Integrating Heterogeneous Data by Extending

Semantic Web Standards

Nuno Lopes

LW TTTIHE

26 November, 2012

@
M NUI Galway e
‘M OE Gaillimh S I

© Copyright 2010 Digital Enterprise Research Institute. All rights reserved

Data Integration: Pizza Delivery Company EM

Clients
/ Orders

1/24

Data Integration: Pizza Delivery Company !M

==

Clients
/ Orders

person | address
Nuno | Galway

1/24

Data Integration: Pizza Delivery Company EM

© naeen
e anoun
ancran

Clients
/ Orders

Deliveries person | address
Nuno | Galway

1/24

Data Integration: Pizza Delivery Company !M

XML ==

@I o Clients

e / Orders
' 1 order to address date pizza boy
2 Pizza Nuno Galway 2008 Bob
E 3 |Pizza Nuno Dublin 2008 Bart person | address
4 |Pizza Nuno Galway 2010 Charlie
s |Pizza Nuno Dublin 2012 Jack Nuno | Ga |Way

1/24

Data Integration: Pizza Delivery Company EM

Clients
/ Orders

==

Clients

e e / Orders
1 order to address date pizza boy
> |Pizza Nuno Galway 2008 Bob
I: 5 |Pizza Nuno Dublin 2008 Bart person | address
4 |Pizza Nuno Galway 2010 Charlie
s |Pizza Nuno Dublin 2012 Jack Nuno | Galway

1/24

Data Integration: Pizza Delivery Company nm

<person>
<name>Nuno</name>
<address>Dublin</address>
</person>

o Clients
TP e 0 E— / Orderc
1 order to address date pizza boy
B e | e person | address
4 Pizza Nuno Galway 2010 Charlie Nuno | Galway

s |Pizza Nuno Dublin 2012 Jack

1/24

Data Integration: Pizza Delivery Company EM

<person>
<name>Nuno</nan -
<address>Dub’- n::

</person>

< P
' 1 order to address date pizza boy
2 Pizza Nuno Galway 2008 Bob
E 3 |Pizza Nuno Dublin 2008 Bart person | address
4 |Pizza Nuno Galway 2010 Charlie
s |Pizza Nuno Dublin 2012 Jack Nuno | Galway

1/24

Data Integration: Pizza Delivery Company nm

<person>
<name>Nuno</name>
<address>Dublin</address>
</person>

o Clients
= C—— 0 E— / Orderc
1 order to address date pizza boy
B e | e person | address
4 Pizza Nuno Galway 2010 Charlie Nuno | Galway

s |Pizza Nuno Dublin 2012 Jack

1/24

Data Integration: Pizza Delivery Company nm

<person>
<name>Nuno</name>

. /;Z‘i‘:ziism“bl" How many pizzas were delivered to
Nuno's home during his PhD?

Clients
‘1"‘ord:=.r ‘ms add:ess‘da:e plzza[boy‘ / nrr{prc
L. i i oubin 2008 s person | address
P Moo Dwin | 012k Nuno | Galway

1/24

Data Integration: Pizza Delivery Company

(t
<person>
<name>Nuno</name>

<address>Dublin</address>
</person>

" > 4 Clients

e / Orders
1 order to address date pizza boy

B o e person | address
4 Pizza Nuno Galway 2010 Charlie Nuno | Galway

s |Pizza Nuno Dublin 2012 Jack

1/24

Data Integration: Pizza Delivery Company nm

<person>
<name>Nuno</name>

<address>Dublin</address>
</person>

2012

o

P

i
= Q

| X2 From 2008 to 2012

A 5 F——) E
"1 order to address date pizza boy

Pi N Gal 2008 Bob
[pie Nono oubin 2008 e person | address
4 |Pizza Nuno Galway 2010 Charlie N uno | Ga |Way

s |Pizza Nuno Dublin 2012 Jack

1/24

Using Query Languages for Data Integration

2/ 24

Using Query Languages for Data Integration nm

select address from clients '

where person = "Nuno"

SPARQL

select $lat $long

from <geonames.org/..>

where { $point geo:lat $lat;
geo:long $long }

for $person in doc("eat.ie/..")
return $person//name

2/ 24

Using Query Languages for Data Integration nm

select address from clients '

where person = "Nuno"

relation

SPARQL

select $lat $long
from <geonames.org/..>
where { $point geo:lat $lat;

solution sequence

for $person in doc("eat.ie/..")

return $perscgoqiance of items .

2/ 24

Using Query Languages for Data Integration nm

I select address from clients '

where person = "Nuno"

relation

SPARQL

* select $lat $long
from <geonames.org/..>
where { $point geo:lat $lat;
solution sequence

Mediator / Data Warehouse

I for $person in doc("eat.ie/..")

return $persc goqyence of items

2/ 24

Using Query Languages for Data Integration nm

I select address from clients '

where person = "Nuno"

relation

SPARQL
* select $lat $long «
from <geonames.org/..>

where { $point geo:lat $lat;
solution sequence

ediator / Data Warehouse

<l version="1.9°%
@

for $person in doc("eat.ie/..")
return $persc

sequence of items

2/ 24

Using Query Languages for Data Integration

I select address from clients

where person = "Nuno" .
relation

SPARQL

* select $lat $long

from <geonames.org/..>
where { $point geo:lat $lat;

solution sequence

ediator / Data Warehouse

How many pizzas were delivered
to Nuno's home during his PhD?

for $person in doc("eat.ie/..")
return $persc

sequence of items

2/ 24

How to represent context information in RDF? nm

@ RDF triples

:nuno :address :Galway .
:nuno :address :Dublin .

3/24

How to represent context information in RDF? nm

@ RDF triples

:nuno :address :Galway .
:nuno :address :Dublin .

Not enough!

3/24

How to represent context information in RDF? nm

@ RDF triples

:nuno :address :Galway .
:nuno :address :Dublin .

Not enough!

e Domain vocabulary/ontology

:addressl a :AddressRecord;
:person :nuno;
:address :Galway;
:start "2008" ;
:end "2012" .

3/24

How to represent context information in RDF? nm

@ RDF triples

:nuno :address :Galway .
:nuno :address :Dublin .

Not enough!

e Domain vocabulary/ontology

:addressl a :AddressRecord;
:person :nuno;
:address :Galway;
:start "2008"
:end "2012"

o Reification

:addressl rdf:type rdf:Statement
rdf:subject :nuno;
rdf :predicate :address ;
rdf:object :Dublin ;
:loc <http://eat.ie/> .

3/24

How

to represent context information

RDF triples

:nuno :address :Galway .
:nuno :address :Dublin .

Domain vocabulary/ontology

:addressl a :AddressRecord;
:person :nuno;
:address :Galway;
:start "2008"
:end "2012"
Reification

:addressl rdf:type rdf:Statement
rdf:subject :nuno;
rdf :predicate :address ;
rdf:object :Dublin ;
:loc <http://eat.ie/> .

Named Graphs

3/24

in RDF?

Not enough!

How

to represent context information in RDF?

RDF triples

:nuno :address :Galway .
:nuno :address :Dublin .

Domain vocabulary/ontology
:addressl a :AddressRecord;
:person :nuno;
:address :Galway;
:start "2008" ;
:end "2012" .
Reification

:addressl rdf:type rdf:Statement
rdf:subject :nuno;
rdf :predicate :address ;
rdf:object :Dublin ;
:loc <http://eat.ie/> .

Named Graphs

3/24

Not enough!

No defined
semantics!

No defined
semantics!

Hypothesis and Research Questions nm

Efficient data integration over heterogenous data sources can be
achieved by

4/ 24

Hypothesis and Research Questions nm

Hypothesis
Efficient data integration over heterogenous data sources can be

achieved by
@ a combined query language that accesses heterogenous data in

its original sources

4/ 24

Hypothesis and Research Questions nm

Hypothesis

Efficient data integration over heterogenous data sources can be
achieved by

@ a combined query language that accesses heterogenous data in
its original sources

@ optimisations for efficient query evaluation for this language

4/ 24

Hypothesis and Research Questions nm

Hypothesis

Efficient data integration over heterogenous data sources can be
achieved by

@ a combined query language that accesses heterogenous data in
its original sources

@ optimisations for efficient query evaluation for this language

@ an RDF-based format with support for context information

4/ 24

Hypothesis and Research Questions nm

Hypothesis

Efficient data integration over heterogenous data sources can be
achieved by

@ a combined query language that accesses heterogenous data in
its original sources

@ optimisations for efficient query evaluation for this language

@ an RDF-based format with support for context information

| \

Research Questions

@ How to design a query language that bridges the different
formats?

A

4/ 24

Hypothesis and Research Questions nm

Hypothesis

Efficient data integration over heterogenous data sources can be
achieved by

@ a combined query language that accesses heterogenous data in
its original sources

@ optimisations for efficient query evaluation for this language

@ an RDF-based format with support for context information

| \

Research Questions

@ How to design a query language that bridges the different
formats?

@ Can we reuse existing optimisations from other query languages?

A

4/ 24

Hypothesis and Research Questions nm

Hypothesis

Efficient data integration over heterogenous data sources can be
achieved by

@ a combined query language that accesses heterogenous data in
its original sources

@ optimisations for efficient query evaluation for this language

@ an RDF-based format with support for context information

| \

Research Questions

@ How to design a query language that bridges the different
formats?

@ Can we reuse existing optimisations from other query languages?
@ How to adapt RDF and SPARQL for context information?

A

4/ 24

Outline and Contributions

e XSPARQL

e Syntax & Semantics
e Implementation
e Evaluation

e Annotated RDF(S)

o Annotated RDF(S)
o AnQL: Annotated SPARQL
o Architecture

Outline and Contributions

e XSPARQL

e Syntax & Semantics
e Implementation
e Evaluation

[JoDS2012],
[EPIA2011]

e Annotated RDF(S)

o Annotated RDF(S)
o AnQL: Annotated SPARQL
o Architecture

Outline and Contributions

e XSPARQL

e Syntax & Semantics
e Implementation
e Evaluation

e Annotated RDF(S) [AAAI2010],
o Annotated RDF(S) [ISWC2010],
e AnQL: Annotated SPARQL [JWSQO]_Q]

o Architecture

XSPARQL B

@ Transformation language between RDB,

SPAQ'— XML, and RDF

5/ 24

XSPARQL

SPAQL
M D
L F

@ Transformation language between RDB,
XML, and RDF

@ Syntactic extension of XQuery

5/ 24

XSPARQL

SPAQL
M D
L F

@ Transformation language between RDB,
XML, and RDF

@ Syntactic extension of XQuery

@ Semantics based on XQuery's semantics

5/ 24

XSPARQL B

@ Transformation language between RDB,

SPAQ'— XML, and RDF
L F @ Syntactic extension of XQuery

@ Semantics based on XQuery's semantics

Why based on XQuery?

@ Expressive language

@ Use as scripting language

5/ 24

XSPARQL B

@ Transformation language between RDB,
SPAQ'— XML, and RDF
L F @ Syntactic extension of XQuery

@ Semantics based on XQuery's semantics

Why based on XQuery?

@ Expressive language
@ Use as scripting language

@ Arbitrary Nesting of expressions

5/ 24

Same Language for each Format

<t version="18'7>
<quiz>

<question>

Who vas the forty-second
president of the U.5.A.7
</question>

<ansver>

Willian Jefferson Clinton
</ansuer

I

<Jqiz>

6/ 24

Same Language for each Format

for var in Expr
let var := Expr
where Expr
order by Expr
return Expr

for $person in doc("eat.ie/..")
return $person//name

<t version="18'7>
<quiz>
<question>
Who vas the forty-second
president of the U.5.A.7
</question>
<ansver>
Willian Jefferson Clinton

</ansuer>
e

iz

XL |

6/ 24

Same Language for each Format

XSPARQL

for $person in doc("eat.ie/..")
return $person//name

<l version="1.8"%>
<quiz>

<question>
Who vas the forty-second
president of the U.5.A.7
</question>

<ansver>

Willian Jefferson Clinton
</ansier>

I

Juin

XL |

6/ 24

Same Language for each Format nm

for SelectSpec
from RelationList
where WhereSpecList

return Expr /

XSPARQL

for address as $address from clients
where person = "Nuno"

return $address
B
o

estion>
Who vas the forty-second
president of the U.5.4.7
</question>
<ansver>
Willian Jefferson Clinton
</ansier>

e

iz

XL |

6/ 24

Same Language for each Format nm

for varlist
from DatasetClause
where { pattern }

return Expr /

XSPARQL

for $lat $long from <geonames.org/..>
where { $point geo:lat $lat;

geo:long $long } 2

return $lat
VTR
i
S

estion>
Who vas the forty-second
president of the U.5.4.7
</question>

<anser>
Willian Jefferson Clinton
</ansuer>

e

iz

XL |

6/ 24

Creating RDF with XSPARQL

Convert online orders into RDF
prefix : <http://pizza-vocab.ie/>

for $person in doc("eat.ie/..")//name
construct { :meal a :FoodOrder; :author {$person} }

7/ 24

Creating RDF with XSPARQL

Convert online orders into RDF
prefix : <http://pizza-vocab.ie/>

for $person in doc("eat.ie/..")//name
construct { :meal a :FoodOrder; :author {$person} } construct

clause generates
RDF

7/ 24

Creating RDF with XSPARQL

Convert online orders into RDF
prefix : <http://pizza-vocab.ie/>

for $person in doc("eat.ie/..")//name
construct { :meal a :FoodOrder; :author {$person) }

7/ 24

Creating RDF with XSPARQL

Convert online orders into RDF
prefix : <http://pizza-vocab.ie/>

for $person in doc("eat.ie/..")//name
construct { :meal a :FoodOrder; :author {$person} }

@prefix : <http://pizza-vocab.ie/> .

:meal a :FoodOrder .
:meal :author "Nuno" .

7/ 24

Integration Query Example nm
“Display pizza deliveries in Google Maps using KML"

for $person in doc("eat.ie/...")//name
for address as $address from clients
where person = $person
let $uri := fn:concat(
"api.geonames.org/search?q=", $address)
for $lat $long from $uri
where { $point geo:lat $lat; geo:long $long }
return <kml>
<lat>{$lat}<lat>
<long>{$long}</long>
</kml>

8/ 24

Integration Query Example nm
“Display pizza deliveries in Google Maps using KML"

for $person in doc("eat.ie/...")//name DontNeook
for address as $address from clients
where person = $person
let $uri := fn:concat(
"api.geonames.org/search?q=", $address)
for $lat $long from $uri
where { $point geo:lat $lat; geo:long $long }
return <kml>
<lat>{$lat}<lat>
<long>{$long}</long>
</kml>

8/ 24

Integration Query Example nm
“Display pizza deliveries in Google Maps using KML"

for $person in doc("eat.ie/...")//name __

for address as $address from clients
where person = $person

let $uri := fn:concat(

"api.geonames.org/search?q=", $address)

for $lat $long from $uri

where { $point geo:lat $lat; geo:long $long }

return <kml>

<lat>{$lat}<lat>

<long>{$long}</long>
</kml>

8/ 24

Integration Query Example nm
“Display pizza deliveries in Google Maps using KML"

for $person in doc("eat.ie/...")//name
for address as $address from clients
where person = $person
let $uri := fn:concat(
"api.geonames.org/search?q=", $address)
for $lat $long from $uri
where { $point geo:lat $lat; geo:long $long }
return <kml>
<lat>{$lat}<lat>
<long>{$long}</long>
</kml>

8/ 24

Integration Query Example nm
“Display pizza deliveries in Google Maps using KML"

for $person in doc("eat.ie/...")//name
for address as $address from clients
where person = $person
let $uri := fn:concat(
"api.geonames.org/search?q=", $address)
for $lat $long from $uri
where { $point geo:lat $lat; geo:long $long }
return <kml>
<lat>{$lat}<lat>
<long>{$long}</long>
</kml>

8/ 24

Integration Query Example nm
“Display pizza deliveries in Google Maps using KML"

for $person in doc("eat.ie/...")//name
for address as $address from clients
where person = $person
let $uri := fn:concat(
"api.geonames.org/search?q=", $address)
for $lat $long from $uri
where { $point geo:lat $lat; geo:long $long }
return <kml>
<lat>{$lat}<lat>
<long>{$long}</long>
</kml>

4

More involved XSPARQL queries: RDB2RDF

@ Direct Mapping: ~130 LOC
@ R2RML: ~290 LOC

A,

8 /24

Language Semantics

@ Extension of the XQuery Evaluation Semantics

for $person in doc("eat.ie/...")//name
for address as $address from clients
where person = $person
let $uri := fn:concat(
"api.geonames.org/search?q=", $address)
for $lat $long from $uri
where { $point geo:lat $lat; geo:long $long }
return <kml>
<lat>{$lat}<lat>
<long>{$long}</long>
</kml>

9/ 24

Language Semantics nm

@ Extension of the XQuery Evaluation Semantics

@ for add variables and values to the dynamic environment

for $person in doc("eat.ie/...")//name
for address as $address from clients
where person = $person
let $uri := fn:concat(
"api.geonames.org/search?q=", $address)
for $lat $long from $uri
where { $point geo:lat $lat; geo:long $long }
return <kml>
<lat>{$lat}<lat>
<long>{$long}</long>
</kml>

9/ 24

Language Semantics nm

@ Extension of the XQuery Evaluation Semantics
e for add variables and values to the dynamic environment

@ Reuse semantics of original languages for the new expressions

for $person in doc("eat.ie/...")//name
__ for address as $address from clients
where person = $person
let $uri := fn:concat(
"api.geonames.org/search?q=", $address)
for $lat $long from $uri
where { $point geo:lat $lat; geo:long $long }
return <kml>
<lat>{$lat}<lat>
<long>{$long}</long>
</kml>

9/ 24

Language Semantics nm

@ Extension of the XQuery Evaluation Semantics
e for add variables and values to the dynamic environment

@ Reuse semantics of original languages for the new expressions

for $person in doc("eat.ie/...")//name
for address as $address from clients dynEnv.varVaIue =
ﬁ where person = $person relation
let $uri := fn:concat(
" 2 2q=" 4
apl.geonames.org/éearch.q , $address person
for $lat $long from $uri —_
nuno

where { $point geo:lat $lat; geo:long $long
return <kml>
<lat>{$lat}<lat>
<long>{$long}</long>
</kml>

9/ 24

Language Semantics nm

@ Extension of the XQuery Evaluation Semantics
e for add variables and values to the dynamic environment

@ Reuse semantics of original languages for the new expressions

for $person in doc("eat.ie/...")//name eva|(SQ|_ SELECT)
for address as $address from clients
ﬁ where person = $person X dynEnv.varValue
let $uri := fn:concat(
"api.geonames.org/search?q=", $address)
for $lat $long from $uri
where { $point geo:lat $lat; geo:long $long }
return <kml>
<lat>{$lat}<lat>
<long>{$long}</long>
</kml>

9/ 24

Language Semantics nm

@ Extension of the XQuery Evaluation Semantics
e for add variables and values to the dynamic environment

@ Reuse semantics of original languages for the new expressions

for $person in doc("eat.ie/...")//name
for address as $address from clients
where person = $person
let $uri := fn:concat(
d "api.geonames.org/search?q=", $address)
for $lat $long from $uri
where { $point geo:lat $lat; geo:long $long }
return <kml>

dynEnv.varValue =

<lat>{$lat}<lat>
<long>{$long}</long> SPARQL sol. seq.
</lnl> {{ person = "nuno” }}

V.

9/ 24

Language Semantics nm

@ Extension of the XQuery Evaluation Semantics
e for add variables and values to the dynamic environment

@ Reuse semantics of original languages for the new expressions

for $person in doc("eat.ie/...")//name
for address as $address from clients
where person = $person

let $uri := fn:concat(
d "api.geonames.org/search?q=", $address)

for $lat $long from $uri

where { $point geo:lat $lat; geo:long $long }

return <kml>
O S1at)<lat eval(SPARQL SELECT)
<long>{$long}</long> solutions compatible

</kml>

dynEnv.varValue

9/ 24

Language Semantics nm

@ Extension of the XQuery Evaluation Semantics
@ for add variables and values to the dynamic environment

@ Reuse semantics of original languages for the new expressions

dynEnv.globalPosition = (Posy, - - - , Pos;)
dynEnv F fs:dataset(DatasetClause) = Dataset
. Dataset , WhereClause,
dynEnv F fs.sparql< SolutionModifier Ed IR
dynEnv + globalPosition((Posy, - - , Pos;, 1)) + activeDataset(Dataset)

Vary = fs:value(pyq, Vary) ;
+ varValue H - ExprSingle = Valuey

Varp, = fs:value(pq, Varp)

dynEnv + globalPosition((Posl, -+, Posj, m)) + activeDataset(Dataset)
Vary = fs:value(p,y,, Vary) ;
+ varValue 500 8 I ExprSingle = Valuep,
Var, = fs:value(p,,, Varp)
for $Vary - - - $Var, DatasetClause
dynEnv = WhereClause SolutionModifier = Valuey, ..., Valuem,
return ExprSingle

9/ 24

Language Semantics nm

@ Extension of the XQuery Evaluation Semantics
e for add variables and values to the dynamic environment

@ Reuse semantics of original languages for the new expressions

dynEnv.globalPosition = (Posy, - - - , Pos;)
dvnFEnv = fs-dataset(DatasetClanse) = Dataset
. Dataset, WhereClause,
Ghymldiny [fs.sparql(SolutionModifier = B B
dynkEnv + globalPosition((Posy,--- , Posj, 1)) + activeDataset(Dataset)

Vary = fs:value(pyq, Vary) ;
+ varValue H - ExprSingle = Valuey

Varp, = fs:value(pq, Varp)

dynEnv + globalPosition((Posl, -+, Posj, m)) + activeDataset(Dataset)
Vary = fs:value(p,y,, Vary) ;
+ varValue 500 8 I ExprSingle = Valuep,
Var, = fs:value (i, Vary)
for $Vary - - - $Var, DatasetClause
dynEnv = WhereClause SolutionModifier = Valuey, ..., Valuem,
return ExprSingle

9/ 24

Language Implementation EM

@ Reuse components (SPARQL engine, Relational Database)

10 / 24

Language Implementation nm

@ Reuse components (SPARQL engine, Relational Database)
@ Implemented XSPARQL by rewriting to XQuery

10 / 24

Language Implementation nm

@ Reuse components (SPARQL engine, Relational Database)
@ Implemented XSPARQL by rewriting to XQuery

@ Semantics implemented by substitution of bound variables

10 / 24

Language Implementation nm

@ Reuse components (SPARQL engine, Relational Database)
@ Implemented XSPARQL by rewriting to XQuery
@ Semantics implemented by substitution of bound variables

Bound Variable Substitution

@ Bound variables are replaced by their value at runtime

for $person in doc("eat.ie/...")//name
for address as $address from clients
where person = $person

10 / 24

Language Implementation nm

@ Reuse components (SPARQL engine, Relational Database)
@ Implemented XSPARQL by rewriting to XQuery
@ Semantics implemented by substitution of bound variables

Bound Variable Substitution

@ Bound variables are replaced by their value at runtime

@ Implemented in the generated XQuery

for $person in doc("eat.ie/...")//name
for address as $address from clients fn:concat (
where person = $person "SELECT address from clients

where person = ", $person)

10 / 24

Language Implementation nm

@ Reuse components (SPARQL engine, Relational Database)
@ Implemented XSPARQL by rewriting to XQuery

@ Semantics implemented by substitution of bound variables

Bound Variable Substitution

@ Bound variables are replaced by their value at runtime

@ Implemented in the generated XQuery

@ Pushing the variable bindings into the respective query engine

for $person in doc("eat.ie/...")//name
for address as $address from clients fn:concat (
where person = $person "SELECT address from clients

where person = ", $person)

10 / 24

Implementation

AN
Enhanced
XQuery
Rewriter query engine

11/ 24

Implementation

XSPARQL
query

Y D
XQuery Enhanced
Que'ry > XQuery
Rewriter query .
engine

11/ 24

Implementation

XSPARQL
query
............................. XSPARQL -+ eeeeeaeeaaeenaaaininy
AN
Enh d
R
Rewriter query engine
S(%L XQiJery SPARQL
- N N
RDB XML RDF

11/ 24

Implementation

XSPARQL XML /
query RDF
A
............................. XSPARQL - cvvvevvmeennanfueninninnny
Y AN
Enhanced
[RQue'ry] XQuery ‘ @y ‘
ewriter query .
engine
A

11/ 24

XSPARQL Evaluation

XSPARQL Evaluation

XMark====== - XMarkgrpr

XSPARQL Evaluation

sEEEEENN g

gunt® Tny

et ny
[9 N

XMark® == = = XMarkgpr XMarkgps

12 /24

XSPARQL Evaluation B

XMark XMarkgpe XMarkgpg

o

Experimental Results

e Compared to native XQuery (XMark)
RDB and RDF: same order of magnitude for most queries

12 /24

XSPARQL Evaluation B

XMark XMarkgpe XMarkgpg

I

Experimental Results

e Compared to native XQuery (XMark)
RDB and RDF: same order of magnitude for most queries

@ Except on RDF nested queries (self joining data)

several orders of magnitude slower
due to the number of calls to the SPARQL engine

12 /24

Rewriting techniques for Nested Queries nm

Qg: “List the names of persons and the number of items they bought.”

for $person $name from <input.rdf>
where { $person foaf:name $name }
return <item person="{$name}">
{count (

for * from <input.rdf>

where { $ca :buyer $person .}

return $ca

)}

</item>

13/ 24

Rewriting techniques for Nested Queries nm

Qg: "List the names of persons and the number of items they bought.”

nuno,

Returns axel,

for $person $name from <input.rdf>
where { $person foaf:name $name }
return <item person="{$name}">
{count (

for * from <input.rdf>

where { $ca :buyer $person .}

return $ca

)}

</item>

13/ 24

Rewriting techniques for Nested Queries nm

Qg: "List the names of persons and the number of items they bought.”

nuno,

Returns axel,

for $person $name from <input.rdf>
where { $person foaf:name $name }
return <item person="{$name}">

{count (sparqlQuery (
for * from <input.rdf> fn:concat(
where { $ca :buyer $person .} "SELECT * from <input.rdf>
return $ca where { $ca :buyer ", $person,
)} ")
</item>)

13/ 24

Rewriting techniques for Nested Queries nm

Qg: "List the names of persons and the number of items they bought.”

nuno

Returns axel,

for $person $name from <input.rdf>
where { $person foaf:name $name }
return <item person="{$name}">

{count (sparqlQuery (
for * from <input.rdf> fn:concat(
where { $ca :buyer $person .} "SELECT * from <input.rdf>
return $ca where { $ca :buyer ", nuno
)} n _}n)
</item>)

13/ 24

Rewriting techniques for Nested Queries nm

Qg: "List the names of persons and the number of items they bought.”

nuno,

Returns | axe1

for $person $name from <input.rdf>
where { $person foaf:name $name }
return <item person="{$name}">

{count (sparqlQuery (
for * from <input.rdf> fn:concat(
where { $ca :buyer $person .} "SELECT * from <input.rdf>
return $ca where { $ca :buyer ", ayel
)} n _}n)
</item>)

13/ 24

Rewriting techniques for Nested Queries nm

Qg: "List the names of persons and the number of items they bought.”

let $aux := sparqlQuery(
fn:concat(
"SELECT * from <input.rdf>
where { $ca :buyer $person .}")

for $person $name from <input.rdf>
where { $person foaf:name $name }
return <item person="{$name}">
{count (

for * from <input.rdf>

where { $ca :buyer $person .}

return $ca

)}

</item>

."-.-V

13/ 24

Rewriting techniques for Nested Queries nm

Qg: "List the names of persons and the number of items they bought.”

let $aux := sparqlQuery(
fn:concat(
"SELECT * from <input.rdf>
where { $ca :buyer $person .}")

for $person $name from <input.rdf>

where { $person foaf:name $name }

return <item person="{$name}">
{count (

Join in XQuery

return $ca

)}

</item>

13/ 24

Rewriting techniques for Nested Queries nm

Qg: "List the names of persons and the number of items they bought.”

let $aux := sparqlQuery(
fn:concat(
"SELECT * from <input.rdf>
where { $ca :buyer $person .}")

for $person $name from <input.rdf>

where { $person foaf:name $name }

return <item person="{$name}">
{count (

Nested Loop rewriting

Join in XQuery

return $ca

)}

</item>

13/ 24

Rewriting techniques for Nested Queries nm

Qg: "List the names of persons and the number of items they bought.”

let $aux := sparqlQuery(
fn:concat(
"SELECT * from <input.rdf>
where { $ca :buyer $person .}")

for $person $name from <input.rdf>
where { $person foaf:name $name }
return <item person="{$name}">

{count (
Join in XQuery Applied to related language:
rowamn ca SPARQL2XQuery [SAC2008]
</item>

13/ 24

Rewriting techniques for Nested Queries nm

Qg: "List the names of persons and the number of items they bought.”

let $aux := sparqlQuery(
fn:concat(
"SELECT * from <input.rdf>
where { $ca :buyer $person .}")

for $person $name from <input.rdf>
where { $person foaf:name $name }
return <item person="{$name}">

{count (
Join in XQuery Other optimisations:
)1}~eturn $ca Join in SPARQL
</item>

13/ 24

Evaluation of different rewritings - XMarkrpr Qg nm

/ XSPARQLgrpF

Nested Loop ——

=
o
N

101 [
SPARQL rewrite

Time in seconds (log scale)

| |
1 2 5 10 20 50 100
Dataset size in MB (log scale)

@ Optimised rewritings show promising results
@ Best Results: SPARQL-based
@ Results included in [JoDS2012]

14 / 24

Evaluation of different rewritings - XMarkrpg Qs nm

o

3 102 Nested Loop —

Q | |
)

5]

[%2]

©

c

o 10t i
b XSPARQLrps
(2]

=

£

£ o i
= 1 | | | | |

| |
1 2 5 10 20 50 100
Dataset size in MB (log scale)

@ Not so effective for RDB, requires different optimisations
@ Due to schema representation?
e Additional Results for this thesis

15 / 24

Data Integration: Pizza Delivery Company EM

Clients
/ Orders \ l
SPA'QL
M D
L F

Deliveries

16 / 24

Data Integration: Pizza Delivery Company

<person>
<name>Nuno</name>

k l
<address>Dublin</address> XISPARIQL
</person>
2012 L F

From 2008 to 2012

Deliveries person | address

Nuno | Galway

16 / 24

Use Annotated RDF(S)! nm

Annotations refer to a specific domain

17/ 24

Use Annotated RDF(S)! EM

Annotations refer to a specific domain

Temporal:
:nuno :address :Galway . [2008,2012] J

17/ 24

Use Annotated RDF(S)! !m

Annotations refer to a specific domain

Temporal:

:nuno :address :Galway . [2008,2012] J
Fuzzy:

:nuno :address :Dublin . 0.9 J

17/ 24

Use Annotated RDF(S)! EM

Annotations refer to a specific domain

Temporal:

:nuno :address :Galway . [2008,2012] J
Fuzzy:

:nuno :address :Dublin . 0.9)
Provenance:

:nuno :address :Dublin . <http://eat.ie> J

17/ 24

Use Annotated RDF(S)! nm

Annotations refer to a specific domain

Temporal:

:nuno :address :Galway . [2008,2012] J
Fuzzy:

:nuno :address :Dublin . 0.9 J
Provenance:

:nuno :address :Dublin . <http://eat.ie>)

Representation for the values of each annotation domain

17/ 24

Annotated RDF(S) Inference example nm

Inference rules are independent of the annotation domain

18 / 24

Annotated RDF(S) Inference example nm

Inference rules are independent of the annotation domain

RDFS subPropertyOf (“sp”) rule:
?Propl sp 7Prop2 .
?x 7Propl %7y .

= ?x 7Prop2 7y .

:address sp foaf:based near .
:nuno :address :Galway .
= :nuno foaf:based near :Galway .

18 / 24

Annotated RDF(S) Inference example nm

Inference rules are independent of the annotation domain

RDFS subPropertyOf (“sp”) rule:

?Propl sp ?Prop2 . ?7vl
?x 7Propl 7y . 7v2
= 7?x 7Prop2 7y .

:address sp foaf:based near . [2009, +o0]
:nuno :address :Galway . [2008,2012]
= :nuno foaf:based near :Galway .

18 / 24

Annotated RDF(S) Inference example nm

Inference rules are independent of the annotation domain

Annotated RDFS subPropertyOf (“sp”) rule:

?Propl sp ?Prop2 . °?vl
?x 7Propl 7y . 7v2
= 7?x 7Prop2 7y . vl ® 7v2
:address sp foaf:based near . [2009, +00]
:nuno :address :Galway . [2008,2012]
= :nuno foaf:based near :Galway . [2009,+00]® [2008,2012]

18 / 24

Annotated RDF(S) Inference example nm

Inference rules are independent of the annotation domain

Annotated RDFS subPropertyOf (“sp”) rule:

?Propl sp ?Prop2 . °?vl
?x 7Propl 7y . 7v2
= 7?x 7Prop2 7y . vl ® 7v2
:address sp foaf:based near . [2009, +00]
:nuno :address :Galway . [2008,2012]
= :nuno foaf:based near :Galway . [2009,+00]® [2008,2012]

Extra rule to group annotations triples (®):

:nuno :address :Galway . [2009, +00]
:nuno :address :Galway . [2008,2012]

\

18 / 24

Annotated RDF(S) Inference example nm

Inference rules are independent of the annotation domain

Annotated RDFS subPropertyOf (“sp”) rule:

?Propl sp ?Prop2 . °?vl
?x 7Propl 7y . 7v2
= 7?x 7Prop2 7y . vl ® 7v2
:address sp foaf:based near . [2009, +00]
:nuno :address :Galway . [2008,2012]
= :nuno foaf:based near :Galway . [2009,+00]® [2008,2012]

Extra rule to group annotations triples (®):

:nuno :address :Galway . [2009, +00]
:nuno :address :Galway . [2008,2012]
= :nuno :address :Galway . [2009, +oc0] @& [2008,2012]

\

18 / 24

Annotated RDF(S) Inference example nm

Inference rules are independent of the annotation domain

Annotated RDFS subPropertyOf (“sp”) rule:

?Propl sp ?Prop2 . °?vl
?x 7Propl 7y . 7v2
= 7?x 7Prop2 7y . vl ® 7v2
:address sp foaf:based near . [2009, +00]
:nuno :address :Galway . [2008,2012]
= :nuno foaf:based near :Galway . [2009,+00]® [2008,2012]

Extra rule to group annotations triples (®):

= :nuno :address :Galway . [2009, +oco]l @ [2008,2012]

\

18 / 24

Operations on Annotations Elements nm

[2009, + 0] [2008, 2012]

19 /24

Operations on Annotations Elements nm

[2009, + 0] [2008, 2012]

~_ ¢ _

[2009, 2012]

19 /24

Operations on Annotations Elements nm

[2009, + 0] [2008, 2012]

\ ® /
[2009, 2012]

[

19 /24

Operations on Annotations Elements nm

[2008, +oc]

e TN

[2009, + 0] [2008, 2012]

\ ® /
[2009, 2012]

[

19 /24

Operations on Annotations Elements nm

)
/

[2009, + 0] [2008, 2012]

\ ¢ /
[2009, 2012]

[

19 /24

Operations on Annotations Elements nm

[2000, 2005] [2008, 2012]

19 /24

Operations on Annotations Elements

[2000, 2005]

[2008, 2012]

19 /24

Operations on Annotations Elements

[2000, 2005], [2008, 2012]

/////// @ \\\\\\\

[2000, 2005] [2008, 2012]

[

19 /24

Operations on Annotations Elements nm

{[2000, 2005], [2008, 2012] }

/@\

{[2000, 2005] } {[2008,2012]}

{0

19 /24

AnQL: Annotated SPARQL EM

Extension of SPARQL Syntax

@ triple pattern

?person a foaf:Person .

N,

20 / 24

AnQL: Annotated SPARQL EM

Extension of SPARQL Syntax

@ triple pattern
@ annotated triple pattern is a triple pattern plus
e annotation term

?person a foaf:Person . [—oo, +00]

N,

20 / 24

AnQL: Annotated SPARQL nﬁ

Extension of SPARQL Syntax

@ triple pattern
@ annotated triple pattern is a triple pattern plus

e annotation term; or
e annotation variable

?person :address 7address . 71

N,

20 / 24

AnQL: Annotated SPARQL nﬁ

Extension of SPARQL Syntax

@ triple pattern
@ annotated triple pattern is a triple pattern plus

e annotation term; or
e annotation variable

@ Basic Annotated Patterns (BAP) are sets of annotated triple
patterns

| A\

Example

{ ?person a foaf:Person . [—o0, +0o0]
?person :address 7address . 71

3

\

20 / 24

AnQL: Annotated SPARQL EM

Extension of SPARQL Syntax

@ triple pattern
@ annotated triple pattern is a triple pattern plus

e annotation term; or
e annotation variable

@ Basic Annotated Patterns (BAP) are sets of annotated triple
patterns

| A\

Example

{ ?person a foaf:Person . [—o0, +0o0]
?person :address 7address . 71

}
Combine BAPs using AND(.), OPTIONAL, UNION, FILTER

\

20 / 24

Evaluation of SPARQL OPTIONALS nﬁ

“List my address, time interval and optionally people living in the same

city at the same time.”

SELECT ?city 7t 7person
WHERE { :nuno :address 7city . 7t
OPTIONAL { ?7person :address 7city . 7t } }

| A

Sample input:

muno :address :Galway . [2008,2012]
raxel :address :Galway . [2005,2010]

21 /24

Evaluation of SPARQL OPTIONALS nﬁ

“List my address, time interval and optionally people living in the same

city at the same time.”

SELECT ?city 7t 7person
WHERE { :nuno :address 7city . 7t
OPTIONAL { ?7person :address 7city . 7t } }

| A

Sample input:

muno :address :Galway . [2008,2012]
raxel :address :Galway . [2005,2010]

S1 = {?city — :Galway, 7t — [2008,2012]}

21 /24

Evaluation of SPARQL OPTIONALS nﬁ

“List my address, time interval and optionally people living in the same

city at the same time.”

SELECT ?city 7t 7person
WHERE { :nuno :address 7city . 7t
OPTIONAL { ?7person :address 7city . 7t } }

| A

Sample input:

muno :address :Galway . [2008,2012]
:axel :address :Galway . [2005,2010]

S1 = {?city — :Galway, 7t — [2008,2012]}
Sy = {?city — :Galway, 7t — [2008,2010], ?person — :axel}

21 /24

Evaluation of SPARQL OPTIONALS nﬁ

“List my address, time interval and optionally people living in the same

city at the same time.”

SELECT ?city 7t 7person
WHERE { :nuno :address 7city . 7t
OPTIONAL { ?7person :address 7city . 7t } }

| A

Sample input:

muno :address :Galway . [2008,2012]
raxel :address :Galway . [2005,2010]

S1 = {?city — :Galway, 7t — [2008,2012]}
Sy = {?city — :Galway, 7t — [2008,2010], ?person — :axel}

OPTIONAL provide more information maybe restricting annotation values

21 /24

Annotated RDF(S) Domains

Temporal:

:nuno :address :Galway .

[2008,2012]

Fuzzy:

:nuno :address :Galway .

0.9

Provenance:

:nuno :address :Dublin .

http://eat.ie

22 /24

Annotated RDF(S) Domains

Temporal:

:nuno :address :Galway . [2008,2012] J
Fuzzy:

:nuno :address :Galway . 0.9)
Provenance:

:nuno :address :Dublin . http://eat.ie J

Combining domains: Included in [JWS2012]
:nuno :address :Dublin . (http://eat.ie, [2012,2012]) J

22 /24

Annotated RDF(S) Domains

Temporal:

:nuno :address :Galway . [2008,2012] J
Fuzzy:

:nuno :address :Galway . 0.9)
Provenance:

:nuno :address :Dublin . http://eat.ie J

Combining domains: Included in [JWS2012]
:nuno :address :Dublin . (http://eat.ie, [2012,2012]) J

Access Control: Presented at [ICLP2012]

:nuno :address :Galway . [nl] J

22 /24

Architecture combining XSPARQL and AnQL EM

Data converted

k’.,
Annotated .
St
XSPARQL

C RQL D
- @

23 /24

Architecture combining XSPARQL and AnQL nm

Annotated RDFS Implementation in
[Annotate SWI Prolog

Reasoner

Annotated
RDF

(XSPARQL >

Don!ﬁcook

23 /24

Architecture combining XSPARQL and AnQL nm

Each domain is a
different Prolog
neduls ----Annotated RDFS--:

Reasoner

Y
,,,,,,,,,,,,, Annotated
RDF

< XSPARQL >
T f

23 /24

Architecture combining XSPARQL and AnQL nm

Rules specified as
Prolog predicates

----Annotated RDFS--: . .
: © 1 (RDFS) i
: AnQL : : :
(pdf)

Reasoner

Y
,,,,,,,,,,,,, Annotated
RDF

< XSPARQL >

- 3

23 /24

Architecture combining XSPARQL and AnQL nm

7777777777777777 AnQL
: Query
|
|
|

- --Annotated RDFS--: e Rules -+

...... Domaing ------reeranres Y RDFS
: AnQL P :
E oo U(edf))

Reasoner

Y
,,,,,,,,,,,,, Annotated
RDF

C XSPARQL D

-~

23 /24

Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by

24 / 24

Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by

© a combined query language that accesses heterogenous data in
its original sources

@ optimisations for efficient query evaluation for this language

© an RDF-based format with support for context information

24 / 24

Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by

© a combined query language that accesses heterogenous data in
its original sources

e XSPARQL can integrate heterogeneous sources
@ optimisations for efficient query evaluation for this language

© an RDF-based format with support for context information

24 / 24

Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by

© a combined query language that accesses heterogenous data in
its original sources

e XSPARQL can integrate heterogeneous sources
@ optimisations for efficient query evaluation for this language

e rewriting techniques for nested queries for our implementation of
XSPARQL

© an RDF-based format with support for context information

24 / 24

Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by
© a combined query language that accesses heterogenous data in
its original sources
e XSPARQL can integrate heterogeneous sources
@ optimisations for efficient query evaluation for this language
e rewriting techniques for nested queries for our implementation of
XSPARQL
© an RDF-based format with support for context information

e Annotated RDFS: inferences and query over context information
e Use XSPARQL to create Annotated RDF representing the
integrated data

24 / 24

Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by

© a combined query language that accesses heterogenous data in
its original sources

e XSPARQL can integrate heterogeneous sources
@ optimisations for efficient query evaluation for this language
e rewriting techniques for nested queries for our implementation of
XSPARQL
© an RDF-based format with support for context information
e Annotated RDFS: inferences and query over context information
o Use XSPARQL to create Annotated RDF representing the
integrated data

Thank you! Questions?

24 / 24

Bibliography | EM

[§ Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno
Lopes, and Axel Polleres.
Mapping between RDF and XML with XSPARQL.
Journal on Data Semantics, 1:147-185, 2012.

[§ Sven Groppe, Jinghua Groppe, Volker Linnemann, Dirk
Kukulenz, Nils Hoeller, and Christoph Reinke.
Embedding SPARQL into XQuery/XSLT.

In Roger L. Wainwright and Hisham Haddad, editors,
Proceedings of the 2008 ACM Symposium on Applied
Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20,
2008, pages 2271-2278. ACM, 2008.

ety [B

@ Nuno Lopes, Stefan Bischof, Stefan Decker, and Axel Polleres.
On the Semantics of Heterogeneous Querying of Relational,
XML and RDF Data with XSPARQL.

In Paulo Moura and Vitor Beires Nogueira, editors,
Proceedings of the 15th Portuguese Conference on Artificial
Intelligence (EPIA2011) — Computational Logic with
Applications Track, Lisbon, Portugal, October 2011.

@ Nuno Lopes, Sabrina Kirrane, Antoine Zimmermann, Axel
Polleres, and Alessandra Mileo.
A Logic Programming approach for Access Control over RDF.
In Agostino Dovier and Vitor Santos Costa, editors, Technical
Communications of the 28th International Conference on Logic
Programming (ICLP'12), volume 17 of Leibniz International
Proceedings in Informatics (LIPlcs), pages 381-392, Dagstuhl,

Sl Bepasly Il B

Germany, 2012. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

[Nuno Lopes, Axel Polleres, Umberto Straccia, and Antoine
Zimmermann.
AnQL: SPARQLing Up Annotated RDFS.
In International Semantic Web Conference (1), pages 518-533,
2010.

[Umberto Straccia, Nuno Lopes, Gergely Lukécsy, and Axel
Polleres.
A General Framework for Representing and Reasoning with
Annotated Semantic Web Data.
In Maria Fox and David Poole, editors, Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI
Press, July 2010.

Sl ety [V B

[Antoine Zimmermann, Nuno Lopes, Axel Polleres, and
Umberto Straccia.
A General Framework for Representing, Reasoning and
Querying with Annotated Semantic Web Data.

Web Semantics: Science, Services and Agents on the World
Wide Web, 11(0):72-95, 2012.

	Overview
	XSPARQL
	Syntax & Semantics
	Implementation
	Evaluation

	Annotated RDF(S)
	Annotated RDFS
	AnQL: Annotated SPARQL
	Architecture

	Conclusions

