALUE) :- ST=[KEY=VALUE|_].

lookup(KEY, VALUE) :- ST=[_|STx],

dict(STx) :> lookup(KEY, VALUE).

?- dict(D) :> (lookup(a, 1),

lookup(b, 2),

lookup(a, X)).

D = [a=1,b=2|_]

X = 1

Examples

:- unit(dict(ST)).

dict(ST).

lookup(KEY, VALUE) :- ST=[KEY=VALUE|_].

lookup(KEY, VALUE) :- ST=[_|STx],

dict(STx) :> lookup(KEY, VALUE).

?- dict(D) :> (lookup(a, 1),

lookup(b, 2),

lookup(a, X)).

D = [a=1,b=2|_]

X = 1

WAM

Objective: in Minimum Context, Salvador Abreu and Daniel Diaz
(2003).

Changes to the WAM:

store the calling context and current context

save the contexts on the creation of a choice point

predicate call triggers the context resolution (new instruction)

Overhead:

1.5 slowdown when compared to regular Prolog (no
optimisations)

with optimisations: no relevant overhead

Questions?

XPTO

XPTO Prolog Translation of Ontologies

Representation of the ontology

Ontologies are represented using units:

one unit that lists the classes and
properties of the ontology;
another unit for individuals;
one for each OWL class
one for each property

Ontology Unit

This unit represents the ontology information:

XML namespaces

headers

classes

properties

Individuals Unit

Individuals are stored along with their class
individual_class(CLASS, INDIVIDUAL).

Properties of each individual are stored as triples in the
predicate property/3.
property(INDIVIDUAL, PROPERTY, VALUE).

Individual relations: differentFrom(IND1, IND2).

sameAs(IND1, IND2).

Individuals Unit

Individuals are stored along with their class
individual_class(CLASS, INDIVIDUAL).

Properties of each individual are stored as triples in the
predicate property/3.
property(INDIVIDUAL, PROPERTY, VALUE).

Individual relations: differentFrom(IND1, IND2).

sameAs(IND1, IND2).

Individuals Unit

Individuals are stored along with their class
individual_class(CLASS, INDIVIDUAL).

Properties of each individual are stored as triples in the
predicate property/3.
property(INDIVIDUAL, PROPERTY, VALUE).

Individual relations: differentFrom(IND1, IND2).

sameAs(IND1, IND2).

Class Units

Each unit represents a class of the ontology

Stores as facts the information about the class

restrictions on the individual properties
class inheritance

some predicates that help querying the representation:

class name(NAME)
superClassOf(CLASS)

Property Units

Each property unit contains the information relative to a specific
property.

type of the property (datatype or object)

domain and range

property inheritance and property relations.

These units also define the predicate to access its value, given the
individual name.

item(B) :-

:^ item(B),

property(B, hasMaker, A).

Property Units

Each property unit contains the information relative to a specific
property.

type of the property (datatype or object)

domain and range

property inheritance and property relations.

These units also define the predicate to access its value, given the
individual name.

item(B) :-

:^ item(B),

property(B, hasMaker, A).

Querying the representation

The most direct way of retrieving the class individuals is to
use the goal item/1

The item/1 goal binds, by backtrack, its argument to each
individual of the class.

There is also the possibility of querying all the individuals in
the ontology by omitting a class in the query.

| ?- ’ClassName’ /> item(A).

A = ’IndividualName’

The value of the properties can be accessed by including the
unit that represents the property in the context query.

The argument of the property unit will be bound to the value
of the property for the corresponding individual.

| ?- ’IceWine’ /> hasFlavor(F) :> hasBody(B) :>

item(I).

B = ’Medium’

F = ’Moderate’

I = ’SelaksIceWine’ ?

Other query forms

individual/1 unifies its argument with the name of the individual
(same as item/1)

class/1 unifies its argument with the class of the individual.

property/2 allows to query for the property name based on the
property value.

optional/1 receives as its argument a another defined unit and
will succeed with the results if the unit specified in its
argument succeeds. Otherwise it will succeed leaving
any variables in its argument unbound.

Query examples

James Bailey, François Bry, Tim Furche, and Sebastian Schaffert.
Web and semantic web query languages: A survey. Reasoning Web
(2005).

PREFIX books: http://example.org/books#

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

SELECT ?essay, ?author, ?authorName, ?translator

FROM http://example.org/books

WHERE (?essay books:author ?author),

(?author books:authorName ?authorName)

OPTIONAL (?essay books:translator ?translator)

| ?- /> author(AUTHOR) :> item(ESSAY),

/> authorName(AUTHORNAME) :> item(AUTHOR),

/> optional(translator(TRANSLATOR)) :> item(ESSAY).

Query examples

James Bailey, François Bry, Tim Furche, and Sebastian Schaffert.
Web and semantic web query languages: A survey. Reasoning Web
(2005).

PREFIX books: http://example.org/books#

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

SELECT ?essay, ?author, ?authorName, ?translator

FROM http://example.org/books

WHERE (?essay books:author ?author),

(?author books:authorName ?authorName)

OPTIONAL (?essay books:translator ?translator)

| ?- /> author(AUTHOR) :> item(ESSAY),

/> authorName(AUTHORNAME) :> item(AUTHOR),

/> optional(translator(TRANSLATOR)) :> item(ESSAY).

PREFIX books: http://example.org/books#

CONSTRUCT (?x books:co-author ?y)

FROM http://example.org/books

WHERE (?book books:author ?x)

(?book books:author ?y)

AND (?x neq ?y)

| ?- /> author(X) :> item(BOOK),

/> author(Y) :> item(BOOK),

X \= Y,

I = coauthor(X,Y).

Questions?

