

AnQL: SPARQLing Up Annotated RDFS

Nuno Lopes

Axel Polleres Umberto Straccia Antoine Zimmermann

November 09, 2010

www.deri.ie

sensor tags are assigned to people

www.deri.ie

sensor tags are assigned to people

tag proximity is registered by *base stations*

www.deri.ie

base stations are deployed throughout a building

2010-11-09 14:57:51

4302

83

10.254.2.6

timestamp		ip	tag	ssi
2010-11-09	14:57:51	10.254.2.15	4302	83
2010-11-09	14:57:51	10.254.3.1	4302	83
2010-11-09	14:57:51	10.254.2.6	4302	83

Overview

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

How to represent sensor data as RDF?

Digital Enterprise Research Institute

• RDF triples

:tag4302 :locatedIn :room311 .

Overview

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

How to represent sensor data as RDF?

Digital Enterprise Research Institute

• RDF triples

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room311 .

Overview

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

How to represent sensor data as RDF?

Digital Enterprise Research Institute

www.deri.ie

• RDF triples

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room310 .

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

How to represent sensor data as RDF?

Digital Enterprise Research Institute

• RDF triples

:tag4302 :locatedIn :room311 .
:tag4302 :locatedIn :room311 .

:tag4302 :locatedIn :room310 .

Not enough info!

• RDF triples

:tag4302 :locatedIn :room311 .
:tag4302 :locatedIn :room311 .
:tag4302 :locatedIn :room310 .

Not enough info!

Domain vocabulary/ontology

:record1 a :SensorRecord; :tag :tag4302; :locatedIn :room311; :timestamp "2010-11-09 14:57:51" .

Conclusions

www.deri.ie

• RDF triples

:tag4302 :locatedIn :room311 .
:tag4302 :locatedIn :room311 .
:tag4302 :locatedIn :room310 .

Not enough info!

Reification

:record1 rdf:type rdf:Statement rdf:subject :tag4302; rdf:predicate :locatedIn ; rdf:object :room311 ; :timestamp "2010-11-09 14:57:51" .

Implementation

Conclusions

How to represent sensor data as RDF?

Digital Enterprise Research Institute

www.deri.ie

• RDF triples

:tag4302 :locatedIn :room311 . :tag4302 :locatedIn :room311 . :tag4302 :locatedIn :room310 .

Not enough info!

Reification

:record1 rdf:type rdf:Statement rdf:subject :tag4302; rdf:predicate :locatedIn ; rdf:object :room311 ; :timestamp "2010-11-09 14:57:51" .

Use Annotated RDF(S)!

Digital Enterprise Research Institute

Conclusion

www.deri.ie

Annotations refer to a specific domain

Implementation

Conclusion

Digital Enterprise Research Institute

www.deri.ie

Annotations refer to a specific domain

Temporal:

:tag4302 :locatedIn :room311 . "2010-11-09 14:57:51"

www.deri.ie

Annotations refer to a specific domain

Temporal:

:tag4302 :locatedIn :room311 . "2010-11-09 14:57:51"

Fuzzy:

:tag4302 :locatedIn :room311 . "0.9"

Annotations refer to a specific domain

Temporal:

:tag4302 :locatedIn :room311 . "2010-11-09 14:57:51"

Fuzzy:

:tag4302 :locatedIn :room311 . "0.9"

Queries:

"When were two people in the same room?" "Who is closer to room 311?"

Overview 000●	Annotated RDF(S) 000000	Annotated SPARQL	Implementation	Conclusions
Overview	1			

Annotated RDF(S) (Straccia et al. [2010])

- Based on previous work on Annotated RDF (Udrea et al. [2010])
- Encompasses other proposals for domain-specific RDF: Temporal, Fuzzy, Trust, Provenance, ...
- Deductive system as extension of RDFS

Overview	Annotated RDF(S)	Annotated SPARQL	Implementation	Conclusions	
Overviev	M/				

www.deri.ie

Annotated RDF(S) (Straccia et al. [2010])

- Based on previous work on Annotated RDF (Udrea et al. [2010])
- Encompasses other proposals for domain-specific RDF: Temporal, Fuzzy, Trust, Provenance, . . .
- Deductive system as extension of RDFS

AnQL: Annotated SPARQL

- Annotation-aware SPARQL
- Extension of the semantics presented in Pérez et al. [2009]
- Includes features from SPARQL 1.1
 - subqueries, aggregates and assignment

Overview	
0000	

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

www.deri.ie

Digital Enterprise Research Institute

Annotated RDF(S)

Enabling **networked** knowledge.

Overview 0000	Annotated RDF(S) ●00000	Annotated SPARQL	Implementation	Conclusions	
Annota	tion Domain	Example			

Temporal domain example

:tag4302 :locatedIn :room311 . ["09:25", "11:49"] :tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a new domain you need to specify:

• the *representation* of the annotations

Overview 0000	Annotated RDF(S) ●00000	Annotated SPARQL	Implementation	Conclusions	
Annota	ation Domain	Example			
Digital Enterprise	Research Institute				www.deri.ie

Temporal domain example

:tag4302 :locatedIn :room311 . ["09:25", "11:49"] :tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a **new domain** you need to specify:

• the *representation* of the annotations: ["09:25", "11:49"]

Overview 0000	Annotated RDF(S) ●00000	Annotated SPARQL	Implementation	Conclusions	
Annot	ation Domain	Example			DERI

Temporal domain example

:tag4302 :locatedIn :room311 . ["09:25", "11:49"] :tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a **new domain** you need to specify:

- the *representation* of the annotations: ["09:25", "11:49"]
- an *order* between the elements:

Overview 0000	Annotated RDF(S) ●00000	Annotated SPARQL	Implementation	Conclusions	
Annotat	ion Domain	Example			DERI

Temporal domain example

:tag4302 :locatedIn :room311 . ["09:25", "11:49"] :tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a **new domain** you need to specify:

- the *representation* of the annotations: ["09:25", "11:49"]
- an *order* between the elements:

universal (\top) and empty (\bot) annotations

Overview 0000	Annotated RDF(S) ●00000	Annotated SPARQL	Implementation	Conclusions	
Annota	tion Domain	Example			DERI

Temporal domain example

:tag4302 :locatedIn :room311 . ["09:25", "11:49"] :tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a **new domain** you need to specify:

- the *representation* of the annotations: ["09:25", "11:49"]
- an *order* between the elements:

universal (\top) and *empty* (\bot) annotations: $\top = [-\infty, +\infty] \bot = [$

Overview 0000	Annotated RDF(S) ●00000	Annotated SPARQL	Implementation	Conclusions	
Annotat	ion Domain	Example			DERI

Temporal domain example

:tag4302 :locatedIn :room311 . ["09:25", "11:49"] :tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a **new domain** you need to specify:

- the *representation* of the annotations: ["09:25", "11:49"]
- an *order* between the elements:

universal (\top) and *empty* (\bot) annotations: $\top = [-\infty, +\infty] \bot = []$ operator (\otimes) for conjunction of annotations

Overview 0000	Annotated RDF(S) ●00000	Annotated SPARQL	Implementation	Conclusions	~
Annotat	ion Domain	Example			DERI

Temporal domain example

:tag4302 :locatedIn :room311 . ["09:25", "11:49"] :tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a **new domain** you need to specify:

- the *representation* of the annotations: ["09:25", "11:49"]
- an *order* between the elements:

universal (\top) and *empty* (\bot) annotations: $\top = [-\infty, +\infty] \bot = [$ operator (\otimes) for conjunction of annotations: \cap

Overview 0000	Annotated RDF(S) ●00000	Annotated SPARQL	Implementation	Conclusions	0 0
Annotat	tion Domain	Example			

Temporal domain example

:tag4302 :locatedIn :room311 . ["09:25", "11:49"] :tag4302 :locatedIn :room311 . ["10:35", "12:57"]

To define a **new domain** you need to specify:

- the *representation* of the annotations: ["09:25", "11:49"]
- an order between the elements:

universal (\top) and empty (\bot) annotations: $\top = [-\infty, +\infty] \bot = []$ operator (\otimes) for conjunction of annotations: \cap operator (\oplus) for combining annotations

Overview	Annotated RDF(S)	Annotated SPARQL	Implementation	Conclusions	0
0000	● 00 000	0000000			0
Annotation Domain Example					DERI

Temporal domain example

:tag4302 :locatedIn :room311 . {["09:25", "11:49"]}
:tag4302 :locatedIn :room311 . {["10:35", "12:57"]}

To define a **new domain** you need to specify:

- the *representation* of the annotations: {["09:25", "11:49"]
- an *order* between the elements:

Overview	Annotated RDF(S)	Annotated SPARQL	Implementation	Conclusions	
0000	00000	0000000			
Annotation Domain					
AIIIIOL	ation Domain			DERI	

Consider a non-empty set L: annotation values

Consider a non-empty set L: annotation values

An annotation domain is an idempotent, commutative semi-ring $D = \langle L, \oplus, \otimes, \bot, \top \rangle$

where \oplus is \top -annihilating (Buneman and Kostylev [2010]).

Consider a non-empty set L: annotation values

An annotation domain is an idempotent, commutative semi-ring $D=\langle L,\oplus,\otimes,\bot,\top\rangle$

where \oplus is \top -annihilating (Buneman and Kostylev [2010]).

Any idempotent semi-ring defines a partial order \leq over L as: $\lambda_1 \leq \lambda_2$ iff $\lambda_1 \oplus \lambda_2 = \lambda_2$

www.deri.ie

Consider a non-empty set L: annotation values

An annotation domain is an idempotent, commutative semi-ring $D=\langle L,\oplus,\otimes,\bot,\top\rangle$

where \oplus is \top -annihilating (Buneman and Kostylev [2010]).

Any idempotent semi-ring defines a partial order \leq over L as: $\lambda_1 \leq \lambda_2$ iff $\lambda_1 \oplus \lambda_2 = \lambda_2$

For $\lambda, \lambda_i \in L$

 ${\small \textcircled{0}} \ \oplus \ \text{and} \ \otimes \ \text{are commutative and associative;}$

$$\otimes$$
 is distributive over \oplus , i.e.
 $\lambda_1 \otimes (\lambda_2 \oplus \lambda_3) = (\lambda_1 \otimes \lambda_2) \oplus (\lambda_1 \otimes \lambda_3);$

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

Annotated RDF(S)

Digital Enterprise Research Institute

www.deri.ie

Consider the alphabets U (*URI references*), B (*blank nodes or variables*) and L (*Literals*).

Annotated triple and graph

An "extended" RDF triple is $\tau = (s, p, o) \in UBL \times U \times UBL$.

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

Annotated RDF(S)

Digital Enterprise Research Institute

www.deri.ie

Consider the alphabets U (URI references), B (blank nodes or variables) and L (Literals).

Annotated triple and graph

An "extended" RDF triple is $\tau = (s, p, o) \in UBL \times U \times UBL$. An annotated triple is $\tau : \lambda, \tau$ a triple, $\lambda \in L$ an annotation value.

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

Annotated RDF(S)

www.deri.ie

Consider the alphabets U (URI references), B (blank nodes or variables) and L (Literals).

Annotated triple and graph

An "extended" RDF triple is $\tau = (s, p, o) \in UBL \times U \times UBL$. An annotated triple is $\tau : \lambda, \tau$ a triple, $\lambda \in L$ an annotation value. An annotated graph G is a finite set of annotated triples.

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

Digital Enterprise Research Institute

Annotated RDF(S)

www.deri.ie

Consider the alphabets U (URI references), B (blank nodes or variables) and L (Literals).

Annotated triple and graph

An "extended" RDF triple is $\tau = (s, p, o) \in UBL \times U \times UBL$. An annotated triple is $\tau : \lambda, \tau$ a triple, $\lambda \in L$ an annotation value. An annotated graph G is a finite set of annotated triples.

ρ df vocabulary

(p, sp, q) property p is a subproperty of property q
(c, sc, d) class c is a subclass of class d
(a, type, b) a is of type b
(p, dom, c) the domain of property p is c
(p, range, c) the range of property p is c

Interpretation

An interpretation \mathcal{I} assigns to a triple τ an element $\lambda \in L$

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

www.deri.ie

Annotated RDF(S) Semantics

Interpretation

An interpretation $\mathcal I$ assigns to a triple au an element $\lambda \in L$

Models

An interpretation \mathcal{I} is a model of G if it assigns to the triples of G a value that is greater or equal (i.e., \succeq) to the annotation and satisfies the schema axioms constraints (sp, sc, type, dom, range).

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

www.deri.ie

Annotated RDF(S) Semantics

Digital Enterprise Research Institute

Interpretation

An interpretation $\mathcal I$ assigns to a triple au an element $\lambda \in L$

Models

An interpretation \mathcal{I} is a model of G if it assigns to the triples of G a value that is greater or equal (i.e., \succeq) to the annotation and satisfies the schema axioms constraints (sp, sc, type, dom, range).

Graph entailment

G entails *H* under ρ df (*G* \models *H*) iff every model under ρ df of *G* is also a model under ρ df of *H*.

Annotated RDF(S)

Annotated RDF(S) Inference example

Annotated SPARQL

Implementation

Conclusion

Digital Enterprise Research Institute

www.deri.ie

Inference rules are independent of the annotation domain

Implementation

Conclusions

www.deri.ie

Digital Enterprise Research Institute

Inference rules are **independent** of the annotation domain

Inference rules are **independent** of the annotation domain

www.deri.ie

Inference rules are **independent** of the annotation domain

www.deri.ie

Inference rules are **independent** of the annotation domain

www.deri.ie

Inference rules are **independent** of the annotation domain

9 / 19

www.deri.ie

Conclusions

:nuno foaf:name "Nuno	Lopes" .	[_:a, _:b]
:tag4302 :assignedTo	:nuno .	[_:a, _:b]
:tag4302 :locatedIn	:room311 .	["14:25", "14:57"]

Possible approaches:

- use op as annotation
- triple is valid at a time interval common throughout the graph requires blank nodes in annotations

:nuno foaf:name "Nuno Lopes" .	$[-\infty, now]$
:tag4302 :assignedTo :nuno .	$[-\infty, now]$
:tag4302 :locatedIn :room311 .	["14:25", "14:57"]

Possible approaches:

- ullet use op as annotation
- triple is valid at a time interval common throughout the graph requires blank nodes in annotations
- triple is valid until "now" (Gutiérrez et al. [2005])

represents current time

Possible approaches:

- use \top as annotation "compatible with classical RDF"
- triple is valid at a time interval common throughout the graph requires blank nodes in annotations
- triple is valid until "now" (Gutiérrez et al. [2005]) represents current time

Over	view
000	С

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

www.deri.ie

Digital Enterprise Research Institute

AnQL: Annotated SPARQL

Enabling **networked** knowledge.

Consider the alphabets $\boldsymbol{U},~\boldsymbol{B},~\boldsymbol{L}$ as before

www.deri.ie

Consider the alphabets $\boldsymbol{U},~\boldsymbol{B},~\boldsymbol{L}$ as before

Annotated SPARQL

- $\tau = (s, p, o)$ where $s, o \in \mathsf{UBL}$ and $p \in \mathsf{UB}$ is a triple pattern.
- $\tau: \lambda$ is an annotated triple pattern if τ is a triple pattern and $\lambda \in L$ (annotation term)

annotated triple pattern example

?tag :assignedTo :nuno . $[-\infty,\ +\infty]$

Overviev	V
0000	

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

AnQL: Annotated SPARQL

Digital Enterprise Research Institute

www.deri.ie

Consider the alphabets ${\bf U},\,{\bf B},\,{\bf L}$ as before, and ${\bf V}$ as the alphabet for Annotation variables.

Annotated SPARQL

- $\tau = (s, p, o)$ where $s, o \in \mathsf{UBL}$ and $p \in \mathsf{UB}$ is a triple pattern.
- $\tau: \lambda$ is an annotated triple pattern if τ is a triple pattern and $\lambda \in L$ (annotation term) or $\lambda \in \mathbf{V}$ (annotation variable)

annotated triple pattern example

?tag :locatedIn ?room . ?1

Annotated RDF(S)

Annotated SPARQL

Implementation

Conclusions

AnQL: Annotated SPARQL

Digital Enterprise Research Institute

www.deri.ie

Consider the alphabets ${\bf U},\,{\bf B},\,{\bf L}$ as before, and ${\bf V}$ as the alphabet for Annotation variables.

Annotated SPARQL

- $\tau = (s, p, o)$ where $s, o \in \mathsf{UBL}$ and $p \in \mathsf{UB}$ is a triple pattern.
- $\tau: \lambda$ is an annotated triple pattern if τ is a triple pattern and $\lambda \in L$ (annotation term) or $\lambda \in \mathbf{V}$ (annotation variable)
- Basic Annotated Patterns (BAP) are sets of annotated triple patterns

BAP example

{ ?tag :assignedTo :nuno . $[-\infty, +\infty]$?tag :locatedIn ?room . ?1 }

Overview 0000 AnQL	Annotated RDF(S) oooooo definitions	Annotated SPARQL ○●○○○○○	Implementation	Conclusions	
Digital Enterprise	e Research Institute				www.deri.ie

overview 0000 AnQI	Annotated RDF(S) 000000 definitions	Annotated SPARQL ○●○○○○○	Implementation	Conclusions	
/	acimitions				
Digital Enterprise	Research Institute				www.deri.ie

Filter expressions

- any SPARQL filter $(=, \lor, \land, isBOUND, ...)$
- \bullet Domain \preceq for comparing annotations
- Domain specific built-in functions

Overview 0000	Annotated RDF(S) 000000	Annotated SPARQL 00●0000	Implementation	Conclusions	
Compa	atible substitu	itions			
Digital Enterprise	Research Institute				www.deri.ie
SPA	RQL				
SELE	CT *				

WHERE { ?tag :assignedTo :nuno . ?tag :locatedIn ?room . }

Substitutions

overview oooo Compa	Annotated RDF(S) atible substitu	Annotated SPARQL 000000	Implementation	Conclusions	
Digital Enterprise	Research Institute			1	www.deri.ie

SPARQL

SELECT *

WHERE { ?tag :assignedTo :nuno .
 ?tag :locatedIn ?room . }

Substitutions

Union of compatible substitutions

Overview 0000	Annotated RDF(S)	Annotated SPARQL	Implementation	Conclusions	
Compa	tible substitu	tions			DERI
Digital Enterprise F	Research Institute				www.deri.ie
AnG	۱L				
SELEC	T *				
WHERE	: { ?tag :assigned]	Co :nuno . ?l			
	?tag :locatedIr	1 ?room . ?1 }			
_					
Subs	stitutions				
$ \begin{array}{c} \theta_1 \\ \theta_2 \\ \mu_1 \\ \mu_2 \end{array} $	$= \{?tag \rightarrow :tag43\}$	02, ? $I \rightarrow ["13:00", "1!]$ 04, ? $I \rightarrow ["12:00", "1!]$ 02, ? $room \rightarrow :room31$ 02, ? $room \rightarrow :room31$	5:00"]} 3:00"]} 1, ? <i>I</i> → ["14:00"," 2, ? <i>I</i> → ["16:00","	<mark>16:00"]</mark> } 18:00"]}	
_					_
Unic	on of compatible	e substitutions			
$ heta_1 \cup$	$\mu_1 = \{?tag \rightarrow : t$	ag4302, ?room \rightarrow :roo	$0 \text{ om } 311, \ ?I \to ["14:0]$	00","15:00"]}	

- for a BAP P a substitution is a mapping $\theta : var(P) \rightarrow term(G)$.
- $\theta(P)$ represents the triples obtained by replacing the variables in P according to θ .
- $G \models \theta(P)$ denotes $\theta(P)$ is entailed by G.
- $\llbracket P \rrbracket_G = \{ \theta \mid dom(\theta) = var(P) \text{ and } G \models \theta(P) \}$

- for a BAP P a substitution is a mapping $\theta : var(P) \rightarrow term(G)$.
- θ(P) represents the triples obtained by replacing the variables in P according to θ.
- $G \models \theta(P)$ denotes $\theta(P)$ is entailed by G.
- $\llbracket P \rrbracket_G = \{ \theta \mid dom(\theta) = var(P) \text{ and } G \models \theta(P) \}$

Extension of the semantics presented in Pérez et al. [2009]

compatible substitutions (extension)

- Two substitutions θ₁, θ₂ are compatible if the value for all shared annotation variables v is not "disjoint": θ₁(v) ⊗ θ₂(v) ≠ ⊥
- The union of compatible substitutions θ₁, θ₂, the value of a shared annotation variable v is: θ₁(v) ⊗ θ₂(v)

overvi 0000 OP	ew PTION	Annotated RDF(S) 000000 IALs	Annotated SP. 0000000	'ARQL Imple	mentation	Conclusions	
Digital Er	nterprise Rese	arch Institute				ww	w.deri.ie
	"When	was :nuno lo	cated in room	311 optionally	with anothe	r person."	
	SELECT WHERE	?l ?person $\{$?tag1 :as	signedTo :nuno				

WHERE { ?tag ?tag OPTI	<pre>g1 :assignedTo :nuno . g1 :locatedIn :room311 . ?l CONAL { ?tag2 :assignedTo ?person .</pre>	
Sample input:	:tag4302 :assignedTo :nuno . :tag4302 :locatedIn :room311 . ["13:48", "14:34"] :tag4304 :assignedTo :axel :tag4304 :locatedIn :room311 . ["14:26", "15:17"] :tag4301 :assignedTo :antoine :tag4301 :locatedIn :room311 . ["13:31", "13:53"]	

Overview Annotated RDF(S) OPTIONALs	Annotated SPARQL	Implementation	Conclusions	
Digital Enterprise Research Institute				www.deri.ie

"When was :nuno located in room 311 optionally with another person."

SELECT	?l ?person
WHERE	<pre>{ ?tag1 :assignedTo :nuno .</pre>
	?tag1 :locatedIn :room311 . ?l
	OPTIONAL $\{$?tag2 :assignedTo ?person .
	<pre>?tag2 :locatedIn :room311 . ?1 } }</pre>

	:tag4302	:assignedTo	:nuno .
	:tag4302	:locatedIn	:room311 . ["13:48", "14:34"]
Sample input	:tag4304	:assignedTo	:axel
Sample input.	:tag4304	:locatedIn	:room311 . ["14:26", "15:17"]
	:tag4301	:assignedTo	:antoine
	:tag4301	:locatedIn	:room311 . ["13:31", "13:53"]

$$\theta_1 = \{?I \rightarrow ["13:48", "14:34"]\}$$

Answers:

overview 0000 OPTIC	Annotated RDF(S) 000000 ONALs	Annotated SPARQL	Implementation	Conclusions	
Digital Enterprise	Research Institute				www.deri.ie

"When was :nuno located in room 311 optionally with another person."

SELECT	?l ?person
WHERE	<pre>{ ?tag1 :assignedTo :nuno .</pre>
	?tag1 :locatedIn :room311 . ?l
	OPTIONAL $\{$?tag2 :assignedTo ?person .
	<pre>?tag2 :locatedIn :room311 . ?1 } }</pre>

	:tag4302	:assignedTo	:nuno .
	:tag4302	:locatedIn	:room311 . ["13:48", "14:34"]
Sample input	:tag4304	:assignedTo	:axel
Sample input.	:tag4304	:locatedIn	:room311 . ["14:26", "15:17"]
	:tag4301	:assignedTo	:antoine
	:tag4301	:locatedIn	:room311 . ["13:31", "13:53"]

$$\begin{array}{rcl} \theta_1 &=& \{?I \rightarrow ["13:48","14:34"]\} \\ \mbox{Answers:} & \theta_2 &=& \{?I \rightarrow ["14:26","14:34"], \mbox{?person} \rightarrow : axel \end{array}$$

Overview 0000 OPTIOI	Annotated RDF(S) 000000 VALs	Annotated SPARQL 0000€00	Implementation	Conclusions	
Digital Enterprise Re	search Institute				www.deri.ie

"When was :nuno located in room 311 optionally with another person."

SELECT	?l ?person
WHERE	{ ?tag1 :assignedTo :nuno .
	?tag1 :locatedIn :room311 . ?l
	OPTIONAL {
	<pre>?tag2 :locatedIn :room311 . ?1 } }</pre>

	:tag4302	:assignedTo	:nuno .
	:tag4302	:locatedIn	:room311 . ["13:48", "14:34"]
Sample input:	:tag4304	:assignedTo	:axel
Sample input.	:tag4304	:locatedIn	:room311 . ["14:26", "15:17"]
	:tag4301	:assignedTo	:antoine
	:tag4301	:locatedIn	:room311 . ["13:31", "13:53"]

Overview 0000	Annotated RDF(S) 000000	Annotated SPARQL	Implementation	Conclusions	
OPTION	VALs				DERI

"When was :nuno located in room 311 optionally with another person."

SELECT	?l ?person
WHERE	<pre>{ ?tag1 :assignedTo :nuno .</pre>
	?tag1 :locatedIn :room311 . ?l
	OPTIONAL $\{$?tag2 :assignedTo ?person .
	<pre>?tag2 :locatedIn :room311 . ?1 } }</pre>

	:tag4302	:assignedTo	:nuno .
	:tag4302	:locatedIn	:room311 . ["13:48", "14:34"]
Sample input:	:tag4304	:assignedTo	:axel
Sample input.	:tag4304	:locatedIn	:room311 . ["14:26", "15:17"]
	:tag4301	:assignedTo	:antoine
	:tag4301	:locatedIn	:room311 . ["13:31", "13:53"]

	θ_1	=	$\{?I \rightarrow ["13:48", "14:34"]\}$
Answers:	θ_2	=	$\{?I \rightarrow ["14:26", "14:34"], ?person \rightarrow :axel\}$
	θ_3	=	$\{?I \rightarrow ["13:48", "13:53"], ?person \rightarrow :antoine\}$

OPTIONAL provide more information maybe restricting annotation values

Overview 0000Annota 00000Furtherexte	Annotated S Annotated S Annot	PARQL Implementation	on Conclusions
Digital Enterprise Research Inst	itute		www.deri.ie

Features under discussion in SPARQL 1.1

Overview 0000	Annotated RDF(S)	Annotated SPARQL 00000€0	Implementation	Conclusions	
Further	extensions				

www.deri.ie

Features under discussion in SPARQL 1.1

"During how long was a tag located in a room?"

Variable assignment & domain built-in functions

SELECT ?tag ?room ?dur
WHERE { ?tag :locatedIn ?room . ?l
ASSIGN length(?l) AS ?dur }

Overview 0000	Annotated RDF(S) 000000	Annotated SPARQL 00000●0	Implementation	Conclusions	
Eurthar	autonciona				
FILLER	extensions				DED

www.deri.ie

Features under discussion in SPARQL 1.1

"During how long was a tag located in a room?"

Variable assignment & domain built-in functions

SELECT ?tag ?room ?dur
WHERE { ?tag :locatedIn ?room . ?l
ASSIGN length(?l) AS ?dur }

"What was the average length a tag was located in a room?"

Uniform Evaluation of annotated and classical triple patterns

Gaillim

Uniform Evaluation of annotated and classical triple patterns

Possible approaches:

Uniform Evaluation of annotated and classical triple patterns

Possible approaches:

- adding the same annotation variable for each non-annotated triple
- adding a different annotation variable for each non-annotated triple

www.deri.ie

Uniform Evaluation of annotated and classical triple patterns

Possible approaches:

- adding the same annotation variable for each non-annotated triple
- adding a different annotation variable for each non-annotated triple
- ${\small \textcircled{0}} \ \ \text{adding the } \top \ \ \text{element from the domain}$

 \bullet Prototype implementation of Annotated RDF(S) and AnQL

Trust

Rules

Based on SWI-Prolog's semweb library

Temporal

Fuzzy

• Modular system: can use different domains and rulesets

More info and downloads available at: http://anql.deri.org

overview coco Conclus	Annotated RDF(S) 000000 Sions	Annotated SPARQL	Implementation	Conclusions	
Digital Enterprise R	esearch Institute				www.deri.ie
					_

Presented

- General framework for annotating RDF triples.
- Deductive system as extension of RDFS
- SPARQL extension for Annotated RDF(S)
- Includes the most salient SPARQL 1.1 features

Overview 0000 Conclus	Annotated RDF(S) 000000	Annotated SPARQL 0000000	Implementation	Conclusions	
Digital Enterprise Re	search Institute				www.deri.ie

Presented

- General framework for annotating RDF triples.
- Deductive system as extension of RDFS
- SPARQL extension for Annotated RDF(S)
- Includes the most salient SPARQL 1.1 features

Future work

- Refine combination of domains
- Uniform evaluation of queries
- Define interchangeable format for representing annotations

Overview Annotated F Conclusions	RDF(S) Annotated S	SPARQL Implement:	ition Conclusions
Digital Enterprise Research Institute			www.deri.ie

Presented

- General framework for annotating RDF triples.
- Deductive system as extension of RDFS
- SPARQL extension for Annotated RDF(S)
- Includes the most salient SPARQL 1.1 features

Future work

- Refine combination of domains
- Uniform evaluation of queries
- Define interchangeable format for representing annotations

Thank you! Questions?

References

Digital Enterprise Research Institute

www.deri.ie

Extra Slides

Enabling **networked** knowledge.

References

www.deri.ie

AnQL query evaluation

Digital Enterprise Research Institute

Extension of the semantics presented in Pérez et al. [2009]

References

AnQL query evaluation

Digital Enterprise Research Institute

Extension of the semantics presented in Pérez et al. [2009]

• for a BAP P a substitution is a mapping θ : $var(P) \rightarrow term(G)$.

 $\theta(P)$ represents the triples obtained by replacing the variables in *P* according to θ . $dom(\theta)$ are the variables for which θ is defined.

References

AnQL query evaluation

Digital Enterprise Research Institute

Extension of the semantics presented in Pérez et al. [2009]

• for a BAP P a substitution is a mapping θ : $var(P) \rightarrow term(G)$.

 $\theta(P)$ represents the triples obtained by replacing the variables in *P* according to θ . $dom(\theta)$ are the variables for which θ is defined.

• $G \models \theta(P)$ denotes $\theta(P)$ is entailed by G.

References

AnQL query evaluation

Digital Enterprise Research Institute

Extension of the semantics presented in Pérez et al. [2009]

• for a BAP P a substitution is a mapping θ : $var(P) \rightarrow term(G)$.

 $\theta(P)$ represents the triples obtained by replacing the variables in *P* according to θ . $dom(\theta)$ are the variables for which θ is defined.

- $G \models \theta(P)$ denotes $\theta(P)$ is entailed by G.
- two substitutions θ_1 and θ_2 are \otimes -*compatible* iff:

• The mappings agree on all non-annotated shared variables: $\theta_1(x) = \theta_2(x), \quad x \text{ non-annot } var \in dom(\theta_1) \cap dom(\theta_2);$

References

AnQL query evaluation

Digital Enterprise Research Institute

Extension of the semantics presented in Pérez et al. [2009]

• for a BAP P a substitution is a mapping θ : $var(P) \rightarrow term(G)$.

 $\theta(P)$ represents the triples obtained by replacing the variables in *P* according to θ . $dom(\theta)$ are the variables for which θ is defined.

- $G \models \theta(P)$ denotes $\theta(P)$ is entailed by G.
- two substitutions θ_1 and θ_2 are \otimes -*compatible* iff:
 - The mappings agree on all non-annotated shared variables: θ₁(x) = θ₂(x), x non-annot var ∈ dom(θ₁) ∩ dom(θ₂);
 All the shared annotation variables must not be "disjoint": θ₁(λ) ⊗ θ₂(λ) ≠ ⊥, λ annot var ∈ dom(θ₁) ∩ dom(θ₂).

References

Digital Enterprise Research Institute

AnQL query evaluation

Extension of the semantics presented in Pérez et al. [2009]

• for a BAP P a substitution is a mapping θ : $var(P) \rightarrow term(G)$.

 $\theta(P)$ represents the triples obtained by replacing the variables in *P* according to θ . $dom(\theta)$ are the variables for which θ is defined.

- $G \models \theta(P)$ denotes $\theta(P)$ is entailed by G.
- two substitutions θ_1 and θ_2 are \otimes -*compatible* iff:
 - The mappings agree on all non-annotated shared variables: θ₁(x) = θ₂(x), x non-annot var ∈ dom(θ₁) ∩ dom(θ₂);
 All the shared annotation variables must not be "disjoint": θ₁(λ) ⊗ θ₂(λ) ≠ ⊥, λ annot var ∈ dom(θ₁) ∩ dom(θ₂).
- $\theta_1, \theta_2 \otimes$ -compatible, $\theta_1 \otimes \theta_2 = \theta_1 \cup \theta_2$, except any annotation variable $\lambda \in dom(\theta_1) \cap dom(\theta_2)$, $(\theta_1 \otimes \theta_2)(\lambda) = \theta_1(\lambda) \otimes \theta_2(\lambda)$.

References

www.deri.ie

AnQL query evaluation (cont.)

Digital Enterprise Research Institute

Let P be a BAP, P_i AGPs, G an annotated graph and R a filter expression:

• $\llbracket P \rrbracket_G = \{ \theta \mid dom(\theta) = var(P) \text{ and } G \models \theta(P) \}$

References

AnQL query evaluation (cont.)

Digital Enterprise Research Institute

Let P be a BAP, P_i AGPs, G an annotated graph and R a filter expression:

- $\llbracket P \rrbracket_G = \{ \theta \mid dom(\theta) = var(P) \text{ and } G \models \theta(P) \}$
- $\llbracket P_1 \text{ AND } P_2 \rrbracket_G = \{ \theta_1 \otimes \theta_2 \mid \theta_1 \in \llbracket P_1 \rrbracket_G, \theta_2 \in \llbracket P_2 \rrbracket_G, \theta_1 \text{ and } \theta_2 \otimes \text{-compatible} \}$

Answers of two AGPs are the substitutions that are \otimes -compatible

References

www.deri.ie

AnQL query evaluation (cont.)

Digital Enterprise Research Institute

.....

Let P be a BAP, P_i AGPs, G an annotated graph and R a filter expression:

- $\llbracket P \rrbracket_G = \{ \theta \mid dom(\theta) = var(P) \text{ and } G \models \theta(P) \}$
- $\llbracket P_1 \text{ AND } P_2 \rrbracket_G = \{ \theta_1 \otimes \theta_2 \mid \theta_1 \in \llbracket P_1 \rrbracket_G, \theta_2 \in \llbracket P_2 \rrbracket_G, \theta_1 \text{ and } \theta_2 \otimes \text{-compatible} \}$
- $\llbracket P_1 \text{ UNION } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$

Answers for the UNION of two AGPs is the *union* of the substitutions

References

AnQL query evaluation (cont.)

Digital Enterprise Research Institute

Let P be a BAP, P_i AGPs, G an annotated graph and R a filter expression:

•
$$\llbracket P \rrbracket_G = \{ \theta \mid dom(\theta) = var(P) \text{ and } G \models \theta(P) \}$$

- $\llbracket P_1 \text{ AND } P_2 \rrbracket_G = \{ \theta_1 \otimes \theta_2 \mid \theta_1 \in \llbracket P_1 \rrbracket_G, \theta_2 \in \llbracket P_2 \rrbracket_G, \theta_1 \text{ and } \theta_2 \otimes \text{-compatible} \}$
- $\llbracket P_1 \text{ UNION } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$
- $\llbracket P_1 \text{ FILTER } R \rrbracket_G = \{ \theta \mid \theta \in \llbracket P_1 \rrbracket_G \text{ and } R\theta \text{ is true} \}$

References

AnQL query evaluation (cont.)

Digital Enterprise Research Institute

www.deri.ie

Let P be a BAP, P_i AGPs, G an annotated graph and R a filter expression:

•
$$\llbracket P \rrbracket_G = \{ \theta \mid dom(\theta) = var(P) \text{ and } G \models \theta(P) \}$$

- $\llbracket P_1 \text{ AND } P_2 \rrbracket_G = \{ \theta_1 \otimes \theta_2 \mid \theta_1 \in \llbracket P_1 \rrbracket_G, \theta_2 \in \llbracket P_2 \rrbracket_G, \theta_1 \text{ and } \theta_2 \otimes \text{-compatible} \}$
- $\llbracket P_1 \text{ UNION } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$
- $\llbracket P_1 \text{ FILTER } R \rrbracket_G = \{ \theta \mid \theta \in \llbracket P_1 \rrbracket_G \text{ and } R\theta \text{ is true} \}$
- $\llbracket P_1 \text{ OPTIONAL } P_2[R] \rrbracket_G = \{\theta \mid \text{and } \theta \text{ meets one of the following conditions:}$

Answers for an OPTIONAL where the P_2 may contain a FILTER expression are:

References

AnQL query evaluation (cont.)

Digital Enterprise Research Institute

www.deri.ie

Let P be a BAP, P_i AGPs, G an annotated graph and R a filter expression:

•
$$\llbracket P \rrbracket_G = \{ \theta \mid dom(\theta) = var(P) \text{ and } G \models \theta(P) \}$$

- $\llbracket P_1 \text{ AND } P_2 \rrbracket_G = \{ \theta_1 \otimes \theta_2 \mid \theta_1 \in \llbracket P_1 \rrbracket_G, \theta_2 \in \llbracket P_2 \rrbracket_G, \theta_1 \text{ and } \theta_2 \otimes \text{-compatible} \}$
- $\llbracket P_1 \text{ UNION } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$
- $\llbracket P_1 \text{ FILTER } R \rrbracket_G = \{ \theta \mid \theta \in \llbracket P_1 \rrbracket_G \text{ and } R\theta \text{ is true} \}$
- $\llbracket P_1 \text{ OPTIONAL } P_2[R] \rrbracket_G = \{\theta \mid \text{and } \theta \text{ meets one of the following conditions:}$

$$\ \, { \ 0 } \ \, \theta = \theta_1 \otimes \theta_2, \, \theta_1 \in \llbracket P_1 \rrbracket_G, \theta_2 \in \llbracket P_2 \rrbracket_G \text{ are } \otimes \text{-compatible, and } R\theta \text{ is true}$$

Keep compatible substitutions that make the FILTER R true

References

AnQL query evaluation (cont.)

Digital Enterprise Research Institute

www.deri.ie

Let P be a BAP, P_i AGPs, G an annotated graph and R a filter expression:

•
$$\llbracket P \rrbracket_G = \{ \theta \mid dom(\theta) = var(P) \text{ and } G \models \theta(P) \}$$

- $\llbracket P_1 \text{ AND } P_2 \rrbracket_G = \{ \theta_1 \otimes \theta_2 \mid \theta_1 \in \llbracket P_1 \rrbracket_G, \theta_2 \in \llbracket P_2 \rrbracket_G, \theta_1 \text{ and } \theta_2 \otimes \text{-compatible} \}$
- $\llbracket P_1 \text{ UNION } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$
- $\llbracket P_1 \text{ FILTER } R \rrbracket_G = \{ \theta \mid \theta \in \llbracket P_1 \rrbracket_G \text{ and } R\theta \text{ is true} \}$
- $\llbracket P_1 \text{ OPTIONAL } P_2[R] \rrbracket_G = \{\theta \mid \text{and } \theta \text{ meets one of the following conditions:}$

$$0 \quad \theta = \theta_1 \otimes \theta_2, \ \theta_1 \in \llbracket P_1 \rrbracket_G, \theta_2 \in \llbracket P_2 \rrbracket_G \text{ are } \otimes \text{-compatible, and } R\theta \text{ is true}$$

 $\Theta = \theta_1 \in \llbracket P_1 \rrbracket_G \text{ and } \forall \theta_2 \in \llbracket P_2 \rrbracket_G, \theta_1, \theta_2 \otimes \text{-compatible, } R(\theta_1 \otimes \theta_2) \text{ is true,}$ and all annotation variables $\lambda \in dom(\theta_1) \cap dom(\theta_2) \ \theta_2(\lambda) \prec \theta_1(\lambda)$

Keep substitutions θ_1 if, for all θ_2 such that θ_1 and θ_2 are \otimes -compatible and for all the shared annotation variables between those substitutions, θ_1 has a "better" annotation

References

AnQL query evaluation (cont.)

Digital Enterprise Research Institute

www.deri.ie

Let P be a BAP, P_i AGPs, G an annotated graph and R a filter expression:

•
$$\llbracket P \rrbracket_G = \{ \theta \mid dom(\theta) = var(P) \text{ and } G \models \theta(P) \}$$

• $\llbracket P_1 \text{ AND } P_2 \rrbracket_G = \{ \theta_1 \otimes \theta_2 \mid \theta_1 \in \llbracket P_1 \rrbracket_G, \theta_2 \in \llbracket P_2 \rrbracket_G, \theta_1 \text{ and } \theta_2 \otimes \text{-compatible} \}$

•
$$\llbracket P_1 \text{ UNION } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$$

- $\llbracket P_1 \text{ FILTER } R \rrbracket_G = \{ \theta \mid \theta \in \llbracket P_1 \rrbracket_G \text{ and } R\theta \text{ is true} \}$
- $\llbracket P_1 \text{ OPTIONAL } P_2[R] \rrbracket_G = \{\theta \mid \text{and } \theta \text{ meets one of the following conditions:}$

$$\ \, \boldsymbol{\vartheta} = \theta_1 \in \llbracket P_1 \rrbracket_{\boldsymbol{G}} \text{ and } \forall \theta_2 \in \llbracket P_2 \rrbracket_{\boldsymbol{G}}, \theta_1, \theta_2 \otimes \text{-compatible } R(\theta_1 \otimes \theta_2) \text{ is false}$$

Keep substitutions θ_1 if, for all θ_2 such that θ_1 and θ_2 are $\otimes\text{-compatible}$, the FILTER expression is false

Bibliography I

Digital Enterprise Research Institute

- Peter Buneman and Egor Kostylev. Annotation algebras for rdfs. In *The Second International Workshop on the role of Semantic Web in Provenance Management (SWPM-10)*. CEUR Workshop Proceedings, 2010.
- Claudio Gutiérrez, Carlos A. Hurtado, and Alejandro A. Vaisman. Temporal RDF. In *Proc. of 2nd European Semantic Web Conference (ESWC'2005)*, pages 93–107, 2005.
- Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and complexity of SPARQL. *ACM Transactions on Database Systems*, 34(3), 2009.
- Umberto Straccia, Nuno Lopes, Gergely Lukacsy, and Axel Polleres. A General Framework for Representing and Reasoning with Annotated Semantic Web Data. In *Proc. of 24th AAAI Conference on Artificial Intelligence (AAAI'2010)*, 2010.

Bibliography II

Digital Enterprise Research Institute

References

www.deri.ie

Octavian Udrea, Diego Reforgiato Recupero, and V. S. Subrahmanian. Annotated RDF. *ACM Trans. Comput. Logic*, 11 (2):1–41, 2010.

