
A SPARQL Query Engine over Web Ontologies
using Contextual Logic Programming

Nuno Lopes and Salvador Abreu

Universidade de Évora

Abstract. Querying is one of the key aspects in the Semantic Web.
SPARQL, a W3C recommendation, attempts to become the standard
Web query language. The XPTO system is capable of representing and
querying ontologies described in the OWL language using Contextual
Logic Programming. Here is presented a component of the XPTO system
that enables answering SPARQL queries.

1 Introduction

The XPTO1 system, enables accessing OWL [DSB+04] (Web Ontology Lan-
guage) ontologies from within a Contextual Logic Programming environment,
namely GNU Prolog/CX. It also allows to integrate these ontologies in the run-
ning program enabling using them as a part of the computation. The XPTO
system is further detailed in [FLA07,LFA07].

Here is described a component of the system that enables it to answer queries
formulated using the SPARQL query language and thus presenting the possibility
of making the system visible to the World Wide Web though a Web Service.

2 SPARQL Query Engine

The presented component is dedicated to SPARQL query resolution: it allows for
the possibility of querying the internal representation of the ontology using the
SPARQL query language. It is split into 3 parts: the parser, the query resolution
and the returning of the results as XML. The implemented SPARQL parser
follows the specifications of the language defined in [PS06] and the results are
returned in XML as specified in [BB06].

The SPARQL query is parsed to produce a GNU Prolog/CX context repre-
senting the query that is then activated to calculate the output and display the
resulting XML.

1 XPTO is a recursive acronym that stands for XPTO Prolog Translation of Ontolo-
gies.

2.1 Representation of a SPARQL query

The query representation process consists of a SPARQL parser that converts a
query defined in the SPARQL syntax [PS06] into a GNU Prolog/CX context.
This context represents the entire query and can then used to return the results.
The execution of the generated context, triggered by a default message, that will
bind the variables present in the query and show the results.

Element representation The representation of query elements, such as SPARQL
variables and resources, is presented next.

Variables The SPARQL variables are represented as Prolog variables. Thus,
once the result is calculated, the query resolution system simply binds the cor-
responding variable to return the results.

There are some other structures needed to display the results: it is necessary
to store the name of the variable in the SPARQL query in order to return it in the
results. To achieve this, all the variables in the SPARQL query are stored in a list
that will be the argument of the unit vars/1. The elements of this list are in the
format SparqlVariableName = PrologVariable. SparqlVariableName corre-
sponds to the name of the variable in the SPARQL query and PrologVariable is
the Prolog variable assigned to represent it. PrologVariable will start unbound
and, as the context is resolved, will be instantiated with the solutions it may
have. SPARQL variables appear in the generated context for the query using
the PrologVariable representation, enabling a simple access to the value of the
variable or direct instantiation of an unbound variable. This representation can
be seen in the GNU Prolog/CX context shown in Figure 2.

Resources Resources are represented using Prolog terms or atoms. If the resource
is an absolute IRI (delimited by ’<’ and ’>’) it is represented as an atom
containing the entire IRI. If it corresponds to a prefixed name (a prefix label
and a local part separated by a colon ’:’) it is represented as Prolog compound
term of arity 2 with the functor ’:’. The arguments of the term are the prefix
name and the local part respectively. If the prefix name is empty the atom ’’
will be used to represent it.

Query representation A SPARQL query is represented as GNU Prolog/CX
context whose structure is similar to the structure of the query. The elements of
the query can be clearly identified in the representation: select, where as well
as the Modifiers (if there are any present in the query).

The example query presented in Figure 1 is a select query containing two
basic graph patterns with a shared variable: ?t and the context produced by the
parser in shown in Figure 2.

A context is represented by a Prolog list containing unit names. The first
element of the list will be the unit that first tries to evaluate the goal upon
execution. The individuals and property values are gathered from the units in

1 SELECT

2 ?flavor ?color

3 WHERE {

4 ?t :hasFlavor ?flavor .

5 ?t :hasColor ?color .

6 }

Fig. 1. Query example (simple select)

1 [where([set([

2 triple(A,hasFlavor,B),

3 triple(A,hasColor,C)])

4]),

5 select([flavor=B,color=C]),

6 vars([flavor=B,color=C,t=A])]

Fig. 2. Generated context (partial) for the query in Figure 1

a higher position in the context. This way in the final positions of the list are
found the units select/1 (in the case of a select query) and vars/1. These
units contain in their arguments a list of variables and will allow any unit in the
context to access either all the variables in the context or the selected variables.

2.2 SPARQL resolution system

The core unit in the query resolution process is the triple/3 unit, which is
responsible for instantiating the variables in the query by accessing the data.

This unit can be redefined in order to access data available from different
sources. It generates one query to the XPTO system for each property that
appears in the SPARQL query. The pattern in line 2 of Figure 2 (page 3) will
generate the following query:

/> property(hasFlavor,F) :> item(I).

The argument of the item/1 goal will be instantiated with the name of the
individual. The arguments of the unit property/2 are the name of the property
being queried and the value of that property for the returned individual. Using
the property unit to query the internal representation has the advantage of
being able to perform the query using a Prolog variable in the position of the
property name, thus enabling to return all the properties of the individual or
querying the property name based on the property value.

3 Conclusion

The developed component acts as a translator: mapping SPARQL queries to a
representation of the query that is based on CxLP units. In this representation
each operator and each part of the SPARQL query corresponds to a unit oc-
curring in the context and the complete query is represented by a context that
combines the available units.

There are still further improvements necessary such as:

Complete the SPARQL support: Currently not all of the SPARQL con-
structors are implemented

Adopt the latest SPARQL specifications: The SPARQL system was de-
veloped against the specifications of 6 April 2006 in which SPARQL was
considered W3C Candidate Recommendation.

References

[BB06] D. Beckett and J. Broekstra. SPARQL Query Results XML For-
mat. W3C recommendation, W3C, April 2006. Available at:
http://www.w3.org/TR/2006/CR-rdf-sparql-XMLres-20060406/.

[DSB+04] M. Dean, G. Schreiber, S. Bechhofer, Frank van Harmelen, J. Hendler,
I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
web ontology language reference. W3C recommendation, W3C, Feb 2004.
http://www.w3.org/TR/owl-ref/.

[FLA07] Cláudio Fernandes, Nuno Lopes, and Salvador Abreu. On querying ontolo-
gies with contextual logic programming. In Christine Golbreich, Aditya
Kalyanpur, and Bijan Parsia, editors, OWL: Experiences and Directions
2007, volume 258 of CEUR Workshop Proceedings ISSN 1613-0073, June
2007.

[LFA07] Nuno Lopes, Cláudio Fernandes, and Salvador Abreu. Contextual logic
programming for ontology representation and querying. In Axel Polleres,
David Pearce, Stijn Heymans, and Edna Ruckhaus, editors, 2nd Interna-
tional Workshop on Applications of Logic Programming to the Web, Seman-
tic Web and Semantic Web Services, September 2007.

[PS06] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Lan-
guage for RDF. Technical report, W3C, 2006. Available at:
http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/.

