
Representing and Querying Multiple Ontologies
with Contextual Logic Programming

Nuno Lopes1, Cláudio Fernandes2, and Salvador Abreu2

1 Digital Enterprise Research Institute, National University of Ireland, Galway
nuno.lopes@deri.org

2 Universidade de Évora
{cff,spa}@di.uevora.pt

Abstract. The system presented in this paper uses Contextual Logic
Programming as a computational hub for representing and reasoning
over knowledge modeled by web ontologies, integrating the approach with
similar mechanisms which we already developed. As a result of its Logic
Programming heritage, the system may also recursively interrogate other
ontologies or data repositories, providing a semantic integration of mul-
tiple sources. The components required to behave as a SPARQL query
engine are explained and examples of integration of different sources are
shown – in particular, the case of multiple OWL ontologies is discussed.

1 Introduction

The Semantic Web [5] is currently one of the most active and exciting research
areas in computer science. Standard web pages provide data adequate for hu-
man comprehension, mixing presentation with content, which means that an
automated agent cannot easily extract or reason about that information. The
Semantic Web is a natural evolution of the World Wide Web which, hopefully,
will provide the foundations for intelligent systems and agent layers over the
Web.

One important step towards the fulfilling of this vision is the emergence of
systems that can, not only understand and reason over Semantic Web documents,
but also retrieve and process knowledge originating from multiple heterogeneous
information sources. One motivation and purpose for our work is to use contex-
tual constraint logic programming [1] as a framework for Semantic Web agents,
in which knowledge representation and reasoning for ontology documents can
be carried out. As such, we adopted the GNU Prolog/CX programming system,
partly described in [2] which incorporates persistence and program structuring
through the use of contexts [1]. Throughout this paper, we describe a prototype
implementation of a Semantic Web system with three main components:

– A core that is capable of representing web ontologies, integrating that rep-
resentation with normal GNU Prolog/CX predicates and modules, in order
to make them interoperable.

– A SPARQL agent which can answer SPARQL queries about ontologies,

– A back-end capable of mapping GNU Prolog/CX to SPARQL queries, thereby
able to query external Semantic Web agents, returning the results as bindings
for logic variables present in a GNU Prolog/CX program. This back-end is
meant to be integrated with the ISCO [2] framework and is similar to the
built-in SQL generation.

Web Ontology Languages: The Semantic Web is based on existing standard
technologies such as XML, RDF and RDF-Schema [16]. Although RDF Schema
provides additional modeling primitives, like classes and properties, that enable
the hierarchical organization of Web documents, a richer ontology modeling lan-
guage was necessary. DAML-OIL [7] was then taken as the starting point for
the W3C Web Ontology Working Group in defining OWL [17], the language
that is aimed to be the standardized and broadly accepted ontology language
for the Semantic Web [3]. OWL is defined as an extension of a sub set of the
RDF vocabulary and is divided into three species [8]: OWL Lite, OWL DL and
OWL Full.

Query Languages: An open research issue has been the specification of a stan-
dard query language that can access this kind of data. There are a variety wide of
Semantic Web query languages [11], ranging from pure selection languages with
limited expressivity to general purpose languages supporting different data rep-
resentation formats and complex queries. Among all the possibilities, we chose
to follow the W3C working groups proposed standard: SPARQL [19], an RDF
query language and protocol.

The work presented herein is expanded from what was described in [15, 10,
14], we explain some of the implementation choices and introduce some real world
examples. The remainder of this article is structured as follows: Contextual Logic
Programming is briefly recalled in section 2, in section 3 we discuss the knowledge
representation and ontology querying using Contextual Logic Programming. The
issue of querying remote SPARQL agents from within the CxLP framework is
discussed in section 5. Finally, section 6 provides preliminary conclusions and
points out possible directions for future research.

Related Work: Since its emergence, the Semantic Web idea has been clearly
exposed both in goals and vision. However, many decisions are yet to be made
and many problems and issues remain to be resolved. Among others, capabilities
for querying and data interchanging in the Semantic Web are two crucial steps
towards the success of the vision. Although a few different approaches to this
topic already exist, we propose a contribution that focus on a different point
of view of the problem. Other available systems provide similar capabilities to
XPTO, either in the representation of the ontologies, SPARQL query engines or
in both aspects. Some of these systems are briefly introduced next:

– Thea [22] - An OWL tool capable of parsing an OWL ontology and repre-
senting it using Logic Programming. It uses The SWI-Prolog Semantic Web

2

library to parse the OWL ontologies into RDF triples and then builds the
representation based on these results. The ontology is represented as Prolog
terms and its structure is further described in [23];

– Racer [21] - An OWL reasoner and inference engine for the Semantic Web.
Implemented in Common Lisp, Racer is able to start multiple reasoners on
the local machine and distribute its load among the Racer instances. It also
uses query caching, each query sent by clients and each answer to that query
obtained through reasoning can be cached by the system;

– Protege [18] - A Semantic Web platform that provides tools to construct
Web ontologies. It has a plug-in interface [13] that allows integration with
Web ontology reasoners such as Racer;

– Jena [12] - An Open Source Java framework for the Semantic Web. It
provides API’s for two Semantic Web languages (OWL and RDF) and a
SPARQL query engine known as ARQ, which allows Jena from within its
framework to query an external SPARQL agent and process the returning
results;

– Pellet [20] - A reasoner for the OWL DL sub-language. It contains a query
engine which supports answering queries formulated using SPARQL and
supports reasoning with multiple ontologies;

– F-OWL - F-OWL is implemented using Flora-2 which is a extension of
F-logic, a logic based language with some aspects of Object-Oriented Pro-
gramming. F-OWL is a rule based ontology inference engine for OWL which
makes use of mechanisms of the underlying technology (XSB Prolog) such
as tabling for result caching.

2 Contextual Logic Programming

Contextual Logic Programming (CxLP) is a simple yet powerful extension to the
Prolog logic programming language which provides a mechanism for modularity.
In CxLP a finite set of Horn clauses with a given name is designated by unit.
Abreu and Diaz [1] provide a revised specification for CxLP, which emphasizes
the OOP aspects by means of a stateful model, allowed by the introduction
of unit arguments. We now informally focus on some aspects of CxLP, namely
parametric units; a more complete discussion can be found in [1].

A unit is a parametric module, constituting the program’s static definition
building blocks. Unit descriptor terms can be instantiated and collected into
a list to form a context, which can be thought of as a dynamic property of
computations. A context specifies the actual program (or theory) against which
the current goal is to be resolved. In short, it specifies the set of predicates which
are applicable. These predicates have definitions which result from the specific
units which make up the context. A more extensive description of CxLP may be
found in [1, 2].

Some immediate parallels can be made between CxLP and Object Oriented
Programming (OOP):

3

Context and object (instance): A (possibly partly) bound context is a list of
units which can be described as an object instance. There is no true analog for
the class concept, units being conceptually similar to components, although
the context term skeleton may come close.

Predicate and method : A predicate present in a unit is equivalent to a method
definition in an OO setting;

Goal and message: a goal evaluated in a particular context can be interpreted
as sending a message (the goal) to an object (the context);

Unit argument and instance variable: unit arguments are variables whose
scope is the entire unit, much like instance variables in OO;

GNU Prolog/CX introduces a set of language operators called the context opera-
tors which are used to modulate the context part of a computation. In a nutshell,
when executing a goal G in a context C = u1.u2... where each ui is a parame-
terized unit, a CxLP Engine will traverse C looking for the first (topmost) unit
ui that contains a definition for G’s predicate. G is then executed as if it were
regular Prolog, in a new context that is the suffix of C which starts with unit ui.
Some of the most frequently used operations and operators in GNU Prolog/CX
are:1

Context extension: U :> G, this operation extends the current context with
unit U and then reduces goal G in the resulting context;

Context switch: C :< G, evaluates goal G in context C, bypassing the current
context;

Supercontext: :^ G, evaluates goal G in the context obtained by removing
the topmost unit from the current context. This is useful to layer specialized
on top of generic behavior;

Current context: :< C, unifies C with the current context;
Calling context: :> C, unifies C with the calling context, i.e. the context which

was active when the present goal was initially evaluated.

In short, GNU Prolog/CX can be used to take an OO approach while retaining
the benefits of (Constraint) Logic Programming, namely nondeterminism via
backtracking or constraint propagation and the logical variable as a means of
carrying incomplete information. Informally, GNU Prolog/CX has been used as
one of the base components for building web-based information systems, the
other component being ISCO, a layer which provides persistence at the Prolog
level by means of a relational database interface.

Collectively, GNU Prolog/CX and ISCO become a flexible mediator framework
in which different information sources may be integrated. This flexibility extends
to the reasoning abilities of the resulting system as it can rely on a structured
context to provide a variable theory against which to match goals: the context
in which a CxLP goal is being proved provides its semantics. The CxLP context
is made up of units which are the specific components that determine how a
goal is interpreted; it is viable to have units which map to querying a relational

1 For a more detailed and formal description, the reader is referred to [1].

4

database, others which compute their results using regular Prolog predicates
and yet others which resort to different mechanisms, for instance querying a web
service using SPARQL.

3 System architecture

The XPTO system is designed to achieve a exact representation of OWL ontolo-
gies using the methods provided by GNU Prolog/CX. The main motivation of
the development of XPTO is the integration with ISCO [2], which allows access-
ing several heterogeneous sources of information: the ontology, other SPARQL
agents or web services, the outcome of Prolog computations as well as relational
databases.

The initial implementation of the XPTO system is divided in three parts:
the core, a SPARQL front-end agent (FE) and a back-end (BE) that maps GNU
Prolog/CX to SPARQL queries as represented in Figure 1.

Fig. 1. System architecture

3.1 Representation of ontologies

Ontologies are represented using units: there will be one unit that indicates the
elements (classes and properties) of the ontologies, another unit for individuals
and one for each OWL class and property. This arrangement is illustrated in
Figure 2.

The individuals, along with their property values, are represented in the unit
individuals. This unit stores, for each individual, the class it belongs to and,
for each of the individual properties, its value.

The set of known ontologies are represented in a unit named ontology which
lists the classes and properties of each loaded ontology. Each property and class
listed in this unit can then be accessed in a uniform manner using the operator
.> (See Section 3.3). This operator is defined as a context extension operation,

5

Fig. 2. Ontology representation schema

i.e., based on the unit name it constructs a new context in which to evaluate the
goal.

In this paper, the ontology examples are taken from the Wine ontology [24]
and the queries are also performed over this ontology. Next are described in more
detail, along with partial examples2, each element of the representation:

Ontology Unit This unit represents the ontology information: namespaces,
headers, classes and properties. This is done by defining predicates for each
case: ns/3, header/3, class/2 and prop/2. Each predicate contains, in the case
of headers and namespaces, an entry with the ontology name, the respective
“abbreviation” and its value and, for classes and properties, simply the ontology
name and the class or property name.

The information in this unit may be used to query which units belong to the
ontology, thereby providing access to all the individuals in the ontology.

It is possible to represent several ontologies, i.e. to load more than one ontol-
ogy into XPTO, and thus querying multiple ontologies also becomes possible. To
achieve this, it was necessary to alter both the naming of units and unit files, that
is an evolution from the description provided in [14] (where property and class
units where named after the property or class). To avoid name clashes, these
units were given an internal unique name generated with a prefix property (or
class) and a sequential number. A mapping between the unit name and the
ontology element is kept in the ontologies unit in the predicate that lists the
currently available properties and classes: prop/3 and class/3 respectively. A
simple example follows:

prop(ontology_1, ’http://example.org/’#someProp, prop_1).
class(ontology_1, ’http://example.org/’#someClass, class_1).

The internal representation of the ontology elements stores the base names-
pace along with the name of the element, this choice provides a safe behavior
when dealing with elements of different ontologies with the same name. An ex-
ample of this unit is presented in Figure 3.
2 Due to space considerations, we omit the prefix http://www.w3.org/TR/2003/PR-

owl-guide-20031209/ from the ontology URIs, which get shortened to &wine; and
&food;, respectively

6

:- unit(ontologies).

ns(ontology_1, xmlns, ’&wine;’).

ns(ontology_1, xmlns:vin, ’&wine;’).

header(ontology_1, rdfs:comment, ’ An example OWL ontology’).

header(ontology_1, owl:priorVersion,

’http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine’).

class(ontology_1, ’&wine;’#’Wine’, class_1).

class(ontology_1, ’&wine;’#’Vintage’, class_2).

prop(ontology_1, ’&wine;’#locatedIn, prop_1).

prop(ontology_1, ’&wine;’#adjacentRegion, prop_2).

Fig. 3. Unit “ontologies” (partial)

Property Units Each property unit contains the information relative to a spe-
cific property. The type of the property (datatype or object) and, if specified any
other information such as domain and range, property inheritance and property
relations. This can be seen in Figure 4.

These properties also define the method to access its value, given the indi-
vidual name that shall be retrieved previously from the context.

:- unit(prop_1(A)).

object(rdf:type(’http://www.w3.org/2002/07/owl’#’TransitiveProperty’)).

domain_name(’http://www.w3.org/2002/07/owl’#’Thing’).

range(’&wine;’#’Region’).

type(object).

item :- item(_).

item(B) :- :^ item(B),

access_property(B, prop_1, A).

Fig. 4. Unit “prop 1” (partial)

7

Class Units These units will represent the classes of the ontology and all infor-
mation relevant to that class (as shown in Figure 5). The information includes
restrictions on the individual properties and class inheritance.

It also includes a predicate class name/1 that provides the name of the
current class. This predicate is used in by the query engine to determine the
class that the query refers to.

:- unit(class_1).

axiom(subClassOf(’&wine;’#’Wine’,’&food;’#’PotableLiquid’)).

subClassOf(’&food;’#’PotableLiquid’).

descriptor(restriction(’&wine;’#hasMaker,

constraint(allValuesFrom, ’&wine;’#’Winery’))).

superClassOf(’&wine;’#’LateHarvest’).

superClassOf(’&wine;’#’EarlyHarvest’).

superClassOf(’&wine;’#’DessertWine’).

unit_name(class_1).

class_name(’&wine;’#’Wine’).

Fig. 5. unit “class 1” (partial)

Individuals Unit This unit is the unit that contains all the individuals, its
properties and the information about individual relations. A partial example
of this unit is presented in Figure 6. The individuals properties are stored as
triples, much in the manner of RDF. These properties are defined in the predicate
property/3. The first argument of this predicate indicates the name of the
individual, the second indicates the property and the third argument contains
the value of the property for that individual. All the individuals, along with their
class, are listed in the predicate individual class/2. Individuals from unnamed
classes are not included in this listing: they are only present in the unit that
represents the class. This is done to avoid unwanted repetitions when querying
the individuals that would be generated if the individuals of the unnamed classes
were listed as the other individuals. These individuals are only available in the
predicate individual/1 present in each unnamed class.

There may also be present predicates for defining individual relations, such
as differentFrom/2 and sameAs/2, each with individual names as their argu-
ments. These indicate, respectively, that the individuals referred are different

8

or the same [17]. The constructor owl:AllDifferent is represented as several
differentFrom statements, each individual present in the constructor will gen-
erate one differentFrom statement relating it to every other individual in the
list.

:- unit(individuals).

individual_class(’Year1998’, ’&wine;’#’VintageYear’).

individual_class(’USRegion’, ’&wine;’#’Region’).

property(’MedocRegion’, locatedIn, ’&wine;’#’BordeauxRegion’).

property(’LoireRegion’, locatedIn, ’&wine;’#’FrenchRegion’).

differentFrom(’OffDry’, ’&wine;’#’Dry’).

differentFrom(’OffDry’, ’&wine;’#’Sweet’).

Fig. 6. Unit “individuals” (partial)

3.2 Building the representation

In order to query an ontology, that ontology must first be transformed and loaded
into the system, in a way similar to the compilation process. This results in the
ontology being represented as the structure described in Section 3.1.

XML parse: In this step the ontology is handled as a plain XML file and
therefore parsed using a standard XML parser.

The selected parser was the “The Expat XML Parser”.3 The parser creates a
Prolog term that is an accurate representation of the XML file, and apart from
the possible comments in the ontology file, there is no loss of information in this
transformation.

Name analysis: The next process is to match the term created by Expat
and build a dictionary with all the information we need to generate the units
and predicates that will represent the ontology. The body of the ontology is
mapped focusing mostly on classes, properties, individuals and relations between
these elements. Ontology headers are also stored to be included in the ontology
definition unit.

3 http://expat.sourceforge.net/

9

Unit generation: At this stage, the system has all the information needed to
generate the units that will represent the ontology, where each class and property
will rise a different unit. Those elements are available in the symbol table, so
the mapping engine must walk through it, and for every item generate a unit
according with the structure discussed in section 3.1.

Compiling and loading the units: In GNU Prolog/CX, an unit must first
be compiled and loaded before one can execute its predicates. This means the
system, after parsing an ontology and generating the units, must compile and
load the Prolog file that contains each unit. This is achieved using the dynamic
loading of GNU Prolog/CX. Compiling and loading the units represents the last
step of the whole core system process, which starts by parsing the ontology, then
the name analysis, unit generation, and finally the compilation and loading of
the units.

3.3 Querying an ontology

The new ontology representation schema implies a new query format: it is nec-
essary to explicitly include the namespace of the property or class in the query.
This may be a logic variable (as shown in Figure 7) which can be used to either
specify or inquire about the namespace part.

| ?- N#someClass .> someProp(F) :> item(I).

F = ’http://example.org/’#’somePropValue’

I = ’http://example.org/’#’someIndividual’

N = ’http://example.org/’ ?

Fig. 7. Query example

The most direct way of retrieving the class individuals is to use the goal
item/1 as shown in Figure 8. There is also a goal item/0 that has the exact
behaviour of item/1 but has no direct arguments, this predicate, when used
with the predicate units in the query will allow to access the property values
ignoring the name of the individual.

The item/1 goal binds, by backtrack, its argument to each individual of the
class. There is also the possibility of querying all the individuals in the ontology
by omitting a class in the query.

The value of the properties can be accessed by including the unit that rep-
resents the property in the context query. This enables selecting only a subset
of the properties. The argument of the property unit will be bound to the value
of the property for the corresponding individual, as shown in Figure 9.

10

1 | ?- N#’IceWine’ .> item(N#A).

2 A = ’SelaksIceWine’

3 N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine’ ?

Fig. 8. Accessing an individual of a class

1 | ?- N#’IceWine’ .> hasFlavor(N#F) :> hasBody(N#B) :> item(N#I).

2 B = ’Medium’

3 F = ’Moderate’

4 N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#’

5 I = ’SelaksIceWine’ ?

Fig. 9. Accessing individuals and properties

3.4 Units for refining ontology queries

We propose a number of units which may be used to form queries. We proceed
to briefly describe them.

individual/1 Including this unit in the context unifies its argument with the
individual name in the same manner as item/1. Using this unit provides a
more explicit query, by indicating we want the individual name and calling
the goal item/0 instead of item/1. Use of this unit is shown in Figure 10.

1 | ?- .> individual(N#I) :> item.

2 I = ’WhitehallLanePrimavera’

3 N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine’ ?

Fig. 10. individual example

class/1 If this unit is included in the context it will unify its argument with the
class of the matching individual. This is useful to determine the class of the
individual when querying the entire ontology, as shown in Figure 11.

property/2 This unit allows to access the properties of the individual without
prior knowledge of its name or to query for the property name based on the
property value. The first argument is the property name and the second the
property value (Figure 12).

all/2 Including this unit in the execution context is analogous to using a findall
in Prolog. The first argument is the element and the second will be the list of
the elements in the specified form. This allows to retrieve the set of solutions
for the variables present in the query, as exemplified in Figure 13.

11

1 | ?- .> class(_N#C) :> item(_N#I).

2 C = ’IceWine’

3 I = ’SelaksIceWine’ ?

Fig. 11. class example

1 | ?- N#’IceWine’ .> individual(N#I) :> property(N#P,N#V) :> item.

2 I = ’SelaksIceWine’

3 N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine’

4 P = locatedIn

5 V = ’NewZealandRegion’ ?

Fig. 12. property example

optional/1 This unit receives as its argument another unit such as property/2
or a property unit and will succeed with the results if the unit specified in
its argument succeeds. Otherwise it will succeed leaving any variables in its
argument unbound. This is similar to the SPARQL optional statement [19].

3.5 Native Prolog query representation

To make simple queries easier for Prolog programmes, there is the possibility of
creating custom predicates that encapsulate the contextual queries. The argu-
ments to these predicates must be defined explicitly after loading the ontology
and are follow the conventions:

– Predicate functor is the name of the class
– The first argument is the name of the individual.

The arguments that are present in the predicate after the individual name are
specified when defining the predicates. This specification requires indicating the
class for which to generate the predicate (that will be the functor of the predi-
cate) and a list of properties that corresponds to the sequence of arguments after

1 | ?- N#’Chardonnay’ .> individual(N#I):> all(I, L) :> item.

2 L = [’BancroftChardonnay’,

3 ’FormanChardonnay’,

4 ’MountEdenVineyardEdnaValleyChardonnay’,

5 ’MountadamChardonnay’,

6 ’PeterMccoyChardonnay’]

Fig. 13. all example

12

the individual. This allows the user to choose which properties will be present
in the generated predicate.

The generated Prolog representation is listed in Figure 14.

1 ’IceWine’(A, B, C) :-

2 _N#’IceWine’ .> optional(hasMaker(_N#B)) :>

3 optional(hasColor(_N#C)) :>

4 item(_N#A).

Fig. 14. generated predicate

This approach is limited because of the fixed arity of the predicates. Some
individuals may not have a value for all the properties (an unbound variable
for that property will be returned in this case) and other individuals may have
properties that are not present in the predicate and thus the user is unable to
retrieve its value with these predicates, using this method.

4 A SPARQL agent in CxLP

SPARQL is a Candidate Recommendation for a RDF query language [19] that
is under continued development towards becoming the standard query language
for the Semantic Web [11].

This chapter describes the Front End (FE), the component of the application
dedicated to SPARQL query resolution: it allows for the possibility of querying
the internal representation of the ontology using the SPARQL query language.
The FE is split into 3 parts: the parser, the query resolution and the returning of
the results as XML. The implemented SPARQL parser follows the specifications
of the language defined in [19] and the results are returned in XML as specified
in [4].

SPARQL has 4 types of queries: select, ask, construct and describe. The
select query is used to retrieve the values of the properties and individuals. Ask
simply returns a boolean answer depending on the veracity of the query. The
construct and describe are not currently implemented as they would return
data as RDF graphs.

The parser constructs a GNU Prolog/CX context representing the query; this
context is then activated by sending a message to calculate the output and
display the resulting XML form. This specification allows our system to be easily
made available trough a web service.

The following sections briefly describe the SPARQL query language, the res-
olution of queries and the XML output of the system.

13

4.1 Query representation

The mapping process (SPARQL parser) transforms a SPARQL query into a GNU
Prolog/CX context. The execution of this context will bind the variables present
in the query with the results.

The representation of query elements, such as SPARQL variables and re-
sources, is presented next.

Representation of variables and resources SPARQL variables appear in
the generated context for the query using the PrologVariable representation,
enabling a simple access to the value of the variable or direct instantiation of
an unbound variable. This representation can be seen in the GNU Prolog/CX
context shown in Figure 16.

There are some other structures needed to display the results: it is necessary
to store the name of the variable in the SPARQL query in order to return it in
the results. To achieve this, all the variables in the SPARQL query are stored
in a list that will be the argument of the unit vars/1. The elements of this list
are in the format SparqlVariableName = PrologVariable that represents the
assignment of each SPARQL variable present in the query to a logic variable.
PrologVariable will start unbound and, as the context is resolved, will be
instantiated with the solutions it may have.

Resources are represented using Prolog terms (for prefixed IRIs) or atoms
in the case of complete IRIs. For example, <http://example.org/book/book1>
will be is represented as ’http://example.org/book/book1’.

For prefixed names are represented as Prolog compound terms of arity 2 with
the functor ’:’. Assuming the following prefix definition: PREFIX dc: <http://-
purl.org/dc/elements/1.1/>, the prefixed name dc:title is represented as
dc:title. If the prefix name is empty the atom ’’ will be used to represent it.

This representation allows for the IRI to be resolved using the information
stored in the unit prefix which contains the prefixes specified in the SPARQL
query.

Context structure The parser receives as input a SPARQL query, shown in
Figure 15, and returns the context to be executed (Figure 16). The example query
presented in Figure 15 is a select query containing two basic graph patterns
with a shared variable: ?t and the context produced by the parser in shown in
Figure 16.

A SPARQL query is represented as GNU Prolog/CX context whose structure
is similar to the structure of the query. The elements of the query can be clearly
identified in the representation: select, where as well as the Modifiers (if there
are any present in the query).

A context is represented by a Prolog list containing unit names. The first
element of the list will be the unit that first tries to evaluate the goal upon
execution. The individuals and property values are gathered from the units in
a higher position in the context. This way in the final positions of the list are

14

SELECT

?flavor ?color

WHERE {

?t :hasFlavor ?flavor .

?t :hasColor ?color .

}

Fig. 15. Query example (simple select)

[where([set([

triple(A,hasFlavor,B),

triple(A,hasColor,C)])

]),

select([flavor=B,color=C]),

vars([flavor=B,color=C,t=A])]

Fig. 16. Generated context (partial) for the query in Figure 15

found the units select/1 (in the case of a select query) and vars/1. These
units contain in their arguments a list of variables and will allow any unit in the
context to access either all the variables in the context or the selected variables.

The generated parser was tested against a set of the most common SPARQL
queries and against SPARQL syntax examples present in [19]. Although there
are cases not being handled by the resolution system the parser itself is able to
generate the correct context for the query.

Each of the elements present in the SPARQL query is represented in the
generated context by one or more parametrized units. The already described
vars/1 and select/1 units hold the all the variables present in the query and
the variables that are to be returned, respectively.

Although not presented in Figure 15 the units from, prefix and base are
always present in the generated context (even if absent in the query). If any of
these keywords are not present in the query the corresponding unit will contain
an empty list (this can be noted in the complete context presented in Figure 18).

A group of graph patterns, that appears in the SPARQL query enclosed by
’{’ and ’}’ is represented as the unit set/1, where the argument of the unit
contains the representation (as units) of the enclosed graph patterns.

The unit that is the core of the query engine is triple/3. This unit will
represent a simple graph pattern and the arguments of the unit are respectively
the subject, property and object of the graph pattern. This unit will be
responsible for accessing the dataset in order to bind the variables that may
appear in the arguments or test if the pattern has a solution.

15

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?name

WHERE { ?x foaf:givenName ?givenName .

OPTIONAL { ?x dc:date ?date } .

FILTER (bound(?date)) }

Fig. 17. Query example

[where([set([

triple(A,foaf:givenName,B),

optional([set([

triple(A,dc:date,C)

])]),

filter([bound(C)])

])]),

from([]),

select([name=D]),

prefix([foaf=’http://xmlns.com/foaf/0.1/’,

dc=’http://purl.org/dc/elements/1.1/’,

xsd=’http://www.w3.org/2001/XMLSchema#’]),

base([]),

vars([name=D,x=A,givenName=B,date=C])]

Fig. 18. Context generated for the query in Figure 17

4.2 Result extraction and output

The query resolution is triggered by evaluating the goal item in the context
returned by the mapping process. This is akin to sending the message item to an
object. The core unit in this process is the unit triple/1 which is responsible for
instantiating the variables in the query by accessing the internal representation
of the ontology.

Also, currently, the from clause has no effect since the instantiation is done
with an already loaded ontology.

triple/3 The core unit in this process is the unit triple/3 which is responsible
for instantiating the variables in the query by accessing the internal represen-
tation of the ontology. The implementation of this unit is shown in Figure 19.
It generates one query to the system core for each property that appears in the
SPARQL query. The pattern in line 3 of Figure 16 will generate the following
query:

16

.> property(hasFlavor,F) :> item(I).

The argument of the item/1 goal will be instantiated with the name of the
individual (in this case the variable I). The arguments of the unit property are
the name of the property being queried and the value of that property for the
returned individual. Using the property unit to query the internal representa-
tion has the advantage of being able to perform the query using a variable in
the position of the property name (instead of “hasFlavor” in the example).

The results of this query will be bound to the representation of the variables
present in the SPARQL query.

:- unit(triple(S, P, O)).

item :-

.> property(P,O) :> item(S).

Fig. 19. Unit triple

Also, currently, the from clause has no effect since the instantiation is done
with an already loaded ontology.

Each basic operation is represented as a unit. All the units that are present
in the context generated by the SPARQL parser will answer to the goal item/0
or item/1 (in case of the unit returning a bound solution). Each unit will then
perform the operation it represents based on its arguments and on the result of
the parent context.

The units that alter the query results (the Solution Modifiers), such as order
by, limit and distinct fetch all the bound variables from the parent context
collecting them in a list. They them perform its operation on over the elements
of the list thus achieving a new list with the results. This will be the final list to
be presented as XML.

XML output The output of the SPARQL query execution is an XML docu-
ment with a sparql element. This element has then two sub-elements: the head
element and the results element (always shown in this order).

The first element for a select query is a list of all the variable names present
in the SPARQL query. For an ask query (that only returns a boolean) no ele-
ments are present. The second element (results) is a list of result elements.
The result element has two boolean attributes: ordered and distinct, that are
always specified. They indicate, respectively, if the list of results is ordered and
if the elements are all different. Its value is defined by the presence or absence
of the modifiers distinct and order by in the SPARQL query. The resulting
XML of the query in Figure 15 is shown in Figure 20.

17

1 <sparql>

2 <head>

3 <variable name="flavor"/>

4 <variable name="body"/>

5 </head>

6 <results ordered="false" distinct="false">

7 <result>

8 <binding name="flavor">"Medium"</binding>

9 <binding name="body">"Moderate"</binding>

10 </result>

11 </results>

12 </sparql>

Fig. 20. XML output of the query example

5 Mapping Prolog to SPARQL Queries

The back-end component of XPTO behaves as a mapping system from GNU Pro-
log/CX queries to SPARQL which is capable of communicating with SPARQL
endpoints. Although it can be viewed as a single independent component, the
purpose is to integrate it in a manner that it will allow the XPTO-using program-
mer to query external and internal ontologies using the same query syntax and
declarative context mechanics as the internal system. Figure 21 illustrates the
architecture of XPTO with the integration of the SPARQL back-end component.

To query the external SPARQL endpoints the next steps are followed:

1. The back-end translates a GNU Prolog/CX goal into a SPARQL query;
2. The resulting SPARQL query is sent to the appropriate SPARQL web ser-

vice;
3. The solution set, described by an XML document, is fetched and the corre-

sponding logic variables which occurred in the original query are nondeter-
ministically bound.

It is necessary to provide additional information in order to query the ex-
ternal agent if the SPARQL protocol [6] is to be used. This includes, among
others, the url of the service, the data format of the response and, possibly, an
ontology URI. The latter means that external agents may have capabilities for
querying ontologies from any given Internet location, such as the XML Armyknife
Semantic Web service [9]. The response format can vary from different types like
simple HTML for Internet browsing purposes, or the SPARQL Query Results
XML Format [4] for agents like ours.

18

Fig. 21. System architecture

5.1 Generating SPARQL SELECT queries

A SPARQL query in the back-end environment is a GNU Prolog/CX context
execution similar to the ones defined by the XPTO main mapping engine. The
query is always composed of three parts:

1. One URI of the external Semantic Web service;
2. One or more property restrictions;
3. An execution predicate which refers individuals;

Figure 22 illustrates a definition of a back-end query and its three compo-
nents.

QUERY := sparql(URI) /> N1#P1 ... Nn#Pn :> ITEM

URI := URL

P := property(VALUE) or where(PROP, VALUE)

ITEM := item(INDIVIDUAL)

Fig. 22. Back-End Query Definition

19

On the left side of the main operator ’/>’ the external SPARQL endpoint
URI is specified and, on the right side, the goals and query restrictions. The
latter part of the query triggers the query that will be mapped to SPARQL.
This translation is obtained by transforming each property present in the query
into a triple that relates the property value to the individual.

The triples are extracted by the union of each property term of the right
side and the item term, which represents the subject of the triple. The following
query:

sparql(’uri.org’) /> N1#property1(V1) :>
N2#where(PROP, ’value2’) :> item(IND).

will be translated into the triples:

(?IND, N1#property1, ?V1)
(?IND, N2#?PROP, ’value2’)

All unbound Prolog variables represent SPARQL variables in the triples. To
state a value in the query and therefore apply a restriction to the solution, a
Prolog atomic value can be used to bind a Prolog variable.

If more than one solution is available for the query, all the results are retrieved
using the Prolog backtracking mechanism.

To ask for a property name, i.e, to generate a triple in which the property
position is a variable, the auxiliary unit where/2 should be used (as illustrated
in the previous example). Note that this clause can also be used like a single ask
property, by grounding the first argument to a Prolog atom named with some
property that describes the individual.

The triples generation process divides the GNU Prolog/CX query information
into two parts: the variables, i.e, what is asked and the triple sets. This will
result in a direct and transparent translation to SPARQL, where the variables
in the query will be the SELECT clause arguments and the triples will form the
sets in the WHERE clause.

5.2 Query example

Figure 23 shows an example of a back-end query that asks a SPARQL endpoint
to search the Wine4 ontology for all the individuals that have both hasBody and
hasColor properties.

The generated SPARQL query (Figure 24) is then sent to the SPARQL end-
point. In order to successfully communicate with it, the back-end must first
encode the query as specified in the SPARQL Protocol for RDF [6] and if a
successful query response code is returned, a solution file is received. This file
follows the SPARQL Query Results XML Format [4] and includes one solution.
4 The ontology is accessible in http://www.w3.org/TR/owl-guide/wine.rdf

20

?- sparql(’http://xmlarmyknife.org/api/rdf/sparql/’) />

N#hasBody(A) :>

N#hasColor(B) :> item(I).

A =’Medium’

B =’White’

N =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine’

I =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine’ # ’SelaksIceWine’

Fig. 23. GNU Prolog/CX query and solution

It is then parsed and the solution values are returned as bindings for Prolog
variables as illustrated by the last lines in Figure 23.

In the present example, the solution presents exactly one individual, Selak-
sIceWine, and the values Medium and White for properties hasBody and
hasColor respectively. This means the whole ontology only has one individual
that has both of these properties defined.

SELECT ?id ?hasColor ?hasBody

WHERE { ?id :hasColor ?hasColor. ?id :hasBody ?hasBody.}

Fig. 24. Generated SPARQL query

6 Conclusion

The system we described and implemented provides a representation abstraction
layer for web ontologies that can be accessed by logic programs.

The selected web languages, SPARQL and OWL, have been shown to be
appropriate for the scope of our work: to build a working proof-of-concept system
which allows us to experiment with Contextual Logic Programming to represent
and query ontologies in a way which draws on Prolog’s expressiveness as well as
the powerful composition mechanisms of CxLP.

We illustrated how this representation can be used to develop Semantic Web
agents by describing two components: a front-end and a CxLP back-end. There
are aspects of other, existing systems that will benefit from the ability to query
SPARQL sources: for instance, we are working on transparently integrating the
SPARQL back-end into the ISCO [2] system.

21

Future Work Supporting a well-defined OWL sublanguage is necessary in order
to provide reliable, trusted semantic web agents which will be usable in wider
application sceneries. We are working towards providing provably correct OWL
DL compatibility at the reasoning level, over the internal representation. This
issue is orthogonal to the rest of the work described herein but it is essential if
we expect the system to gain acceptance in the design of Semantic Web agents.

The implemented SPARQL agent currently does not cover the full language
specification. Although full SPARQL language support is not our immediate
intended purpose, we are working towards providing complete support for it.

A performance study, including a proper comparison with related systems,
has already been partially performed [14] and will be further expanded as the
implementation evolves.

References

1. Salvador Abreu and Daniel Diaz. Objective: in Minimum Context. In Catus-
cia Palamidessi, editor, Logic Programming, 19th International Conference, ICLP
2003, Mumbai, India, December 9-13, 2003, Proceedings, volume 2916 of Lecture
Notes in Computer Science, pages 128–147. Springer-Verlag, 2003. ISBN 3-540-
20642-6.

2. Salvador Abreu and Vı́tor Nogueira. Using a Logic Programming Language with
Persistence and Contexts. In Masanobu Umeda and Armin Wolf, editors, Declar-
ative Programming for Knowledge Management, volume 4369 of LNCS, Fukuoka,
Japan, 2006. Springer.

3. Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT
Press, 2004.

4. D. Beckett and J. Broekstra. SPARQL Query Results XML Format. W3C rec-
ommendation, W3C, April 2006. Available at: http://www.w3.org/TR/2006/CR-
rdf-sparql-XMLres-20060406/.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5), 2001.

6. Kendall Grant Clark. SPARQL Protocol For RDF. Candidate recommenda-
tion, World Wide Web Consortium, 6 October 2006. http://www.w3.org/TR/rdf-
sparql-protocol/.

7. DARPA. DAML. http://www.daml.org/, 3 February 2007.
8. M. Dean, G. Schreiber, S. Bechhofer, Frank van Harmelen, J. Hendler, I. Hor-

rocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
web ontology language reference. W3C recommendation, W3C, Feb 2004.
http://www.w3.org/TR/owl-ref/.

9. Leigh Dodds. XML Army Knife. http://xmlarmyknife.org/api/rdf/sparql/query,
5 December 2006.

10. Cláudio Fernandes, Nuno Lopes, and Salvador Abreu. On querying ontologies
with contextual logic programming. In Christine Golbreich, Aditya Kalyanpur,
and Bijan Parsia, editors, OWL: Experiences and Directions 2007, volume 258 of
CEUR Workshop Proceedings ISSN 1613-0073, June 2007.

11. Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis, and Georg Got-
tlob. Rdf querying: Language constructs and evaluation methods compared. In
Pedro Barahona, François Bry, Enrico Franconi, Nicola Henze, and Ulrike Sattler,

22

editors, Reasoning Web, volume 4126 of Lecture Notes in Computer Science, pages
1–52. Springer, 2006.

12. Jena. A Semantic Web Framework for Java. http://jena.sourceforge.net/, 30
November 2006.

13. Holger Knublauch, Mark A. Musen, and Alan L. Rector. Editing description logic
ontologies with the protégé owl plugin. In Volker Haarslev and Ralf Möller, editors,
Description Logics, volume 104 of CEUR Workshop Proceedings. CEUR-WS.org,
2004.

14. Nuno Lopes, Cláudio Fernandes, and Salvador Abreu. Contextual logic program-
ming for ontology representation and querying. In Axel Polleres, David Pearce,
Stijn Heymans, and Edna Ruckhaus, editors, 2nd International Workshop on Ap-
plications of Logic Programming to the Web, Semantic Web and Semantic Web
Services, September 2007.

15. Nuno Lopes, Cláudio Fernandes, and Salvador Abreu. Representing and querying
multiple ontologies with contextual logic programming. July 2008.

16. Frank Manola and Eric Miller. RDF Primer. W3C Recommendation, World Wide
Web Consortium, February 2004.

17. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. W3C Recommendation, World Wide Web Consortium, February 2004.

18. Protégé. Free, open source ontology editor and knowledge-based framework.
http://protege.stanford.edu/, 30 November 2006.

19. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
Technical report, W3C, 2006. Available at: http://www.w3.org/TR/2006/CR-rdf-
sparql-query-20060406/.

20. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical owl-dl reasoner. J. Web Sem., 5(2):51–53, 2007.

21. Software Systems Institute. Racer Manager. http://racerproject.sourceforge.net/,
19 February 2007.

22. Vangelis Vassiliadis. Thea OWL Parser for Prolog.
http://www.semanticweb.gr/TheaOWLParser/, 12 October 2006.

23. Vangelis Vassiliadis. Thea A Web Ontology Language - OWL Parser for [SWI]
Prolog. http://www.semanticweb.gr/downloads/Thea%20OWL%20Parser.doc, 19
January 2007.

24. W3C. Wine Ontology. http://www.w3.org/TR/owl-guide/wine.rdf, 22 July 2006.

References

1. Salvador Abreu and Daniel Diaz. Objective: in Minimum Context. In Catus-
cia Palamidessi, editor, Logic Programming, 19th International Conference, ICLP
2003, Mumbai, India, December 9-13, 2003, Proceedings, volume 2916 of Lecture
Notes in Computer Science, pages 128–147. Springer-Verlag, 2003. ISBN 3-540-
20642-6.

2. Salvador Abreu and Vı́tor Nogueira. Using a Logic Programming Language with
Persistence and Contexts. In Masanobu Umeda and Armin Wolf, editors, Declar-
ative Programming for Knowledge Management, volume 4369 of LNCS, Fukuoka,
Japan, 2006. Springer.

3. Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT
Press, 2004.

23

4. D. Beckett and J. Broekstra. SPARQL Query Results XML Format. W3C rec-
ommendation, W3C, April 2006. Available at: http://www.w3.org/TR/2006/CR-
rdf-sparql-XMLres-20060406/.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5), 2001.

6. Kendall Grant Clark. SPARQL Protocol For RDF. Candidate recommenda-
tion, World Wide Web Consortium, 6 October 2006. http://www.w3.org/TR/rdf-
sparql-protocol/.

7. DARPA. DAML. http://www.daml.org/, 3 February 2007.
8. M. Dean, G. Schreiber, S. Bechhofer, Frank van Harmelen, J. Hendler, I. Hor-

rocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
web ontology language reference. W3C recommendation, W3C, Feb 2004.
http://www.w3.org/TR/owl-ref/.

9. Leigh Dodds. XML Army Knife. http://xmlarmyknife.org/api/rdf/sparql/query,
5 December 2006.

10. Cláudio Fernandes, Nuno Lopes, and Salvador Abreu. On querying ontologies
with contextual logic programming. In Christine Golbreich, Aditya Kalyanpur,
and Bijan Parsia, editors, OWL: Experiences and Directions 2007, volume 258 of
CEUR Workshop Proceedings ISSN 1613-0073, June 2007.

11. Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis, and Georg Got-
tlob. Rdf querying: Language constructs and evaluation methods compared. In
Pedro Barahona, François Bry, Enrico Franconi, Nicola Henze, and Ulrike Sattler,
editors, Reasoning Web, volume 4126 of Lecture Notes in Computer Science, pages
1–52. Springer, 2006.

12. Jena. A Semantic Web Framework for Java. http://jena.sourceforge.net/, 30
November 2006.

13. Holger Knublauch, Mark A. Musen, and Alan L. Rector. Editing description logic
ontologies with the protégé owl plugin. In Volker Haarslev and Ralf Möller, editors,
Description Logics, volume 104 of CEUR Workshop Proceedings. CEUR-WS.org,
2004.

14. Nuno Lopes, Cláudio Fernandes, and Salvador Abreu. Contextual logic program-
ming for ontology representation and querying. In Axel Polleres, David Pearce,
Stijn Heymans, and Edna Ruckhaus, editors, 2nd International Workshop on Ap-
plications of Logic Programming to the Web, Semantic Web and Semantic Web
Services, September 2007.

15. Nuno Lopes, Cláudio Fernandes, and Salvador Abreu. Representing and querying
multiple ontologies with contextual logic programming. July 2008.

16. Frank Manola and Eric Miller. RDF Primer. W3C Recommendation, World Wide
Web Consortium, February 2004.

17. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. W3C Recommendation, World Wide Web Consortium, February 2004.

18. Protégé. Free, open source ontology editor and knowledge-based framework.
http://protege.stanford.edu/, 30 November 2006.

19. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
Technical report, W3C, 2006. Available at: http://www.w3.org/TR/2006/CR-rdf-
sparql-query-20060406/.

20. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical owl-dl reasoner. J. Web Sem., 5(2):51–53, 2007.

21. Software Systems Institute. Racer Manager. http://racerproject.sourceforge.net/,
19 February 2007.

24

22. Vangelis Vassiliadis. Thea OWL Parser for Prolog.
http://www.semanticweb.gr/TheaOWLParser/, 12 October 2006.

23. Vangelis Vassiliadis. Thea A Web Ontology Language - OWL Parser for [SWI]
Prolog. http://www.semanticweb.gr/downloads/Thea%20OWL%20Parser.doc, 19
January 2007.

24. W3C. Wine Ontology. http://www.w3.org/TR/owl-guide/wine.rdf, 22 July 2006.

25

