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Research Questions

@ How to design a query language that bridges the different
formats?
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@ Transformation language between RDB,
SPAQ'— XML, and RDF
L F @ Syntactic extension of XQuery

@ Semantics based on XQuery's semantics

Why based on XQuery?

@ Expressive language
@ Use as scripting language

@ Arbitrary Nesting of expressions
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Convert online orders into RDF
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More involved XSPARQL queries: RDB2RDF

@ Direct Mapping: ~130 LOC
@ R2RML: ~290 LOC
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@ Extension of the XQuery Evaluation Semantics
@ for add variables and values to the dynamic environment
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dynEnv.globalPosition = (Posy, - - - , Pos;)
dynEnv F fs:dataset(DatasetClause) = Dataset
. Dataset , WhereClause,
dynEnv F fs.sparql< SolutionModifier Ed IR
dynEnv + globalPosition((Posy, - - , Pos;, 1)) + activeDataset(Dataset)

Vary = fs:value(pyq, Vary) ;
+ varValue H - ExprSingle = Valuey

Varp, = fs:value(pq, Varp)

dynEnv + globalPosition((Posl, -+, Posj, m)) + activeDataset(Dataset)
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@ Reuse components (SPARQL engine, Relational Database)
@ Implemented XSPARQL by rewriting to XQuery

@ Semantics implemented by substitution of bound variables

Bound Variable Substitution

@ Bound variables are replaced by their value at runtime

@ Implemented in the generated XQuery

@ Pushing the variable bindings into the respective query engine

for $person in doc("eat.ie/...")//name
for address as $address from clients fn:concat (
where person = $person "SELECT address from clients

where person = ", $person)
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Experimental Results

e Compared to native XQuery (XMark)
RDB and RDF: same order of magnitude for most queries

@ Except on RDF nested queries (self joining data)

several orders of magnitude slower
due to the number of calls to the SPARQL engine
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Qg: “List the names of persons and the number of items they bought.”

for $person $name from <input.rdf>
where { $person foaf:name $name }
return <item person="{$name}">
{count (

for * from <input.rdf>

where { $ca :buyer $person .}

return $ca

)}

</item>
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Qg: "List the names of persons and the number of items they bought.”

let $aux := sparqlQuery(
fn:concat(
"SELECT * from <input.rdf>
where { $ca :buyer $person .}" )

for $person $name from <input.rdf>
where { $person foaf:name $name }
return <item person="{$name}">

{count (
Join in XQuery Other optimisations:
)1}~eturn $ca Join in SPARQL
</item>
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/ XSPARQLgrpF

Nested Loop ——

=
o
N

101 [
SPARQL rewrite

Time in seconds (log scale)

| |
1 2 5 10 20 50 100
Dataset size in MB (log scale)

@ Optimised rewritings show promising results
@ Best Results: SPARQL-based
@ Results included in [JoDS2012]
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@ Not so effective for RDB, requires different optimisations
@ Due to schema representation?
e Additional Results for this thesis

15 / 24



Data Integration: Pizza Delivery Company EM

Clients
/ Orders \ l
SPA'QL
M D
L F

Deliveries

16 / 24



Data Integration: Pizza Delivery Company

<person>
<name>Nuno</name>

k l
<address>Dublin</address> XISPARIQL
</person>
2012 L F

From 2008 to 2012

Deliveries person | address

Nuno | Galway
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Representation for the values of each annotation domain
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Extension of SPARQL Syntax

@ triple pattern
@ annotated triple pattern is a triple pattern plus

e annotation term; or
e annotation variable

@ Basic Annotated Patterns (BAP) are sets of annotated triple
patterns

| A\

Example

{ ?person a foaf:Person . [—o0, +0o0]
?person :address 7address . 71

}
Combine BAPs using AND(.), OPTIONAL, UNION, FILTER

\
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“List my address, time interval and optionally people living in the same

city at the same time.”
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WHERE { :nuno :address 7city . 7t
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| A
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raxel  :address :Galway .  [2005,2010]
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city at the same time.”

SELECT  ?city 7t 7person
WHERE { :nuno :address 7city . 7t
OPTIONAL { ?7person :address 7city . 7t } }

| A

Sample input:

muno :address :Galway .  [2008,2012]
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OPTIONAL provide more information maybe restricting annotation values
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Annotated RDF(S) Domains

Temporal:

:nuno :address :Galway . [2008,2012] J
Fuzzy:

:nuno :address :Galway . 0.9 )
Provenance:

:nuno :address :Dublin . http://eat.ie J

Combining domains: Included in [JWS2012]
:nuno :address :Dublin . (http://eat.ie, [2012,2012]) J

Access Control: Presented at [ICLP2012]

:nuno :address :Galway . [nl] J

22 /24



Architecture combining XSPARQL and AnQL EM

Data converted

k’.,
Annotated .
St
XSPARQL

C RQL D
- @

23 /24




Architecture combining XSPARQL and AnQL nm

Annotated RDFS Implementation in
[ Annotate SWI Prolog

Reasoner

Annotated
RDF

( XSPARQL >

Don!ﬁcook

23 /24




Architecture combining XSPARQL and AnQL nm

Each domain is a
different Prolog
neduls ----Annotated RDFS--:

Reasoner

Y
,,,,,,,,,,,,, Annotated
RDF

< XSPARQL >
T f

23 /24




Architecture combining XSPARQL and AnQL nm

Rules specified as
Prolog predicates

----Annotated RDFS--: . .
: © 1 (RDFS) i
: AnQL : : :
(pdf)

Reasoner

Y
,,,,,,,,,,,,, Annotated
RDF

< XSPARQL >

- 3

23 /24




Architecture combining XSPARQL and AnQL nm

7777777777777777 AnQL
: Query
|
|
|

- --Annotated RDFS--: e Rules -+

...... Domaing ------reeranres Y RDFS
: AnQL P :
E oo U(edf) )

Reasoner

Y
,,,,,,,,,,,,, Annotated
RDF

C XSPARQL D

-~

23 /24




Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by

24 / 24



Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by

© a combined query language that accesses heterogenous data in
its original sources

@ optimisations for efficient query evaluation for this language

© an RDF-based format with support for context information

24 / 24



Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by

© a combined query language that accesses heterogenous data in
its original sources

e XSPARQL can integrate heterogeneous sources
@ optimisations for efficient query evaluation for this language

© an RDF-based format with support for context information

24 / 24



Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by

© a combined query language that accesses heterogenous data in
its original sources

e XSPARQL can integrate heterogeneous sources
@ optimisations for efficient query evaluation for this language

e rewriting techniques for nested queries for our implementation of
XSPARQL

© an RDF-based format with support for context information

24 / 24



Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by
© a combined query language that accesses heterogenous data in
its original sources
e XSPARQL can integrate heterogeneous sources
@ optimisations for efficient query evaluation for this language
e rewriting techniques for nested queries for our implementation of
XSPARQL
© an RDF-based format with support for context information

e Annotated RDFS: inferences and query over context information
e Use XSPARQL to create Annotated RDF representing the
integrated data

24 / 24



Conclusions nm

Efficient data integration over heterogenous data sources can be
achieved by

© a combined query language that accesses heterogenous data in
its original sources

e XSPARQL can integrate heterogeneous sources
@ optimisations for efficient query evaluation for this language
e rewriting techniques for nested queries for our implementation of
XSPARQL
© an RDF-based format with support for context information
e Annotated RDFS: inferences and query over context information
o Use XSPARQL to create Annotated RDF representing the
integrated data

Thank you! Questions?

24 / 24



Bibliography | EM

[§ Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno
Lopes, and Axel Polleres.
Mapping between RDF and XML with XSPARQL.
Journal on Data Semantics, 1:147-185, 2012.

[§ Sven Groppe, Jinghua Groppe, Volker Linnemann, Dirk
Kukulenz, Nils Hoeller, and Christoph Reinke.
Embedding SPARQL into XQuery/XSLT.

In Roger L. Wainwright and Hisham Haddad, editors,
Proceedings of the 2008 ACM Symposium on Applied
Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20,
2008, pages 2271-2278. ACM, 2008.



ety [ B

@ Nuno Lopes, Stefan Bischof, Stefan Decker, and Axel Polleres.
On the Semantics of Heterogeneous Querying of Relational,
XML and RDF Data with XSPARQL.

In Paulo Moura and Vitor Beires Nogueira, editors,
Proceedings of the 15th Portuguese Conference on Artificial
Intelligence (EPIA2011) — Computational Logic with
Applications Track, Lisbon, Portugal, October 2011.

@ Nuno Lopes, Sabrina Kirrane, Antoine Zimmermann, Axel
Polleres, and Alessandra Mileo.
A Logic Programming approach for Access Control over RDF.
In Agostino Dovier and Vitor Santos Costa, editors, Technical
Communications of the 28th International Conference on Logic
Programming (ICLP'12), volume 17 of Leibniz International
Proceedings in Informatics (LIPlcs), pages 381-392, Dagstuhl,



Sl Bepasly Il B

Germany, 2012. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

[ Nuno Lopes, Axel Polleres, Umberto Straccia, and Antoine
Zimmermann.
AnQL: SPARQLing Up Annotated RDFS.
In International Semantic Web Conference (1), pages 518-533,
2010.

[ Umberto Straccia, Nuno Lopes, Gergely Lukécsy, and Axel
Polleres.
A General Framework for Representing and Reasoning with
Annotated Semantic Web Data.
In Maria Fox and David Poole, editors, Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI
Press, July 2010.



Sl ety [V B

[ Antoine Zimmermann, Nuno Lopes, Axel Polleres, and
Umberto Straccia.
A General Framework for Representing, Reasoning and
Querying with Annotated Semantic Web Data.

Web Semantics: Science, Services and Agents on the World
Wide Web, 11(0):72-95, 2012.



	Overview
	XSPARQL
	Syntax & Semantics
	Implementation
	Evaluation

	Annotated RDF(S)
	Annotated RDFS
	AnQL: Annotated SPARQL
	Architecture

	Conclusions

