

Annotated RDF
 DERI Reading Group Presentation

Nuno Lopes

May 5, 2010

NUI Galway
OÉ Gaillimh fonduireacht eolaiochta eireann-

RDF

subject predicate object

RDF

subject predicate object

```
@prefix : <http://nunolopes.org/foaf.rdf#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
:me foaf:name "Nuno Lopes" .
```


RDF

subject predicate object

```
@prefix : <http://nunolopes.org/foaf.rdf#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
:me foaf:name "Nuno Lopes" .
```

```
:me foaf:workplaceHomepage <http://www.si.uevora.pt/> .
:me foaf:workplaceHomepage <http://www.deri.ie/> .
```


RDF

subject predicate object

Correct

```
@prefix : <http://nunolopes.org/foaf.rdf#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
:me foaf:name "Nuno Lopes" .
```


Incorrect information!

```
:me foaf:workplaceHomepage <http://www.si.uevora.pt/> .
:me foaf:workplaceHomepage <http://www.deri.ie/> .
```


Annotated RDF

subject predicate object annotation

Annotated RDF

subject predicate object annotation

```
:me foaf:wpH <http://www.si.uevora.pt/> . [24-10-2005, 30-04-2008]
:me foaf:wpH <http://www.deri.ie/> . [01-05-2008, now]
```

wpH = workplaceHomepage

Annotated RDF

subject predicate object annotation

```
:me foaf:wpH <http://www.si.uevora.pt/> . [24-10-2005, 30-04-2008]
:me foaf:wpH <http://www.deri.ie/> . [01-05-2008, now]
```

wpH = workplaceHomepage

Annotations refer to a specific domain

- temporal
- trust (fuzzy)
- provenance
- . .

Domain Example - Provenance

"Mary"	:hasSupervisor	"William".	"Personal Webpage"
"Mary"	:hasSupervisor	"William".	"Faculty List"
"Max"	:hasAdvisor	"William".	"Faculty List"
"Max"	:hasSupervisor	"Stephen".	"Departmental Webpage"
"William" $:$ hasSupervisor	"Stephen".	"Graduate School"	

Domain Example - Provenance

"Mary"	:hasSupervisor	"William".	"Personal Webpage"
"Mary"	:hasSupervisor	"William".	"Faculty List"
"Max"	:hasAdvisor	"William".	"Faculty List"
"Max"	:hasSupervisor	"Stephen".	"Departmental Webpage"
"William" $:$ hasSupervisor	"Stephen".	"Graduate School"	

Partial order \preceq :

```
"Personal Webpage" \preceq "Departmental Webpage"
"Faculty List" \preceq "Graduate School"
```

Annotation domain: partially ordered set $(\mathcal{A}, \underline{\Omega})$

- \mathcal{A} is the set of annotations
- \preceq is the partial order (with a bottom element \perp)

Consistency

aRDF can introduce inconsistencies:
e.g. the triple (Mary, hasSupervisor, William) in the previous example

Consistency

aRDF can introduce inconsistencies:
e.g. the triple (Mary, hasSupervisor, William) in the previous example
"Faculty List" is not comparable to "Personal Webpage"
"Mary" :hasSupervisor "William". "Personal Webpage"
"Mary" :hasSupervisor "William". "Faculty List"
"Personal Webpage" $\preceq ~ " D e p a r t m e n t a l ~ W e b p a g e " ~$
"Faculty List" $\preceq ~ " G r a d u a t e ~ S c h o o l " ~$

Consistency

aRDF can introduce inconsistencies:
e.g. the triple (Mary, hasSupervisor, William) in the previous example
"Faculty List" is not comparable to "Personal Webpage"
"Mary" :hasSupervisor "William". "Personal Webpage"
"Mary" :hasSupervisor "William". "Faculty List"
"Personal Webpage" $\preceq ~ " D e p a r t m e n t a l ~ W e b p a g e " ~$
"Faculty List" $\preceq ~ " G r a d u a t e ~ S c h o o l " ~$

If the partially ordered set \mathcal{A} contains a top element T the aRDF is guaranteed to be consistent.

RDFS schema

Supported vocabulary:

- rdfs:subClassOf
- rdf:type
- rdfs:subPropertyOf
- transitive and non-transitive properties

RDFS schema

Supported vocabulary:

- rdfs:subClassOf
- rdf:type
- rdfs:subPropertyOf
- transitive and non-transitive properties

Mentions that other RDFS constructs are possible, but consider rdfs:subPropertyOf particularly important.

Query example

| "Max" | :hasAdvisor | "Adam". | $(0.9,2004)$ |
| :--- | :--- | :--- | :--- | :--- |
| "Adam" | :hasSupervisor | "William". | $(0.95,2003)$ |
| "Mary" | :hasAdvisor | "William". | $(0.7,2003)$ |
| | | | |
| :hasAdvisor \quad rdfs:subPropertyOf $\quad:$ hasSupervisor | | | |

- A query is a triple (with possible variables) $q=($ Max, $? p$, William $):(0.8,2002)$

Query example

| "Max" | :hasAdvisor | "Adam". | $(0.9,2004)$ |
| :--- | :--- | :--- | :--- | :--- |
| "Adam" | :hasSupervisor | "William". | $(0.95,2003)$ |
| "Mary" | :hasAdvisor | "William". | $(0.7,2003)$ |
| :hasAdvisor \quad rdfs:subProperty0f | :hasSupervisor | | |

- A query is a triple (with possible variables) $q=($ Max, $? p$, William $):(0.8,2002)$
- Possible annotation answers: all $a \in \mathcal{A}$ where $(0.8,2002) \preceq a$

$$
A_{\mathcal{O}}(q)=\begin{aligned}
& \{\ldots,(\text { Max, hasSupervisor, William }):(0.8,2002), \\
& \\
& \ldots,(\text { Max, hasSupervisor, William }):(0.9,2003)\}
\end{aligned}
$$

Query example

| "Max" | :hasAdvisor | "Adam". | $(0.9,2004)$ |
| :--- | :--- | :--- | :--- | :--- |
| "Adam" | :hasSupervisor | "William". | $(0.95,2003)$ |
| "Mary" | $:$ hasAdvisor | "William". | $(0.7,2003)$ |
| :hasAdvisor \quad rdfs:subPropertyOf $\quad:$ hasSupervisor | | | |

- A query is a triple (with possible variables) $q=($ Max, $? p$, William $):(0.8,2002)$
- Possible annotation answers: all $a \in \mathcal{A}$ where $(0.8,2002) \preceq a$ $\begin{aligned} A_{\mathcal{O}}(q)= & \{\ldots,(\text { Max, hasSupervisor, William }):(0.8,2002), \\ & \ldots,(\text { Max, hasSupervisor, William }):(0.9,2003)\}\end{aligned}$
- answer is a set of triples, eliminating redundant annotations Ans ${ }_{\mathcal{O}}(q)=\{($ Max, hasSupervisor, William $):(0.9,2003)\}$

Query answering algorithms

Algorithms for different types of queries:

- atomicAnswerV - (r, p,?v) : a
- atomicAnswerP - $(r, ? p, v): a$
- atomicAnswerA - (r, p, v) :?a

Polynomial complexity for these algorithms. Conjunctive query answering yield exponential complexity.

Experimental Results

- Tested using generated aRDF dataset ranging from 10000 to 100000 triples

Conclusions

- Representation capable of encompassing several annotations
- Consistency results for annotation domains
- no proper support for RDF schema
- no SPARQL
- Representation capable of encompassing several annotations
- Consistency results for annotation domains
- no proper support for RDF schema
- no SPARQL

Friday talk presenting our extensions to this work

Annotated RDF triples graphs

Assuming fixed sets:

- \mathcal{R} of resource names
- \mathcal{P} of property names
$\operatorname{dom}(p)$ set of values associated with property p $(r, p, v): a$ is an annotated triple if
- r is a resource name
- p is a property name
- v is a value (may also be a resource)
- An annotated-RDF ontology \mathcal{O} is a set of finite annotated triples

Ontology Graph
Ontology graphs

- $V=\mathcal{R} \cup \bigcup_{p \in \mathcal{P}} \operatorname{dom}(p)$
- $E=\left\{\left(r, r^{\prime}\right) \mid\left(r, p, r^{\prime}\right): a \in \mathcal{O}\right\}$
- $\lambda\left(r, r^{\prime}\right)=\left\{p: a \mid\left(r, p, r^{\prime}\right): a \in \mathcal{O}\right\}$ (edge labelling function)

Ontology Graph

Digital Enterprise Research Institute
Ontology graphs

- $V=\mathcal{R} \cup \bigcup_{p \in \mathcal{P}} \operatorname{dom}(p)$
- $E=\left\{\left(r, r^{\prime}\right) \mid\left(r, p, r^{\prime}\right): a \in \mathcal{O}\right\}$
- $\lambda\left(r, r^{\prime}\right)=\left\{p: a \mid\left(r, p, r^{\prime}\right): a \in \mathcal{O}\right\}$ (edge labelling function)

Ontology Graph of the example on Slide 3:

Semantics

Property paths

- for a transitive property, a p-path between nodes r, r^{\prime} are the triples $\left\{t_{1}=\left(r, p_{1}, r_{1}\right): a_{1}, \ldots, t_{i}=\left(r_{i-1}, p_{i}, r_{i}\right): a_{i}, \ldots, t_{k}=\right.$ $\left.\left(r_{k-1}, p_{k}, r^{\prime}\right): a_{k}\right\}, \forall i \in[1, k]\left(p_{i}, r d f s: s u b P r o p e r t y O f *, p\right)$

Semantics

Property paths

- for a transitive property, a p-path between nodes r, r^{\prime} are the triples $\left\{t_{1}=\left(r, p_{1}, r_{1}\right): a_{1}, \ldots, t_{i}=\left(r_{i-1}, p_{i}, r_{i}\right): a_{i}, \ldots, t_{k}=\right.$ $\left.\left(r_{k-1}, p_{k}, r^{\prime}\right): a_{k}\right\}, \forall i \in[1, k]\left(p_{i}, r d f s: s u b P r o p e r t y O f *, p\right)$
- Univ denotes the set of all triples (r, p, v)
- An aRDF-interpretation I is a mapping from Univ to \mathcal{A}.

Semantics

Property paths

- for a transitive property, a p-path between nodes r, r^{\prime} are the triples $\left\{t_{1}=\left(r, p_{1}, r_{1}\right): a_{1}, \ldots, t_{i}=\left(r_{i-1}, p_{i}, r_{i}\right): a_{i}, \ldots, t_{k}=\right.$ $\left.\left(r_{k-1}, p_{k}, r^{\prime}\right): a_{k}\right\}, \forall i \in[1, k]\left(p_{i}, r d f s: s u b P r o p e r t y O f *, p\right)$
- Univ denotes the set of all triples (r, p, v)
- An aRDF-interpretation I is a mapping from Univ to \mathcal{A}.
- An aRDF-interpretation I satisfies $(r, p, v): a$ iff $a \preceq I(r, p, v)$.

Semantics

Property paths

- for a transitive property, a p-path between nodes r, r^{\prime} are the triples $\left\{t_{1}=\left(r, p_{1}, r_{1}\right): a_{1}, \ldots, t_{i}=\left(r_{i-1}, p_{i}, r_{i}\right): a_{i}, \ldots, t_{k}=\right.$ $\left.\left(r_{k-1}, p_{k}, r^{\prime}\right): a_{k}\right\}, \forall i \in[1, k]\left(p_{i}, r d f s: s u b P r o p e r t y O f *, p\right)$
- Univ denotes the set of all triples (r, p, v)
- An aRDF-interpretation I is a mapping from Univ to \mathcal{A}.
- An aRDF-interpretation I satisfies $(r, p, v): a$ iff $a \preceq I(r, p, v)$.
- I satisfies \mathcal{O} iff:
- I satisfies every $(r, p, v): a \in \mathcal{O}$;
- For all transitive properties $p \in \mathcal{P}$, for all p-paths $Q=\left\{t_{1}, \ldots, t_{k}\right\}, t_{i}=\left(r_{i}, p_{i}, r_{i+1}\right): a_{i}$, for all $a \in \mathcal{A}$ such that $a \preceq a_{i}, 1 \leq i \leq k, a \preceq I\left(r_{1}, p, r_{k+1}\right)$.

aRDF query answering

- Two triples $(r, p, v): a$ and $\left(r^{\prime}, p^{\prime}, v^{\prime}\right): a^{\prime}$ are semi-unifiable if there exists a substitution θ such that $\theta(r)=\theta\left(r^{\prime}\right)$, $\theta(p)=\theta\left(p^{\prime}\right)$ and $\theta(v)=\theta\left(v^{\prime}\right)$.

aRDF query answering

- Two triples $(r, p, v): a$ and $\left(r^{\prime}, p^{\prime}, v^{\prime}\right): a^{\prime}$ are semi-unifiable if there exists a substitution θ such that $\theta(r)=\theta\left(r^{\prime}\right)$, $\theta(p)=\theta\left(p^{\prime}\right)$ and $\theta(v)=\theta\left(v^{\prime}\right)$.
- Given a consistent ontology \mathcal{O} and a query $q=\left(r_{q}, p_{q}, v_{q}\right): a_{q}$, then $A_{\mathcal{O}}(q)=\{(r, p, v): a\}$ s.t.
- $(r, p, v): a$ is semi-unifiable with q
- $\mathcal{O} \models(r, p, v): a$
- (a is a variable $) \vee\left(a_{q} \preceq a\right)$

aRDF query answering

- Two triples $(r, p, v): a$ and $\left(r^{\prime}, p^{\prime}, v^{\prime}\right): a^{\prime}$ are semi-unifiable if there exists a substitution θ such that $\theta(r)=\theta\left(r^{\prime}\right)$, $\theta(p)=\theta\left(p^{\prime}\right)$ and $\theta(v)=\theta\left(v^{\prime}\right)$.
- Given a consistent ontology \mathcal{O} and a query $q=\left(r_{q}, p_{q}, v_{q}\right): a_{q}$, then $A_{\mathcal{O}}(q)=\{(r, p, v): a\}$ s.t.
- $(r, p, v): a$ is semi-unifiable with q
- $\mathcal{O} \models(r, p, v): a$
- (a is a variable) $\vee\left(a_{q} \preceq a\right)$
- Eliminate redundant triples:

An answer to q is $A n s_{\mathcal{O}}(q)=\{(r, p, v): a\}$ s.t.:

- $(r, p, v): a \in A_{\mathcal{O}}(q)$
- $\nexists S \subseteq A n s_{\mathcal{O}}(q)-\{(r, p, v): a\}$ s.t. $S \models(r, p, v): a$

