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Abstract. Starting from the general framework for Annotated RDFS which we
presented in previous work (extending Udrea et al’s Annotated RDF), we address
the development of a query language – AnQL – that is inspired by SPARQL,
including several features of SPARQL 1.1. As a side effect we propose formal
definitions of the semantics of these features (subqueries, aggregates, assign-
ment, solution modifiers) which could serve as a basis for the ongoing work in
SPARQL 1.1. We demonstrate the value of such a framework by comparing our
approach to previously proposed extensions of SPARQL and show that AnQL
generalises and extends them.

Introduction

RDF (Resource Description Framework) [14] is the widely used representation lan-
guage for the Semantic Web and the Web of Data. RDF exposes data as triples, consist-
ing of subject, predicate and object, stating that subject is related to object by the pred-
icate relation. Several extensions to RDF were proposed in order to deal with time [7,
19, 24], truth or imprecise information [15, 22], trust [10, 20] and provenance [4]. All
these proposals share a common approach of extending the RDF language by attach-
ing meta-information about the RDF graph or triple. RDF Schema (RDFS) [3] is the
specification of a restricted vocabulary that allows to deduce further information from
existing triples. In our previous work [23], we presented a general extension to RDFS,
improving on Udrea et al’s Annotated RDF [25], that is capable of encapsulating the
mentioned RDF extensions as specific domains for RDF annotations. For this general
extension, we present a generic RDFS reasoning procedure which can be formulated
independently of the annotation domain by being parameterised with operations any
domain needs to provide. An overview of Annotated RDFS is presented in Sect. 1.

SPARQL [21] is the W3C-standardised query language for RDF. In this paper we
present an extension of SPARQL for querying annotated RDFS. SPARQL shares sim-
ilarities with SQL although several features, such as aggregates, nested queries and
variable assignments, are still missing from the current SPARQL specification. Our
SPARQL extension presented here also deals with these missing features thus going
beyond the features of SPARQL, heading towards the currently under development
SPARQL 1.1 specification [9]. Our extension of SPARQL, called AnQL, is presented in
Sect. 2. Furthermore, Sect. 3 presents a discussion of some of the most important issues
with the design of our query language along with the comparison to some of the related
works.



Related Work. The basis for Annotated RDF were first established by Udrea et al. [25,
26], in which their query language is restricted to conjunctive queries. SPARQL is com-
pared to the presented conjunctive queries but excludes the possibility of querying an-
notations. Furthermore, OPTIONAL, UNION and FILTER SPARQL queries are not
considered which results in a subset of SPARQL that can be directly translated into
their previously presented conjunctive query system.

In [7], Gutiérrez et al. present conjunctive queries with built-in predicates for query-
ing temporal RDF, neither considering full SPARQL. Pugliese et al. [19] also have a
temporal framework where they only define conjunctive queries, thus ignoring some of
the more advanced features of SPARQL. Tappolet and Bernstein [24] present tempo-
ral extensions for RDF and SPARQL. A storage format for temporal RDF is presented
where each time interval is stored as a named graph. The τ -SPARQL query language al-
lows to query the temporal RDF representation using an extended SPARQL syntax that
can match the graph pattern against the snapshot of a temporal graph at any given time
point and allows to query the start and endpoints of a temporal interval, whose values
can then be used in other parts of the query. The RDF extensions towards uncertain or
fuzzy information [15, 22] so far do not address SPARQL, presenting only extensions
for RDFS reasoning but [22] formalises conjunctive queries.

SPARQL extensions towards querying trust have been presented by Hartig [10].
Hartig introduces a trust aware query language, tSPARQL, that includes a new con-
structor to access the trust value of a graph pattern. This value can then be used in other
statements such as FILTERs or ORDER.

Another extension to query meta-knowledge in RDF, mostly considering prove-
nance and uncertainty is presented by Dividino et al. [4]. In this work, the meta-infor-
mation is stored using named graphs and the syntax and semantics of SPARQL are
extended to consider an additional expression that enables querying the named graphs
representing the meta-information.

Our present work can also be related to annotated relational databases, especially
Green et al. [6] who provides a similar framework for the relational algebra. After pre-
senting a generic structure for annotations, they focus more specifically on the prove-
nance domain. The specificities of the relation algebra, especially Closed World As-
sumption, allows them to define a slightly more general structure for annotation do-
mains, namely semiring (as opposed to residuated lattice in our approach).

1 Annotated RDFS

For the sake of making the paper self-contained, we recap essential parts from [23],
where we only considered ground graphs, while here we do allow blank nodes as well.

1.1 Syntax

Consider pairwise disjoint alphabets U, B, and L denoting, respectively, URI refer-
ences, blank nodes (i.e., variables, denoted x, y, z)3 and Literals.4 We call the elements

3 We will often use the term blank node and variable synonymously in this paper.
4 We assume U,B, and L fixed, and for ease we will denote unions of these sets simply con-

catenating their names.



in UBL (B) terms. An RDF triple is τ = (s, p, o) ∈ UBL × U × UBL.5 We call
s the subject, p the predicate, and o the object. An annotated triple is an expression
τ : λ, where τ is a triple and λ is an annotation value (defined below). An annotated
graph G is a finite set of annotated triples. The universe of G, universe(G), is the set
of elements in UBL that occur in the triples of G. A vocabulary is a subset of UL.

As in our previous work, for presentation purposes, we rely on a fragment of RDFS,
called ρdf [16], that covers essential features of RDFS.6 ρdf is defined as the following
subset of the RDFS vocabulary: ρdf = {sp, sc, type, dom, range}. Informally, (i)
(p, sp, q) means that property p is a subproperty of property q; (ii) (c, sc, d) means
that class c is a subclass of class d; (iii) (a, type, b) means that a is of type b; (iv)
(p, dom, c) means that the domain of property p is c; and (v) (p, range, c) means that
the range of property p is c. Annotations are added to triples to attach meta information
such as temporal validity, trust or fuzzy value, provenance.

Example 1. For instance, the following annotated triple:

(:Alain, :livesIn, :Paris) : [1980, 1991]

in a temporal setting [7] has intended meaning “Alain lives in Paris from 1980 to 1991”,
while in the fuzzy setting [22]:

(audiTT, type,SportsCar) : 0.8

has intended meaning “AudiTT is a sports car to degree not less than 0.8”; considering
provenance as annotations:

(Person, sc,Agent) : {http://xmlns.com/foaf/0.1/}
would mean that the subclass relationship between persons and agents is defined by –
or, “belongs to” – the document http://xmlns.com/foaf/0.1/.

1.2 RDFS Annotation Domains

Consider a lattice 〈L,�〉. Elements in L are our annotation values. The order � is
used to express redundant/entailed/subsumed information. For instance, for temporal
intervals, an annotated triple (s, p, o) : [2000,2006] entails (s, p, o) : [2003,2004],
as [2003,2004] ⊆ [2000,2006] (here, ⊆ plays the role of �). Informally, an in-
terpretation will map statements to elements of the annotation domain. Our semantics
generalises the one of standard RDFS by using an algebraic structure that is well-known
for Many-Valued FOL [8]. We say that an annotation domain for RDFS is a residuated
bounded lattice D = 〈L,�,∧,∨,⊗,⇒,⊥,>〉.7 That is,

1. 〈L,�,∧,∨,⊥,>〉 is a bounded lattice, where ⊥ and > are bottom and top ele-
ments, and ∧ and ∨ are meet and join operators;

2. 〈L,⊗,>〉 is a commutative monoid;

5 As in [16] we allow literals for s.
6 Just as in [16] our annotation framework can be extended to full RDFS, adding additional

semantic conditions and respective inference rules [13].
7 We correct here an imprecision in the definition given in [23], in which we did not mention

that the structure should be a residuated lattice.



3. ⇒ is the so-called residuum of ⊗, i.e., for all λ1, λ2, λ3, λ1 ⊗ λ3 � λ2 iff λ3 �
(λ1 ⇒ λ2).

Remark 1. Note that λ1 ⇒ λ2 can be determined uniquely as λ1 ⇒ λ2 = sup {λ |
λ1⊗λ � λ2} (see [11]). Furthermore, in the remaining of this paper, we do not use the
∧ which is implicitly defined by the order �. For these reasons, we represent a domain
succinctly as 6-tuple 〈L,�,∨,⊗,⊥,>〉.

In what follows we define a map as a function µ : UBL → UBL preserving URIs
and literals, i.e., µ(t) = t, for all t ∈ UL. Given a graph G, we define µ(G) =
{(µ(s), µ(p), µ(o)) | (s, p, o) ∈ G}. We speak of a map µ from G1 to G2, and write
µ : G1 → G2, if µ is such that µ(G1) ⊆ G2.

1.3 Semantics

Fix an annotation domain D = 〈L,�,∨,⊗,⊥,>〉. Informally, an interpretation I will
assign to a triple τ an element of the annotation domain λ ∈ L, dictating that under I,
the annotation of τ is greater or equal than (i.e., �) λ. Formally, an annotated interpre-
tation I over a vocabulary V is a tuple I = 〈∆R, ∆P , ∆C , ∆L, P [[·]], C[[·]], ·I〉 where
∆R, ∆P , ∆C , ∆L where ∆R, ∆P , ∆C , ∆L are the interpretation domains of I, which
are finite non-empty sets, and P [[·]], C[[·]], ·I are the interpretation functions of I. These
have to satisfy:

1. ∆R are the resources (the domain or universe of I);
2. ∆P are property names (not necessarily disjoint from ∆R);
3. ∆C ⊆ ∆R are the classes;
4. ∆L ⊆ ∆R are the literal values and contains L ∩ V ;
5. P [[·]] maps each property name p ∈ ∆P into a function P [[p]] : ∆R×∆R → L, i.e.,

assigns an annotation value to each pair of resources;
6. C[[·]] maps each class c ∈ ∆C into a function C[[c]] : ∆R → L, i.e., assigns an

annotation value representing class membership in c to every resource.
7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪ ∆P , and such that ·I is the

identity for plain literals and assigns an element in ∆R to each element in L;

Intuitively, a triple (s, p, o) : λ is satisfied by an annotated interpretation I if (s, o)
belongs to the extension of p to a “wider” extent than λ. We formalise this intuition
in terms of semantic conditions on the use of the RDFS vocabulary. That is, an in-
terpretation I is a model of an annotated ground graph G, denoted I |= G, iff I
is an interpretation over the vocabulary ρdf ∪ universe(G) that satisfies the condi-
tions in Table 1. Here, considering a set ∆ ⊆ ∆R ∪ ∆P , we say that a function
p : ∆ × ∆ → L is sup-⊗ transitive (or simply transitive) over ∆ iff for all x, z ∈ ∆,
supy∈∆{p(x, y)⊗ p(y, z)} � p(x, z).8

Finally, entailment among annotated ground graphs G and H is as usual. Now,
G |= H , where G and H may contain blank nodes, iff for any grounding G′ of G there
is a grounding H ′ of H such that G′ |= H ′.9

8 As ∆ is finite, sup-⊗ transitivity is well defined
9 A grounding G′ of graph G is obtained by replacing variables in G with terms in UL.



Simple:
1. (s, p, o) : λ ∈ G implies pI ∈ ∆P and P [[pI ]](sI , oI) � λ;

Subproperty:
1. P [[spI ]] is sup-⊗ transitive over ∆P ;
2. P [[spI ]](p, q) = inf(x,y)∈∆R×∆R

P [[p]](x, y)⇒ P [[q]](x, y);
Subclass:

1. P [[scI ]] is sup-⊗ transitive over ∆C ;
2. P [[scI ]](c, d) = infx∈∆R C[[c]](x)⇒ C[[d]](x);

Typing I:
1. C[[c]](x) = P [[typeI ]](x, c);
2. P [[domI ]](p, c) = inf(x,y)∈∆R×∆R

P [[p]](x, y)⇒ C[[c]](x);
3. P [[rangeI ]](p, c) = inf(x,y)∈∆R×∆R

P [[p]](x, y)⇒ C[[c]](y);
Typing II:

1. For each e ∈ ρdf, eI ∈ ∆P

2. P [[domI ]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C

3. P [[rangeI ]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C

4. P [[typeI ]](s, c) is defined only for c ∈ ∆C .

Table 1. The conditions for annotated interpretations.

Remark 2. In [16], the authors define two variants of the semantics of ρdf: the default
one includes reflexivity of the subclass and subproperty relations but in the present
paper, we extend the alternative semantics presented in [16, Definition 4] which omits
this requirement.

Remark 3. Note that we always have that G |= τ : ⊥. Clearly, triples of the form τ : ⊥
are uninteresting and, thus, in the following we not consider them as part of the lan-
guage.

As for the crisp case, it can be shown [23] that any annotated RDFS graph has a finite
model (modulo Remark 3) and, thus, we do not have to care about consistency.

1.4 Deductive system

The important feature of the annotation framework is that we are able to provide a de-
ductive system in the style of the one for classical RDFS. Moreover, the schemata of the
rules are the same for any annotation domain (only support for the domain dependent
⊗ and ∨ operations has to be provided) and, thus, are amenable to an easy implemen-
tation on top of existing systems. Specifically, the rule set contains the rules presented
in Table 2. Please note that rule 6 from Table 2 is destructive, i.e., this rule removes the
premises as the conclusion is inferred, intuitively meaning that only “maximal” anno-
tations are preserved.

Remark 4. We point out that rules 2 − 5 from Table 2 can be represented concisely
using the following inference rule:

(A)
τ1 : λ1, ..., τn : λn, {τ1, . . . τn} `RDFS τ

τ :
⊗

i λi



1. Simple:

(a) G
G′ for a map µ : G′ → G (b) G

G′ for G′ ⊆ G
2. Subproperty:

(a)
(A, sp, B) : λ1,(B, sp, C) : λ2

(A, sp, C) : λ1 ⊗ λ2
(b)

(D, sp, E) : λ1,(X,D, Y ) : λ2

(X,E, Y ) : λ1 ⊗ λ2

3. Subclass:

(a)
(A, sc, B) : λ1,(B, sc, C) : λ2

(A, sc, C) : λ1 ⊗ λ2
(b)

(A, sc, B) : λ1,(X, type, A) : λ2

(X, type, B) : λ1 ⊗ λ2

4. Typing:

(a)
(D, dom, B) : λ1,(X,D, Y ) : λ2

(X, type, B) : λ1 ⊗ λ2
(b)

(D, range, B) : λ1,(X,D, Y ) : λ2

(Y, type, B) : λ1 ⊗ λ2

5. Implicit Typing:

(a)
(A, dom, B) : λ1,(D, sp, A) : λ2,(X,D, Y ) : λ3

(X, type, B) : λ1 ⊗ λ2 ⊗ λ3

(b)
(A, range, B) : λ1,(D, sp, A) : λ2,(X,D, Y ) : λ3

(Y, type, B) : λ1 ⊗ λ2 ⊗ λ3

6. Generalisation:
(X,A, Y ) : λ1,(X,A, Y ) : λ2

(X,A, Y ) : λ1 ∨ λ2

Table 2. Inference rules for annotated RDFS.

Essentially, this rule says that if a classical RDFS triple τ can be inferred by applying a
classical RDFS inference rule to triples τ1, . . . τn (denoted {τ1, . . . , τn} `RDFS τ ), then
the annotation term of τ will be

⊗
i λi, where λi is the annotation of triple τi. It follows

immediately that, using rule schema (A), the annotated framework extends to the whole
RDFS rule set as well. We also assume that rule schema (A) or rule 6 of Table 2 are not
applied if the consequence is of the form τ : ⊥ (see Remark 3).

Finally, like for the classical case, the closure is defined as cl(G) = {τ : λ | G `∗
τ : λ}, where `∗ is as ` for the annotated framework without rule (1a). Notice that the
size of the closure of G is polynomial in |G| and can be computed in polynomial time,
provided that the computational complexity of operations ⊗ and ∨ are polynomially
bounded (from a computational complexity point of view, it is as for the classical case,
plus the cost of the operations ⊗ and ∨ in L).

Proposition 1 (Soundness and completeness). For an annotated graph, the proof sys-
tem ` is sound and complete for |=, that is, (1) if G ` τ : λ then G |= τ : λ and (2) if
G |= τ : λ then there is λ′ � λ with G ` τ : λ′.

1.5 Examples of domains

Here, we instantiate the definition with several domains that have been discussed in
the literature. The interested reader can find more details about the temporal and fuzzy
domains in our previous work [23] and additional information in our accompanying
technical report [13]. Furthermore, domains can be combined into a multi-dimensional
annotation domain as explained in [23].



Crisp. Note that with the domainD01 = 〈{0, 1},6,max,min, 0, 1〉, Annotated RDFS
turns out to be the same as standard RDFS.

Fuzzy. The fuzzy domain has been presented in [15, 22] and to model fuzzy RDFS
in our framework is easy: the annotation domain is D[0,1] = 〈[0, 1],6,max,⊗, 0, 1〉
where ⊗ is any continuous t-norm on [0, 1] and ∨ is max.

Temporal. For modelling the temporal domain we generalise the notions presented
in [7, 19, 24] and consider that time points are elements of xsd:dateTimeStamp [18]
value space ∪ {−∞,+∞}.10 A temporal interval is a non-empty interval [α1, α2],
where αi are time points. An empty interval is denoted as ∅. We define a partial order
on intervals as I1 6 I2 iff I1 ⊆ I2 and L as (where ⊥ = {∅},> = {[−∞,+∞]}).
Therefore, a temporal term is a finite set of pairwise disjoint time intervals. Further-
more, on L we define the following partial order:

t1 � t2 iff ∀I1 ∈ t1∃I2 ∈ t2, such that I1 6 I2 .

The join and t-norm ⊗ operators are defined as:

t1 ∨ t2 = inf{t | t � ti, i = 1, 2}
t1 ⊗ t2 = sup{t | t � ti, i = 1, 2} .

Remark 5. Although we represent time points as dateTimeStamps, for presentation pur-
poses in this paper we will only use years.

Provenance. We also generalise the representation of provenance as described, e.g.,
in [4, 5]. In this case, we start from a countably infinite set of atomic provenances P.
We consider the propositional formulae made from symbols in P (atomic propositions),
logical or (∨) and logical and (∧), for which we have the standard entailment |=. A
provenance value is an equivalent class for the logical equivalence relation, i.e., the
set of annotation values is the quotient set of P by the logical equivalence. The order
relation is |=, t-norm and join are ∧ and ∨ respectively. We set> to true and⊥ to false.

Trust. For the trust domain we rely on previous work by Schenk [20] that defines
a bilattice structure to model some form of trust. We can directly use this algebraic
structure as an annotation domain in our framework.

2 AnQL: Annotated SPARQL

We now present an extension of the SPARQL [21] query language, made for querying
annotated graphs, which we call AnQL. For the rest of this section we fix a specific
annotation domain, D = 〈L,�,∨,⊗,⊥,>〉.

10 Note that we have a continuous set of time points as opposed to Gutiérrez et al. [7]



2.1 Syntax

A simple AnQL query is defined – analogously to a SPARQL query – as a triple Q =
(P,G, V ) where P is an annotated graph pattern, the dataset G is an annotated graph
and V is a set of variables, called the result form. We restrict ourselves to SELECT
queries in this work so it is sufficient to consider the result form V as a list of variables
to be projected.

Remark 6. Note that, for presentation purposes, we simplify the notion of datasets by
excluding named graphs and thus GRAPH queries. Our definitions can be straight-
forwardly extended to named graphs and we refer the reader to the SPARQL W3C
specification [21] for details.

Triple patterns in annotated AnQL are defined the same way as in SPARQL. A triple
pattern is a triple (s, p, o) where s, o ∈ UBL and p ∈ UB. We denote variables from
B in triple patterns by ’?’ prefixed names.11 Let V be a distinct set of variables, called
annotation variables. For a triple pattern τ and λ either an annotation term from D
or an annotation variable, we call τ : λ an annotated triple pattern; sets of annotated
triple patterns are called basic annotated patterns (BAP). An annotated graph pattern
is defined in a recursive manner: any BAP is an annotated graph pattern; if P and
P ′ are annotated graph patterns, R is a filter expression (see [21], and later on), then
(P AND P ′), (P OPTIONAL P ′), (P UNION P ′), (P FILTERR) are annotated graph
patterns.

Example 2. Suppose we are looking for people who live near Paris during some time
period and optionally owned a car during that period. This query can be posed as fol-
lows:

SELECT ?p ?c ?l
WHERE {(?p :basedNear :paris):?l OPTIONAL{(?p :hasCar ?c):?l}}

Assuming the following input data:

(:alain, :livesIn, :paris) : [2007, 2010]
(:alain, :hasCar, :peugeot) : [2004, 2009]
(:alain, :hasCar, :renault) : [2010, 2010]
(:livesIn, sp, :basedNear) : [−∞,+∞]

we will get the following answers:

θ1 = {?p/:alain, ?l/[2007, 2010]}
θ2 = {?p/:alain, ?c/:peugeot, ?l/[2007, 2009]}
θ3 = {?p/:alain, ?c/:renault, ?l/[2010, 2010]} .

The first answer corresponds to the answer in which the OPTIONAL pattern is not
satisfied, so we get the annotation value [2007, 2010] that corresponds to the time Alain
lives in Paris. In the second and third answers, the OPTIONAL pattern is matched and,
in this case, the annotation value is restricted to the time when Alain lives in Paris and
has a car. 2

11 Note that we do not consider blank nodes in triple patterns separately, since they can be treated
just as other variables.



Note that – as we will see – this first query will return as a result for the annotation
variable the periods where a car was owned.

Example 3. A slightly different query can be people who lived near Paris during some
time period and optionally owned a car at some point during their stay. This query –
which will rather return the time periods of employment – can be written as follows:

SELECT ?p ?c ?l WHERE {(?p :basedNear :paris):?l
OPTIONAL {(?p :hasCar ?c):?l2 FILTER (?l2 � ?l)} }

Using the input data from Example 2, we obtain the following answers:

θ1 = {?p/:alain, ?l/[2007, 2010]}
θ2 = {?p/:alain, ?c/:renault, ?l/[2007, 2010]}

In this example the FILTER behaves as in SPARQL by removing from the answer set
the mappings that do not make the FILTER expression true. This query also exposes the
issue of unsafe filters, noted in [2]. 2

2.2 Semantics

We denote by var(P ) the set of variables and annotation variables present in a BAP P .
A substitution θ for a BAP P is a mapping with domain var(P ) (annotation) variables
into (annotation) terms occurring in G. We denote the domain of a substitution θ, i.e.
the variables for which θ is defined, by dom(θ). For convenience, sometimes we will
use the notation θ = {x1/t1, . . . , xn/tn} to indicate that θ(xi) = ti, i.e., variable xi is
assigned to term ti. Note that we do not allow any assignment of an annotation variables
to ⊥ (of the domain D). An annotation value of ⊥, although it is a valid answer for any
triple, does not provide any additional information and thus is of minor interest.

For a BAP P , and a substitution θ we denote by θ(P ) the triples obtained by re-
placing the variables in P according to θ. By G |= θ(P ) we denote the fact that θ(P )
is entailed by G.

For the extension of the SPARQL relational algebra to the annotated case we in-
troduce – inspired by the definitions in [17] – definitions of compatibility and union
of substitutions: given two substitutions θ1 and θ2, θ1 and θ2 are ⊗-compatible if and
only if (i) θ1(x) = θ2(x) for any non-annotation variable x ∈ dom(θ1) ∩ dom(θ2);
(ii) θ1(λ) ⊗ θ2(λ) 6= ⊥ for any annotation variable λ ∈ dom(θ1) ∩ dom(θ2). Fur-
ther, for two ⊗-compatible substitutions θ1 and θ2the ⊗-union, denoted θ1 ⊗ θ2, is as
θ1 ∪ θ2, with the exception that for any annotation variable λ ∈ dom(θ1) ∩ dom(θ2),
θ1 ⊗ θ2(λ) = θ1(λ)⊗ θ2(λ).

We are now ready to present the notion of evaluation for generic AnQL graph pat-
terns. Let P be a BAP, P1, P2 annotated graph patterns, G an annotated graph and R a
filter expression, then the evaluation [[·]]G, i.e., set of answers,12 is recursively defined
as:
12 Strictly speaking, we consider sequences of answers – note that SPARQL allows duplicates

and imposing and order on solutions, cf. Sect. 2.3 below for more discussion – but we stick
with set notation representation here for illustration. Whenever we mean “real” sets where
duplicates are removed we write {. . .}DISTINCT.



[[P ]]G = {θ | dom(θ) = var(P ) and G |= θ(P )}
[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]G, θ1 and θ2 ⊗-compatible}
[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G
[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}
[[P1 OPTIONAL P2[R]]]G = {θ | and θ meets one of the following conditions:

1.) θ = θ1 ⊗ θ2 if θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]G, θ1 and θ2 ⊗-compatible, and Rθ is true
2.) θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G such that θ1 and θ2 ⊗-compatible,

R(θ1 ⊗ θ2) is true, and for all annotation variables λ in dom(θ1) ∩ dom(θ2),
θ2(λ) ≺ θ1(λ)

3.) θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G such that θ1 and θ2 ⊗-compatible,
R(θ1 ⊗ θ2) is false}

Remark 7. For practical convenience, we retain in [[·]]G only “domain maximal an-
swers”. That is, let us define θ′ � θ iff (i) θ′ 6= θ; (ii) dom(θ) = dom(θ′); (iii)
θ(x) = θ′(x) for any non-annotation variable x; and (iv) θ′(λ) � θ(λ) for any annota-
tion variable λ. Then, for any θ ∈ [[P ]]G we remove any θ′ ∈ [[P ]]G such that θ′ � θ.

Remark 8. Please note that the cases for the evaluation of the OPTIONAL are com-
pliant with the SPARQL specification [21], covering the notion of unsafe FILTERs as
presented in [2]. However, there are some peculiarities inherent to the annotated case.
More specifically case 2.) introduces the side effect that annotation variables that are
compatible between the mappings may have different values in the answer depending
if the OPTIONAL is matched of not. This is the behaviour demonstrated in Example 2.

The notion of true filter is defined as follows: for a FILTER expression R, the valuation
of R on a substitution θ, denoted Rθ is true iff: 13

(1) R = BOUND(v) with v ∈ dom(θ);
(2) R = isBLANK(v) with v ∈ dom(θ) and θ(v) ∈ B;
(3) R = isIRI(v) with v ∈ dom(θ) and θ(v) ∈ U;
(4) R = isLITERAL(v) with v ∈ dom(θ) and θ(v) ∈ L;
(5) R = (u = v) with u, v ∈ dom(θ) ∪UBL and θ(u) = θ(v);
(6) R = (¬R1) with θ(R1) is false;
(7) R = (R1 ∨R2) with θ(R1) is true or θ(R2) is true;
(8) R = (R1 ∧R2) with θ(R1) is true and θ(R2) is true;
(9) R = (x � y) with x, y ∈ dom(θ) ∪ L and θ(x) � θ(y);
(10) R = p(z̄) with p(z̄)θ = true iff p(θ(z̄)) = true, where p is a built-in predicate.

In the FILTER expressions above, a built-in predicate p is any n-ary predicate p, where
p’s arguments may be variables (annotation and non-annotation ones), domain values
ofD, values from UL, p has a fixed interpretation and we assume that the evaluation of
the predicate can be decided in finite time. Annotation domains may define their own
built-in predicates that range over annotation values as in the following query:

Example 4. Consider we want to know where Alain was living before 2009. This query
can be expressed in the following way:

13 We consider a simple evaluation of filter expressions where the “error” result is ignored,
see [21, Sect. 11.3] for details.



SELECT ?city
WHERE {(:alain :livesIn ?city):?l FILTER(before(?l, [2009]))}

The following proposition shows that we have a conservative extension of SPARQL:

Proposition 2. Let Q = (P,G, V ) be a SPARQL query over an RDF graph G. Let G′

be obtained from G by annotating triples with>. Then [[P ]]G under SPARQL semantics
is in one-to-one correspondence to [[P ]]G′ under AnQL semantics such that for any
θ ∈ [[P ]]G there is a θ′ ∈ [[P ]]G′ with θ and θ′ coinciding on var(P ).

2.3 Further Extensions of AnQL

In this section we include various features from SPARQL 1.1 14 such as variable as-
signments, projection (i.e. sub-SELECTs), aggregates and solution modifiers to AnQL.
We succinctly present both syntax and semantics of the constructs. The evaluation of a
ASSIGN statement is defined as:

[[P ASSIGN f(z̄) AS z]]G = {θ | θ1 ∈ [[P ]]G, θ = θ1[z/f(θ1(z̄))]} ,

where

θ[z/t] =

{
θ ∪ {z/t} if z 6∈ dom(θ)
(θ \ {z/t′}) ∪ {z/t} otherwise .

Essentially, we assign to the variable z the value f(θ1(z̄)), which is the evaluation of
the function f(z̄) with respect to a substitution θ1 ∈ [[P ]]G.

Example 5. Using a built-in function we can retrieve for each employee the length of
employment for any company:

SELECT ?x ?y ?z
WHERE {(?x :worksFor :?y):?l ASSIGN length(?l) AS ?z }

Here, the length built-in predicate returns, given a set of temporal intervals, the overall
total length of the intervals. 2

Remark 9. Note that this definition is more general than “SELECT expr AS ?var”
project expressions in current SPARQL 1.1 [9] due to not requiring that the assigned
variable be unbound.

We introduce the ORDERBY clause where the evaluation of a [[P ORDERBY ?x]]G
statement is defined as the ordering of the solutions – for any θ ∈ [[P ]]G – according
to the values of θ(?x). Ordering for non-annotation variables follows the rules in [21,
Section 9.1]. In case the variable x is an annotation variable, the order is induced by �.
In case,� is a partial order then we may use some linearisation method for posets, such
as [12]. Likewise, the SQL-like statement LIMIT(k) can be added straightforwardly.

We can further extend the evaluation of AnQL queries with aggregate functions

@ ∈ {SUM,AVG,MAX,MIN,COUNT,∧,∨,⊗}
14 These features are currently being defined by W3C, see [9] for the latest draft.



as follows: the evaluation of a GROUPBY statement is defined as:15

[[P GROUPBY(w̄) @̄f̄(z̄) AS ᾱ]]G = {θ | θ1 in [[P ]]G, θ = θ1|w̄[αi/@ifi(θi(z̄i))]}DISTINCT ,

where the variables αi 6∈ var(P ), z̄i ∈ var(P ) and none of the GROUPBY vari-
ables w̄ are included in the aggregation function variables z̄i. Here, we denote by θ|w̄
the restriction of variables in θ to variables in w̄. Using this notation, we can also
straightforwardly introduce projection, i.e., sub-SELECTs as an algebraic operator in
the language covering another new feature of SPARQL 1.1:

[[SELECT V̄ {P}]]G = {θ | θ1 in [[P ]]G, θ = θ1|v̄} .

Remark 10. Please note that the aggregator functions have a domain of definition and
thus can only be applied to values of their respective domain. For example, SUM and
AVG can only be used on numeric values, while MAX,MIN are applicable to any to-
tal order. Resolution of type mismatches for aggregates is currently being defined in
SPARQL 1.1 [9] and we aim to follow those, as soon as the language is stable. The
COUNT aggregator can be used for any finite set of values. The last three aggregation
functions, namely ∧,∨ and ⊗, are defined by the annotation domain and thus can be
used on any annotation values.

Remark 11. Please note that, unlike the current SPARQL 1.1 syntax, assignment, solu-
tion modifiers (ORDER BY, LIMIT) and aggregation are stand-alone operators in our
language and do not need to be tied to a sub-SELECT but can occur nested withinin
any pattern. This may be viewed as syntactic sugar allowing for more concise writing
than the current SPARQL 1.1 [9] draft.

Example 6. Suppose we want to know, for each employee, the average length of their
employments with different employers. Then such a query will be expressed as:

SELECT ?x ?avgL
WHERE{(?x :worksFor :?y):?l GROUPBY(?x) AVG(length(?l)) AS ?avgL}

Essentially, we group by the employee, compute for each employee the time he worked
for a company by means of the built-in function length, and compute the average value
for each group. That is, if g = {〈t, t1〉, . . . , 〈t, tn〉} is a group of tuples with the same
value t for employee x, and value ti for y, where each length of employment for ti is li
(computed as length(·)), then the value of avgL for the group g is (

∑
i li)/n. 2

Proposition 3. Assuming the built-in predicates are computable in finite time, the an-
swer set of any AnQL is finite and can also be computed in finite time.

This proposition can be demonstrated by induction over all the constructs we allow in
AnQL.

3 Twisting AnQL – Issues and Pitfalls

In this section we discuss some practical issues arising in formulating real-life questions
in AnQL like the treatment of non-annotated queries, combination of domains in queries
and some domain specific issues while highlighting problems in some related works.
15 In the expression, @̄f̄(z̄) AS ᾱ is a concise representation of n aggregations of the form

@ifi(z̄i) AS αi.



3.1 Uniform Treatment of Annotated and Non-annotated Queries

We aim at providing a uniform treatment for queries, i.e., it should be allowed to ask an-
notated queries against non-annotated graphs and vice-versa. There are two distinct sit-
uations where a default value must be determined, viz., in the RDF data or in SPARQL
queries. The treatment of non-annotated triples in the data has been discussed in [23]
and here we just use the meta-variable ΩD to represent the default value for domain
D. We consider a similar solution for evaluating a SPARQL query over an annotated
RDFS dataset. We allow that any non-annotated triple pattern τ be considered a BAP
by assigning it a default annotation. We consider that a graph pattern P , is in Annotated
Normal Form (ANF) if it does not contain any non-annotated triple patterns. Any graph
pattern P can be transformed into ANF by replacing each non-annotated triple pattern
τi ∈ P by using one of the following approaches:

1. adding a single annotation variable for each triple: τi : λ, where λ is a new annota-
tion variable not occurring in P ; or

2. adding a different annotation variable for each non-annotated triple: τi : λi s.t. each
λi is a new annotation variable not occurring in P and different from any other
generated variable; or

3. adding the > element from the domain: τi : >.

In later discussions, we will use the meta-variable ΘD to represent the default value of
domain D assigned to annotations in the query triples.

Example 7. For instance, if we again consider the query (excluding the annotation vari-
ables) and input data from Example 2, the query would look like:

SELECT ?p ?c
WHERE {(?p :basedNear :paris) OPTIONAL{(?p :hasCar ?c)}}

Now, given the 3 approaches for transforming this query into ANF we would get the
following answers:

Approach 1
?p/:alain -
?p/:alain ?c/:peugeot
?p/:alain ?c/:renault

Approach 2 ?p/:alain ?c/:peugeot
?p/:alain ?c/:renault

Approach 3 ∅

3.2 Querying multi-dimensional domains

Similarly to the discussion in the previous subsection, we can encounter mismatches
between the Annotated RDFS dataset and the AnQL query. In case the AnQL query
contains only variables for the annotations, the query can be answered on any Anno-
tated RDFS dataset. From a user perspective, the expected answers may differ from the
actual annotation domain in the dataset, e.g., the user may be expecting temporal in-
tervals in the answers when the answers actually contain a fuzzy value. For this reason
some built-in predicates to determine the type of annotation should be introduced, like
isTEMPORAL, isFUZZY, etc.



If the AnQL query contains annotation values and the Annotated RDFS dataset
contains annotations from a different domain, one option is to not provide any answers.
Alternatively, we can consider combining the domain of the query with the domain of
the annotation into a multi-dimensional domain, as illustrated in the next example.

Example 8. Assuming the following input data:
(:alain, :livesIn, :paris) : {ex.org}

When performing the following query:
SELECT ?p ?c WHERE { (?p :livesIn ?c):[2009, 2010] }

we would interpret the data to the form:
(:alain, :livesIn, :paris) : ({ex.org,Ωtemporal})

while the query would be interpreted as:
SELECT ?p ?c WHERE (?p :livesIn ?c):(Θprovenance, [2009, 2010])

where Ωtemporal and Θprovenance are annotations corresponding to the default values
their respective domains, as discussed in Section 3.1. The semantics of combining dif-
ferent domains into one multi-dimensional domain has been discussed in [23].

3.3 Temporal issues
Let us highlight some specific issues inherent to the temporal domain. Considering
queries using Allen’s temporal relations [1] (before, after, overlaps, etc.) as allowed
in [24], we can pose queries like “find persons who lived in Paris before Alain”. this
query raises some ambiguity when considering that persons may have lived in the same
city at different disjoint intervals. We can model such situations – relying on sets of
temporal intervals modelling the temporal domain. Consider the following input data:

(:betty, :livesIn, :paris) : {[1990, 1995]}
(:alain, :livesIn, :paris) : {[1980, 2000], [2002, 2010]}

Tappolet and Bernstein [24] consider the latter triple as two triples with disjoint intervals
as annotations. For the following query in their language τSPARQL:
SELECT ?p WHERE {
[?s1,?e1] ?p :livesIn :paris . [?s2,?e2] :alain :livesIn :paris .
[?s1,?e1] time:intervalBefore [?s2,?e2] }

we would get :betty as an answer although Alain was already living in Paris when
Betty moved there. This is one possible interpretation of “before” over a set of inter-
vals. In AnQL we could add different domain specific built-in predicates, representing
different interpretations of “before”. For instance, we could define binary built-ins (i)
beforeAny(?A1, ?A2) which is true if there exists any interval in annotation ?A1 be-
fore an interval in ?A2, or, respectively, a different built-in beforeAll(?A1, ?A2) which
is only true if all intervals in annotation ?A1 are before any interval in ?A2. Using the
latter, an AnQL query would look as follows:
SELECT ?p WHERE {(?p :livesIn :paris):?l1 .

(:alain :livesIn :paris):?l2 . FILTER(beforeAll(?l1,?l2))}

This latter query gives no result, which might comply with people’s understanding of
“before” in some cases, while we also have the choice to adopt the behaviour of [24] by
use of beforeAny instead. Our report [13] provides more details on this issue.



3.4 Constraints vs Filters

Considering the previous section, please note that FILTERs do not act as constraints
over the query. It could be expected that, given the data from the previous section, and
for the following query:

SELECT ?l1 ?l2 WHERE {(?p :livesIn :paris):?l1 .
(:alain :livesIn :paris):?l2 }

with an additional constraint that requires ?l1 to be “before” ?l2. We could expect
the answer {?l1/[1990, 1995], ?l2/[1996, 2000]} that matches the query with regards
to the data and satisfies the proposed constraint. However, we require maximality of
the annotation values in the answers, which in general, do not exist in presence of
constraints. For this reason, we do not allow general constraints.

Conclusions

Based on our previous work on Annotated RDFS [23], we presented a semantics for
an extension of the SPARQL query language, AnQL, that enables querying RDF with
annotations. Queries are specified with regards to a specific domain, from which we
presented some of the more common ones. Queries exemplified in related literature for
specific extensions of SPARQL can be expressed in AnQL.

Noticeably, our semantics goes beyond the expressivity of the current SPARQL
specification and includes some features from SPARQL 1.1 such as aggregates, variable
assignments and sub-queries.

A prototype implementation, including the annotated RDFS inferencing and anno-
tated SPARQL query engine is available at http://anql.deri.org.
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17. Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and complexity of SPARQL.
ACM Transactions on Database Systems, 34(3), 2009.

18. David Peterson, Shudi Gao, Ashok Malhotra, C. M. Sperberg-McQueen, and Henry S.
Thompson. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. W3C
Working Draft, 2009. http://www.w3.org/TR/xmlschema11-2/.

19. Andrea Pugliese, Octavian Udrea, and V. S. Subrahmanian. Scaling RDF with time. In Proc.
of 17th International Conference on World Wide Web (WWW’2008), pages 605–614, 2008.

20. Simon Schenk. On the Semantics of Trust and Caching in the Semantic Web. In Proc. of 7th
International Semantic Web Conference (ISWC’2008), pages 533–549, 2008.

21. Andy Seaborne and Eric Prud’hommeaux. SPARQL Query Language for RDF. W3C Rec-
ommendation, 2008. http://www.w3.org/TR/rdf-sparql-query/.

22. Umberto Straccia. A Minimal Deductive System for General Fuzzy RDF. In Proc. of 3rd
Int. Conference on Web Reasoning and Rule Systems (RR’2009), pages 166–181, 2009.

23. Umberto Straccia, Nuno Lopes, Gergely Lukacsy, and Axel Polleres. A General Framework
for Representing and Reasoning with Annotated Semantic Web Data. In Proc. of 24th AAAI
Conference on Artificial Intelligence (AAAI’2010), 2010.

24. Jonas Tappolet and Abraham Bernstein. Applied Temporal RDF: Efficient Temporal Query-
ing of RDF Data with SPARQL. In Proc. of 6th European Semantic Web Conference
(ESWC’2009), pages 308–322, 2009.

25. Octavian Udrea, Diego Reforgiato Recupero, and V. S. Subrahmanian. Annotated RDF. In
Proc. of 3rd European Semantic Web Conference (ESWC’2006), pages 487–501, 2006.

26. Octavian Udrea, Diego Reforgiato Recupero, and V. S. Subrahmanian. Annotated RDF.
ACM Transactions on Computational Logic, 11(2):1–41, 2010.


