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Abstract. The system presented in this paper uses Contextual Logic
Programming as a computational hub for representing and reasoning
over knowledge modeled by web ontologies, integrating the approach
with similar mechanisms which we already developed. The components
required to behave as a SPARQL query engine are explained and exam-
ples of integration of different sources are shown – in particular, the case
of multiple OWL ontologies is discussed.

1 Introduction

The Semantic Web [5] is currently one of the most active and exciting research ar-
eas in computer science. Standard web pages provide data adequate for human
comprehension, mixing presentation with content, which means that an auto-
mated agent cannot easily reason about that information. The Semantic Web is
a natural evolution of the World Wide Web which, hopefully, will provide the
foundations for intelligent systems and agent layers over the Web.

One important step towards the fulfilling of this vision is the emergence of
systems that cannot only understand and reason over Semantic Web documents
but also retrieve and process knowledge originating from multiple heterogeneous
information sources. One motivation and purpose for our work is to use contex-
tual constraint logic programming [1] as a framework for Semantic Web agents,
in which knowledge representation and reasoning for ontology documents can
be carried out. As such, we adopted the GNU Prolog/CX programming system,
partly described in [2] which incorporates persistence and program structuring
through the use of contexts [1]. Throughout this paper, we describe a prototype
implementation of a Semantic Web system with three main components:

– A core that is capable of representing web ontologies, integrating that rep-
resentation with normal GNU Prolog/CX predicates and modules, in order
to make them interoperable.

– A SPARQL agent which can answer SPARQL queries about ontologies,
– A back-end capable of mapping GNU Prolog/CX to SPARQL queries, thereby

able to query external Semantic Web agents, returning the results as bindings
for logic variables present in a GNU Prolog/CX program. This back-end is
meant to be integrated with the ISCO [2] framework.



Web Ontology Languages: The Semantic Web is based on existing standard
technologies such as XML, RDF and RDF-Schema [12]. Although RDF Schema
provides additional modeling primitives, like classes and properties, that enable
the hierarchical organization of Web documents, a richer ontology modeling lan-
guage was necessary. DAML-OIL [8] was then taken as the starting point for
the W3C Web Ontology Working Group in defining OWL [13], the language
that is aimed to be the standardized and broadly accepted ontology language
for the Semantic Web [3]. OWL is defined as an extension of a sub set of the
RDF vocabulary and is divided into three species [9]: OWL Lite, OWL DL and
OWL Full.

Query Languages: An open research issue has been the specification of a stan-
dard query language that can access this kind of data. There are a variety wide of
Semantic Web query languages [10], ranging from pure selection languages with
limited expressivity to general purpose languages supporting different data rep-
resentation formats and complex queries. Among all the possibilities, we chose
to follow the W3C working groups proposed standard: SPARQL [14], an RDF
query language and protocol.

The work presented herein is an extension of what was described in [7], we
explain some of the implementation choices and introduce some real world ex-
amples. The remainder of this article is structured as follows: Contextual Logic
Programming is briefly approached in Section 2, in Section 3 we discuss the
knowledge representation and ontology querying using Contextual Logic Pro-
gramming. The issue of querying remote SPARQL agents from within the CxLP
framework is discussed in Section 4. Section 5 presents examples of use for the
implemented system and Section 6 provides initial conclusions and possible di-
rections for future research.

2 Contextual Logic Programming

Contextual Logic Programming (CxLP) is a simple yet powerful extension to the
Prolog logic programming language which provides a mechanism for modularity.
In CxLP a finite set of Horn clauses with a given name is designated by unit.
Abreu and Diaz [1] provide a revised specification for CxLP, which emphasizes
the OOP aspects by means of a stateful model, allowed by the introduction
of unit arguments. We now informally focus on some aspects of CxLP, namely
parametric units; a more complete discussion can be found in [1].

A unit is a parametric module, constituting the program’s static definition
block. Unit descriptor terms can be instantiated and collected into a list to form
a context, which can be thought of as a dynamic property of computations. A
context specifies the actual program (or theory) against which the current goal
is to be resolved. In short, it specifies the set of predicates which are applicable.
These predicates have definitions which result from the specific units which make
up the context. A more extensive description of CxLP may be found in [1, 2].



Some parallels can be made between CxLP and Object Oriented Program-
ming (OOP):

Context and object instance: A (possibly partly) bound context is a list of
units which can be described as an object instance. There is no true analog for
the class concept, units being conceptually similar to components, although
the context term skeleton may come close.

Predicate and method: A predicate present in a unit is equivalent to a method
definition in an OO setting;

Goal and message: a goal executed in a particular context can be interpreted
as sending a message (the goal) to an object (the context);

Unit argument and instance variable: unit arguments are variables whose
scope is the entire unit, much like instance variables in OO;

GNU Prolog/CX introduces a set of language operators called the context op-
erators which are used to modulate the context part of a computation. In a
nutshell, when executing a goal G in a context C, a CxLP Engine will traverse
C looking for the first unit u that contains a definition for G’s predicate. G is
then executed as if it were regular Prolog, in a new context that is the suffix of
the C which starts with unit u. Some of the most used operations and operators
in GNU Prolog/CX are:1

Context extension: U :> G, this operation extends the current context with
unit U and then reduces goal G in the resulting context;

Context switch: C :< G, evaluates goal G in context C, bypassing the current
context;

Supercontext: :^ G, evaluates goal G in the context obtained by removing
the top unit from the current context. This is useful to layer specialized on
top of generic behavior;

Current context: :< C, unifies C with the current context;
Calling context: :> C, unifies C with the calling context, i.e. the context which

was active when the present goal was initially evaluated.

3 System architecture

The initial implementation of the XPTO system is divided in three parts: the
core, a SPARQL front-end agent (FE) and a back-end (BE) that maps GNU
Prolog/CX to SPARQL queries. The core system is responsible for representing
the ontology, the FE enables the resolution of queries expressed in SPARQL
and the BE allows the core (and the FE) to query other SPARQL web services.
The architecture of XPTO, depicted in Figure 1 (see page 4), is further detailed
in [11].

By integrating the core, FE, BE and other Logic Programming frameworks
namely ISCO [2], the system is be able to access several heterogeneous sources
of information: the ontology, other SPARQL agents or web services, the outcome
of Prolog computations as well as relational databases.
1 For a more detailed and formal description, the reader is referred to [1].



Fig. 1. System architecture

3.1 Representing multiple ontologies

Ontologies are represented using units: there will be one unit that indicates the
elements (classes and properties) of the ontologies, another unit for individuals
and one for each OWL class and property. This arrangement is illustrated in
Figure 2.

Fig. 2. Ontology representation schema

It is possible to represent several ontologies, i.e. to load more than one ontol-
ogy into XPTO, and thus querying multiple ontologies also becomes possible. To
achieve this, it was necessary to alter both the naming of units and unit files, that
is an evolution from the description provided in [11] (where property and class
units where named after the property or class). To avoid name clashes, these
units were given an internal unique name generated with a prefix property (or
class ) and a sequential number. A mapping between the unit name and the
ontology element is kept in the ontologies unit in the predicate that lists the
currently available properties and classes: prop/4 and class/4 respectively. A
simple example follows:

prop(ontology_1, ’http://example.org/’#someProp, prop_1).
class(ontology_1, ’http://example.org/’#someClass, class_1).



The internal representation of the ontology elements stores the base names-
pace along with the name of the element, this choice provides a safe behavior
when dealing with elements of different ontologies with the same name.

3.2 Querying with multiple ontologies

The new ontology representation schema implies a new query format: it is nec-
essary to explicitly include the namespace of the property or class in the query.
This may be a logic variable (as shown in Figure 3) which can be used to either
specify or inquire about the namespace part.

| ?- N#someClass .> N#someProp(F) :> item(I).

F = ’http://example.org/’#’somePropValue’

I = ’http://example.org/’#’someIndividual’

N = ’http://example.org/’ ?

Fig. 3. Query example

4 Mapping Prolog to SPARQL Queries

The back-end component of XPTO behaves as a mapping system from GNU
Prolog/CX queries to SPARQL. It is capable of communicating with SPARQL
endpoints and therefore enables writing GNU Prolog/CX programs that reason
simultaneously over local and external ontologies. Maintaining the query syntax
between components of the system is an important objective that will allow
programmer to transparently query internal and external ontologies, and other
data sources, merging their results in the same program.

To query the external SPARQL endpoints the next steps are followed:

1. The back-end translates a GNU Prolog/CX goal into a SPARQL query;
2. The resulting SPARQL query is sent to the appropriate SPARQL web ser-

vice;
3. The solution set, described by an XML document, is fetched and the corre-

sponding logic variables which occurred in the original query are nondeter-
ministically bound.

The back-end follows the SPARQL protocol specification [6] which means it
will have to provide some pertinent information in order to query an external
SPARQL agent. This includes, among others, the url of the service, the data
format of the response and, possibly, an ontology URI.



4.1 Generating SPARQL SELECT queries

A SPARQL query in the back-end environment is a GNU Prolog/CX context
execution similar to the ones defined by the XPTO main mapping engine. The
query is always composed of three parts:

1. One URI of the external Semantic Web service;
2. One or more property restrictions;
3. An execution predicate which refers individuals;

Figure 4 illustrates a definition of a back-end query and its three components.

QUERY := sparql(URI) /> N1#P1 ... Nn#Pn :> ITEM

URI := URL

P := property(VALUE) or where(PROP, VALUE)

ITEM := item(INDIVIDUAL)

Fig. 4. Back-End Query Definition

On the left side of the main operator ’/>’ the external SPARQL endpoint
URI is specified and, on the right side, the goals and query restrictions. The
latter part of the query triggers the query that will be mapped to SPARQL.
This translation is obtained by transforming each property present in the query
into a triple that relates the property value to the individual.

The triples are extracted by the union of each property term of the right
side and the item term, which represents the subject of the triple. The following
query:

sparql(’uri.org’) /> N1#property1(V1) :>
N2#where(PROP, ’value2’) :> item(IND).

will be translated into the triples:

(?IND, N1#property1, ?V1)
(?IND, N2#?PROP, ’value2’)

All unbound Prolog variables represent SPARQL variables in the triples. To
state a value in the query and therefore apply a restriction to the solution, a
Prolog atomic value can be used to bind a Prolog variable.

If more than one solution is available for the query, all the results are retrieved
using the Prolog backtracking mechanism.

To ask for a property name, i.e, to generate a triple in which the property
position is a variable, the auxiliary unit where/2 should be used (as illustrated



in the previous example). Note that this clause can also be used like a single ask
property, by grounding the first argument to a Prolog atom named with some
property that describes the individual.

The triples generation process divides the GNU Prolog/CX query information
into two parts: the variables, i.e, what is asked and the triple sets. This will
result in a direct and transparent translation to SPARQL, where the variables
in the query will be the SELECT clause arguments and the triples will form the
sets in the WHERE clause.

4.2 Query example

Figure 5 shows an example of a back-end query that asks a SPARQL endpoint
to search the Wine2 ontology for all the individuals that have both hasBody and
hasColor properties.

?- sparql(’http://xmlarmyknife.org/api/rdf/sparql/’) />

N#hasBody(A) :>

N#hasColor(B) :> item(I).

A =’Medium’

B =’White’

N =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine’

I =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine’ # ’SelaksIceWine’

Fig. 5. GNU Prolog/CX query and solution

The generated SPARQL query (Figure 6) is then sent to the SPARQL end-
point. In order to successfully communicate with it, the back-end must first
encode the query as specified in the SPARQL Protocol for RDF [6] and if a
successful query response code is returned, a solution file is received. This file
follows the SPARQL Query Results XML Format [4] and includes one solution.
It is then parsed and the solution values are returned as bindings for Prolog
variables as illustrated by the last lines in Figure 5.

In the present example, the solution presents exactly one individual, Selak-
sIceWine, and the values Medium and White for properties hasBody and
hasColor respectively. This means the whole ontology only has one individual
that has both of these properties defined.

5 Hybrid Queries

ISCO [2] can be used to integrate, within a Contextual Logic Programming
framework, multiple data sources which can then be included in a compound
2 The ontology is accessible in http://www.w3.org/TR/owl-guide/wine.rdf



SELECT ?id ?hasColor ?hasBody

WHERE { ?id :hasColor ?hasColor. ?id :hasBody ?hasBody.}

Fig. 6. Generated SPARQL query

Prolog goal. XPTO will include bindings resulting from early goals into later
parts of a query to perform joins across multiple sources, some of which may be
ontologies queried over SPARQL while others may be, for instance, relational
databases.

The code generated by the ISCO framework is static, i.e., it is strictly related
to the relational database table, as the code generated by XPTO. The SPARQL
code generated is based entirely on the structure of the query: indicating the
SPARQL endpoint and, by analysing query patterns, it is possible to determine
which ontologies and properties are being queried.

A Prolog goal will generate as many queries as necessary to retrieve the
intended information: if all the variables are initially unbound the Prolog engine
will traverse all solutions. If any (or all) of the variables are ground or partially
instantiated e.g., by using constraints, it is possible to reduce the solution set,
as the generated query will already embody these situations.

5.1 Querying Databases and Ontologies

We now present, as an example, queries over a Periodic Table ontology whose
individuals are stored in a relational database.

For example purposes, we will use two data sources of information about
the periodic table3. One will be an ontology that describes the main compo-
nents of the periodic table like Groups, Blocks and Elements name and the
other a database with detailed information about each element. In this case we
used an OWL representation of the Periodic Table written by Michael Cook:
http://www.daml.org/2003/01/periodictable/.

When analysing the definition of a Group in the referred Periodic Table
ontology, we can see that each group has, among others, a number, a name and
elements. For example, part of group 10 is shown in (Figure 7).

Information about the periodic table elements is present in a database defined
with ISCO [2]. Part of the table element definition is illustrated in Figure 8 (see
page 9).

With the ontology loaded into XPTO system and the database accessible via
ISCO, we can write Prolog programs to query over both data sets. Using the
Group ontology class and the elements database table, it is possible to formulate
the following query: “classification and color of all the elements belonging to the
group group 10”, as shown in Figure 9.
3 A periodic table to use as a reference can be found at
http://www.webelements.com/.



<Group rdf:ID="group_10">

[...]

<number rdf:datatype="&xsd;integer">10</number>

<element rdf:resource="#Ni"/>

<element rdf:resource="#Pd"/>

<element rdf:resource="#Pt"/>

<element rdf:resource="#Uun"/>

[...]

</Group>

Fig. 7. Group 10

mutable class element.

code: int. key.

name: text. unique

symbol: text. unique

group: int.

color: text.

classification: int.

[...]

Fig. 8. Element Table

Variables ELEMT and NUM will bind together both data sources and, using
the Prolog backtrack mechanism, CLASSF, ELEMT and COLOR will return all the
solutions available.

6 Conclusion

The system we described and implemented provides a representation abstraction
layer for web ontologies that can be accessed by logic programs.

The selected web languages, SPARQL and OWL, have been shown to be
appropriate for the scope of our work: to build a working proof-of-concept system
which allows us to experiment with Contextual Logic Programming to represent
and query ontologies in a way which draws on Prolog’s expressiveness as well as
the powerful composition mechanisms of CxLP.

We illustrated how this representation can be used to develop Semantic Web
agents by describing two components: a front-end and a CxLP back-end. There
are aspects of other, existing systems that will benefit from the ability to query
SPARQL sources: for instance, we are working on transparently integrating the
SPARQL back-end into the ISCO [2] system.



| ?- % access ontology

’Group’ /> N#element(ELEMT) :>

N#number(_NUM) :> item(group_10),

% access DB using ISCO

element@(group=_NUM, name=ELEMT,

classification=CLASSF, color=COLOR).

CLASSF = ’Metallic’

COLOR = ’lustrous, metallic, silvery tinge’

ELEMT = ’nickel’

N = ’http://www.daml.org/2003/01/periodictable/PeriodicTable’

Fig. 9. Query example using ontologies and databases

Future Work Supporting a well-defined OWL sublanguage is necessary in order
to provide reliable, trusted semantic web agents which will be usable in wider
application sceneries. We are working towards providing provably correct OWL
DL compatibility at the reasoning level, over the internal representation. This
issue is orthogonal to the rest of the work described herein but it is essential if
we expect the system to gain acceptance in the design of Semantic Web agents.

The implemented SPARQL agent currently does not cover the full language
specification. Although full SPARQL language support is not our immediate
intended purpose, we are working towards providing complete support for it.

A performance study, including a proper comparison with related systems,
has already been partially performed [11] and will be further expanded as the
implementation evolves.
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