
Master Degree in Computer Science
Mestrado em Engenharia Informática

A SPARQL Query Engine over Web
Ontologies using Contextual Logic

Programming

Nuno Alexandre de Jesus Lopes
<nl@uevora.pt>

Supervisor: Salvador Pinto Abreu

This thesis does not include appreciation nor suggestions made by the jury.
Esta dissertação não inclui as cŕıticas e sugestões feitas pelo júri.

Évora, October 2007

Abstract

In the World Wide Web a machine can easily process the structure of
resources. However, more advanced techniques are necessary to determine
the semantic contents of such resources.

The Semantic Web is an enhancement of the Web which aims to over-
come this difficulty. Annotating Web resources with information about their
contents, described using a formal language, helps machines process the se-
mantics of the resource.

Integrating that semantic information, which can be described using OWL,
with a Contextual Logic Programming framework provides a clear and sim-
ple way to represent and query an ontology. The main contributions of this
work to that purpose are:

• A system capable of representing OWL DL ontologies and performing
queries over that representation

• A SPARQL query answering module: this makes the system available
to a wide range of users and automated processes, enabling the possi-
bility of advertising it as a web service.

i

Resumo

SPARQL para Interrogação de Ontologias Web com Pro-
gramação em Lógica Contextual

Na World Wide Web os programas informáticos conseguem processar fácil-
mente a estrutura das páginas. Contudo, são necessárias técnicas avançadas
para determinar o conteúdo semântico dessas páginas.

A Semantic Web é uma extensão da Web que tenta ultrapassar esta
dificuldade. Criar anotações nas páginas com informação acerca do seu
conteúdo, descrita numa linguagem formal, ajuda o processamento automa-
tizado da semântica da página.

A integração dessa informação semântica, que pode ser descrita através de
OWL, com uma framework de Programação em Lógica Contextual disponi-
biliza uma maneira clara e simples de representar e interrogar ontologias. As
principais contribuições deste trabalho para esse objectivo são:

• Um sistema capaz de representar ontologias OWL DL e de realizar
interrogações baseadas nessa representação

• Um módulo de resposta a interrogações SPARQL: permite disponibi-
lizar o sistema a um elevado número de utilizadores e processos au-
tomáticos e possibilita anunciá-lo como um serviço Web.

ii

Acknowledgments

I would like to thank Cláudio Fernandes for all the efforts in the develop-
ment of our work and Salvador Abreu for all the guidance provided. Thank
you also to all the people that helped me by reviewing this thesis: Lúıs
Simões, Nuno Morgadinho, José Saias and Tiago Sousa.

Last but not least, to my family and friends. Thank you for all the
strength and support provided and for always believing in me.

iii

Acronyms and Definitions

Arity = The number of arguments of a predicate or unit

Context = A ordered sequence of units where a CxLP goal is executed

CxLP = Contextual Logic Programming

Functor = The name of a predicate

HTML = HyperText Markup Language

ISCO = Information System COnstruction, a framework for accessing rela-
tional databases from Prolog

OWL = Web Ontology Language

Ontology = A formal description about concepts of a specific domain. Can
be described using OWL

PiLLoW = A library for handling WWW documents (HTML, XML) from
Prolog

Predicate = A logical assertion, possibly including conditions for validity

RDF = Resource Description Framework

RDFS = RDF Schema

SPARQL = SPARQL Protocol and RDF Query Language

Unit = The CxLP representation of a set of Prolog predicates

W3C = World Wide Web Consortium

XML = eXtensible Markup Language

iv

Contents

1 Introduction 1
1.1 The Semantic Web . 1
1.2 Motivation and Objectives . 2
1.3 Related Work . 2
1.4 Guide . 5

2 Semantic Web 6
2.1 What is the Semantic Web? 6
2.2 Foundations of the Semantic Web 7

2.2.1 A Layered Approach 8
2.2.2 Metadata . 10
2.2.3 Ontologies . 11

2.3 Web Languages . 12
2.4 Query Languages . 16
2.5 Applications for the Semantic Web 18

2.5.1 Improving Web search 18
2.5.2 Web as a database . 18
2.5.3 Ubiquitous Computing and Web services 19

2.6 Conclusion . 19

3 Contextual Logic Programming 20
3.1 Logic Programming . 20

3.1.1 Logic Programming and the Semantic Web 21
3.2 Contextual Logic Programming 22

3.2.1 GNU Prolog/CX . 22
3.3 ISCO . 24
3.4 PiLLoW . 25
3.5 Conclusion . 26

v

4 The XPTO system 27
4.1 Parsing an ontology . 28
4.2 Representation of an ontology 29

4.2.1 Ontology representation 30
4.2.2 Name analysis . 35
4.2.3 Unit generation and loading 38

4.3 Querying an ontology . 39
4.3.1 Units for refining ontology queries 40
4.3.2 Native Prolog query representation 42

4.4 Example Use Cases . 43
4.4.1 SPARQL Query examples 43
4.4.2 Database integration using ISCO 45

4.5 Benchmarks . 47
4.5.1 XML Parsers . 48
4.5.2 Ontology representation 53
4.5.3 XPTO time analysis 54

4.6 Conclusion . 55

5 SPARQL Query Engine 56
5.1 Querying in SPARQL . 56

5.1.1 SPARQL query elements 57
5.1.2 Query forms and results 60
5.1.3 Solution modifiers . 61
5.1.4 Querying OWL ontologies using SPARQL 62

5.2 Representation of a SPARQL query 62
5.2.1 Element representation 62
5.2.2 Query representation 64
5.2.3 SPARQL parser . 66

5.3 SPARQL resolution system . 67
5.3.1 Unit description . 68
5.3.2 Unimplemented features 72

5.4 Returning Query Results . 73
5.4.1 Select query . 73
5.4.2 Ask query . 73

5.5 Examples . 74
5.5.1 Using SPARQL to query a relational database 75
5.5.2 SPARQL Web service 76

5.6 Conclusion . 77

6 Conclusion 78

vi

List of Figures

2.1 A layered approach to the Semantic Web 9
2.2 RDF XML syntax example . 13
2.3 RDF Turtle syntax example 14

3.1 Example unit: teacher/0 . 22
3.2 Example unit: teacher/3 . 23
3.3 Example class definitions in ISCO 25
3.4 PiLLoW term example . 25
3.5 PiLLoW output . 26

4.1 XML example: OWL Class definition 29
4.2 Prolog XML Representation of the example in Figure 4.1 . . . 30
4.3 Ontology representation schema: units 31
4.4 OWL property definition . 32
4.5 Prolog representation of Figure 4.4 32
4.6 IceWine class unit (first version, partial) 35
4.7 Class item goals example . 35
4.8 AllValuesFrom example . 36
4.9 AllDifferent example . 37
4.10 AllDifferent representation 37
4.11 ontology query (direct access) 40
4.12 ontology query (property/2 example) 40
4.13 Example of a complete query context 40
4.14 unit access/0 (partial) . 41
4.15 predicate definition example 43
4.16 generated predicate . 43
4.17 SPARQL example: Query 1 44
4.18 Query 1 - XPTO syntax . 44
4.19 SPARQL example: Query 4 45
4.20 Query 4 - XPTO syntax . 45
4.21 SPARQL example: Query 9 45
4.22 Query 9 - XPTO syntax . 46

vii

4.23 Periodic table ontology example: group 10 46
4.24 Database table example: element 47
4.25 Query example (ontologies and ISCO) 47
4.26 Expat Library vs Libxml2 . 50
4.27 Speedup graph . 53

5.1 SPARQL query engine architecture 57
5.2 SPARQL query example . 61
5.3 Query example (simple select) 64
5.4 Generated context (partial) for the query in Figure 5.3 64
5.5 Query example . 66
5.6 Context generated for the query in Figure 5.5 67
5.7 Auxiliary Parser structures . 68
5.8 Unit triple/3 . 70
5.9 limit and offset query example 71
5.10 XML output of the query example in Figure 5.3 74
5.11 XML output for an ASK query 74
5.12 ISCO definition of the relation student 75
5.13 using SPARQL to query a relational database 76
5.14 Generated context for the query in Figure 5.13 76
5.15 SQL queries generated for the context in Figure 5.14 77

viii

List of Tables

4.1 Libxml2 and Libexpat comparison (seconds) 49
4.2 Benchmark results (seconds) 51
4.3 Speedups results. Jena used as reference. 52
4.4 Speedups results (percentage). Jena used as reference. 52
4.5 Time (in seconds) of representing the ontologies 54
4.6 Performance gain of representing the ontologies 54
4.7 Average time of each part of the representation time 55

5.1 SPARQL Query Language Structure (adapted) 58
5.2 Query context structure . 65

ix

Chapter 1

Introduction

The system being presented here, XPTO1, enables accessing OWL (Web
Ontology Language) ontologies from within a Contextual Logic Program-
ming environment, namely GNU Prolog/CX. It also allows to integrate these
ontologies in the running program enabling using them as a part of the com-
putation.

Also presented is a component of the system that enables it to answer
queries formulated using the SPARQL query language and thus presenting
the possibility of making the system visible to the World Wide Web though
a Web Service.

Throughout this work, Logic Programming (more specifically Contextual
Logic Programming) is used to represent and query the ontologies in the
XPTO system core and also to represent and evaluate the queries in the
SPARQL query answering module.

1.1 The Semantic Web

The main purpose of the Semantic Web [BLHL01] is to provide machine
understandable Web resources, allowing the information they contain to be
accessed and processed by machines alongside human users.

In order to achieve this, it will be necessary for Web Resources to be
annotated with information describing their contents, using a standard de-
scription language that can be understood by humans and easily processed
by machines.

The commonly used annotation language is RDF and, based on RDF,
the OWL ontology language was developed. An ontology is a description
of definitions and concepts about a certain domain. OWL is a language

1XPTO is a recursive acronym that stands for XPTO Prolog Translation of Ontologies.

1

compatible with current Web standards (XML, RDF and RDFS) and whose
semantics are formally defined [DSB+04].

1.2 Motivation and Objectives

The purpose of this work is to use Logic Programming, more specifically
Contextual Logic Programming, as a mediator framework for Semantic Web
agents, in which knowledge representation for ontology documents and other
sources of information can be integrated in a transparent manner. For ex-
ample using the ISCO framework [AN06] it is possible to integrate relational
databases and Web ontologies.

Contextual Logic Programming is an extension to Logic Programming
that intends to introduce modular programming. The adopted framework,
GNU Prolog/CX, described in [AN06] makes use of persistence and program
structuring through the use of contexts [AD03].

The main objective of the XPTO system is to be able to represent and
query web ontologies from the perspective of Contextual Logic Programming.

After transforming the information of an ontology into GNU Prolog/CX
units and predicates, it is possible to use these definitions in a Prolog com-
putation and access the ontology. This framework can be used to provide a
front end that can act as a SPARQL web agent. This front end can receive
a SPARQL query about a known ontology, process it against the internal
representation and return the corresponding results.

Parts of this work have previously been presented: an initial description
of the system was shown in [FLA07]. The examples and use cases for the
system described in Section 5.5 were presented in [LFA07].

1.3 Related Work

Other available systems provide similar capabilities to XPTO. Either in
the representation of the ontologies, SPARQL query engines or in both as-
pects. Some of these systems are briefly introduced next:

Thea

Thea [Van06] is an OWL parser implemented in Prolog. It uses The SWI-
Prolog Semantic Web library to parse the OWL ontologies into RDF triples

2

and then builds the representation based on these results. The ontology is
represented as Prolog terms and its structure is further described in [Van07].

Known issues and limitations are:

• Thea does not make any inferences nor does it check the consistency
of the OWL ontology.

• It parses OWL Full, DL and Lite ontologies but it does not validate
them.

• It does not support the owl:import directive: the imported ontology
is not parsed automatically.

Racer

Racer [Sof07, HM01] is an OWL reasoner and inference engine for the Se-
mantic Web. It enables applications to query OWL ontologies implementing
the candidate standard OWL querying language OWL-QL.

Implemented in Common Lisp, Racer is able to start multiple reasoners
on the local machine and distribute its load among the Racer instances. It
also uses query caching, each query sent by clients and each answer to that
query obtained through reasoning can be cached by the system.

Protégé Protégé [Pro06] is a platform that provides tools to construct
ontologies. Through its Protégé-OWL plugin, it enables users to build on-
tologies for the Semantic Web [KMR04] and allows integration with reasoners
such as Racer.

Jena

Jena [Jen06] is an open source Java framework for the Semantic Web
developed at the HP Labs Semantic Web Programme. Jena includes a RDF
API, an OWL API and a SPARQL query engine allowing Java programmers
to access OWL ontologies in a simple manner.

The SPARQL query engine present in Jena, known as ARQ 2, allows Jena
from within its framework, to query an external SPARQL agent and process
the returning results.

2Documentation about ARQ can be found at http://jena.sourceforge.net/ARQ/documentation.html

3

Ontology inference Jena can use different reasoners to infer new triples.
All inferred information is stored as new triples thus exposing them to the
queries.3

Persistence Storage In addition to in-memory storage, Jena provides per-
sistent storage of RDF documents in relational databases. The persistence
subsystem supports an interface for SPARQL queries that dynamically gen-
erates SQL queries.

Pellet

Pellet [SPG+07] is an open source reasoner for the OWL DL ontology
language developed at the Mindswap Lab of the University of Maryland.

Pellet contains a query engine which supports answering queries formu-
lated using SPARQL and supports reasoning with multiple ontologies.

Some of other important features include:

Consistency checking: No contradictory facts are present in the ontolo-
gies.

Concept satisfiability: Checks the possibility of the classes to have any
instances.

Classification: Computes all the ontology hierarchy.

Realization: Computes the direct types of each individual

F-OWL

F-OWL is implemented using Flora-2 which is a extension of F-logic, a
logic based language with some aspects of Object-Oriented Programming.
F-OWL is a rule based ontology inference engine for OWL. F-OWL makes
use of mechanisms of the underlying technology (XSB Prolog) such as tabling
for result caching.

F-OWL supports ontology inferences based on the OWL-Lite language.
Only a few number of inference rules have been prototyped for experimenting
OWL DL and OWL Full ontology inferences.

3Further information is available at http://jena.sourceforge.net/inference/

4

1.4 Guide

The remainder of the thesis is organised as follows:

Chapter 2 presents the Semantic Web and some of the associated technolo-
gies

Chapter 3 introduces Contextual Logic Programming, the used implemen-
tation GNU Prolog/CX and other used frameworks

Chapter 4 describes the XPTO core system (that consists of the ontology
mapping framework). This chapter corresponds to the description of
the work developed in cooperation with Cláudio Fernandes

Chapter 5 presents a component of XPTO, more specifically the implemen-
tation of a SPARQL query answering system

Chapter 6 lays out the conclusions and indicates the work that still needs
to be developed

5

Chapter 2

Semantic Web

This chapter briefly discusses a vision for the Semantic Web, a possible
structure for it (Section 2.2) and introduces associated technologies in Sec-
tions 2.3 and 2.4. Finally, some possible applications for the Semantic Web
are presented in Section 2.5.

2.1 What is the Semantic Web?

“The Semantic Web is not a separate Web but an extension of
the current one, in which information is given well-defined mean-
ing, better enabling computers and people to work in coopera-
tion”.

This quote, taken from “The Semantic Web” [BLHL01] outlines the pur-
pose and ideal of the Semantic Web: to allow machines, along with humans,
to make better use of the information that can be found in the Web, infer
meaning and knowledge from that information in order to assist human users
in their daily activities.

This is not a new vision, already having been hinted in the first World
Wide Web Conference (1994) by Tim Berners-Lee as stated in [SBLH06],
and later in Weaving the Web [BLF99]. “The Semantic Web” [BLHL01]
describes a possible scenario for the Semantic Web and the technologies that
could be used to achieve it. The scenario is that of intelligent agents able
to communicate with other agents and Web resources (such as web pages or
web services) to accomplish useful goals for users.

Currently the web is designed for users to navigate the pages and extract
from them the intended meaning. It is the user that navigates the pages,

6

uses a search engine, buys products, etc. The focus is mostly on the human
user. The Semantic Web brings forth a shift of focus in order to also include
the software programs. It would be more efficient if the user could perform
a query that would then proceed on its own instead of manually browsing
through pages to retrieve the information or achieve the intended action.

2.2 Foundations of the Semantic Web

For the Semantic Web to follow the current web model there are cer-
tain principles and key aspects of the World Wide Web that should be re-
spected [KM02]. The main principles are described bellow:

URI-style addressing The Semantic Web can use identifiers to refer to
things in the physical world, such as people and places. A URI (Uniform
Resource Identifier) can be created to identify something in the physical
world or things can be referred indirectly, e.g., it is possible to identify
a person by referring to the e-mail address of that person.

Annotated resources and links The Web consists of resources and links.
For the information in these resources to be more easily processed by
machines there should be available, in the resources and links, infor-
mation about its contents or the relation between the two resources (in
the case of links).

Partial information is tolerated It is essential for the Semantic Web to
be able to operate with missing links and incomplete or inconsistent
information that can be found in the Web.

There is no need for absolute truth Not everything found in the Web
is true. This introduces the need for the concept of Trust: A Semantic
application must decide what resources to trust.

Support Evolution Concepts can be defined differently by different people
or by the same people at different times. The Semantic Web allows for
the concepts to evolve as the human knowledge evolves and expands.
It also allows for concepts to be referred using different vocabularies
and definitions or add new information without the old being modified.

Minimalist design Using protocols with a small and universally under-
stood set of commands and standardizing essential components allows
the implementation of applications that are based on already standard-
ized technologies.

7

The Explorer’s Guide to the Semantic Web [Pas04] also states some other
important features that are described next:

No state information Web interactions are stateless. If it is necessary
for some business to store information across several interactions, the
server must provide the means to make it possible.

Be as decentralized as possible The Web is decentralized. If you have a
computer on the network, you can put a web server on it; and if you
have a server, you can add resources to it without registering them
anywhere else.

Function on a large scale Independent interactions make possible a large,
decentralized system where responses can be cached to allow faster re-
sponses and reduce network traffic.

2.2.1 A Layered Approach

Figure 2.1 represents the layers of the Semantic Web approach as pre-
sented by Tim Berners-Lee in a keynote address delivered at The Twenty-
First National Conference on Artificial Intelligence.1 The most significant
layers are briefly described here:

XML eXtensible Markup Language (XML) has been a standard for ex-
changing data over the Web in the past years. A XML document
contains nested sets of open and close tags, each possibly containing
several pairs of attributes and its values.

XML does not define a structure for its contents nor does it provide
the means to talk about the semantics of data.

For a more complete understanding of the XML language the reader is
referred to [BPSM+06].

XML Schema XML Schema (XMLS) is a language that is used to define a
grammar for XML documents. This may be necessary since XML has
no fixed vocabulary or set of allowable combinations.

RDF Resource Description Framework (RDF) is a language designed to
describe information and meta data. An alternative is Topic maps, a
non-W3C standard. RDF is explained further in Section 2.3 (page 12).

1The presentation is available at: http://www.w3.org/2006/Talks/0718-aaai-tbl/

8

Figure 2.1: A layered approach to the Semantic Web

RDFS RDF Schema (RDFS) introduces a type system for RDF models and
basic primitives to build ontologies. RDFS supports primitives such
as classes, subclasses, subproperties, domain and range restrictions of
properties.

It also lets developers define a vocabulary for RDF data and specify
the kinds of object to which these attributes can be applied.

Ontology RDF Schema is used by many more advanced ontology frame-
works such as the Web Ontology Language (OWL), an ontology lan-
guage designed for the Semantic Web. OWL is further detailed in
Section 2.3 (page 15).

SPARQL represents another important part of the Semantic Web: querying
the stored information. It is a widely used query language for RDF.

RIF The Rule Interchange Format (RIF) is an effort to develop a format for
the exchange of rules in rule-based systems on the Semantic Web. There
is currently available a W3C Recommendation Working Draft [BK07].

9

Logic and Proof Logical reasoning in the Semantic Web is used to deter-
mine the consistency and correctness of data. It can also be used to
infer conclusions that are not explicitly present in the data.

Trust It is necessary to provide means of authentication and establishing
trustworthiness of data, services, and agents.

2.2.2 Metadata

The Semantic Web proposes that web pages, in addition to containing
formatting information to produce a document for human readers, also con-
tain information about their content in a representation easily processable
by machines. The term metadata refers to such information: data about
data. Metadata is still data, the difference is in the use of the data and,
most importantly, in the subject of the metadata: other data.

Metadata information should be expressed using a common format, such
as RDF [MM04], in order to enable a faster development and interoperability
of Web resources.

For example, the ISBN number and the name of the author name are
metadata about a book. Metadata information can be used in searches and
in discovering information. It would also allow for users to recommend Web
pages that they think are interesting and search engines might take them
into account to give results of higher quality.

Annotations

Annotations are another form of metadata. To annotate a Web resource
means adding information (notes, commentaries, etc.) to that resource with-
out changing the original.

There is a distinction between annotations and other metadata: an an-
notation implies the interaction of a user with a web resource, it results from
the perception of a specific user, other than simply representing information
about the web resource.

Annotations, although useful for the user, can also provide valuable in-
formation if shared across the Web. If a user finds a passage that he thinks is
especially important in a web resource, he would have the possibility of high-
lighting that passage (and possibly adding a comment) so that, next time he
visits that resource, the passage is also highlighted and the comment avail-
able. It could also be possible to make the annotation available to anyone
that visits the resource or a user could enable viewing annotations posted by
people he trusts.

10

Annotea [Koi07, KK01] is an experimental annotation system available,
developed by the W3C that uses RDF to describe the annotations. The W3C
also supplies an experimental browser, Amaya [Vat07] testbed for all W3C
experiments and validations, that can read and write Annotea annotations.
These annotations can be stored either locally in the computer of the user
(in this case they are not sharable) or on an Annotea server.

2.2.3 Ontologies

Ontologies are an important aspect of the Semantic Web. A possible
definition for an ontology is given in [Gru93]:

“A body of formally represented knowledge is based on a con-
ceptualization: the objects, concepts, and other entities that are
presumed to exist in some area of interest and the relationships
that hold them. A conceptualization is an abstract, simplified
view of the world that we wish to represent for some purpose.
(. . .) An ontology is an explicit specification of a conceptualiza-
tion.”

This definition focuses two important aspects of ontologies: that the de-
scription is formal and thus permits easy handling by a computer program
and that a specific ontology is designed for some particular domain.

The term ontology originated in philosophy, where it represents the study
of the nature of existence. In computer science, more specifically knowledge-
based systems, what exists are the elements that can be represented.

An ontology is composed of classes and relations between these classes.
Classes correspond to important concepts of the domain the ontology repre-
sents. Relations are for instance hierarchies of classes. Ontologies can also
include information such as properties, restrictions and equality or difference
statements between resources.

In the Semantic Web, ontologies provide understanding of a domain, allow
to overcome differences in the terminology of the same concept or correct the
problem of using identical names with different meanings. Ontologies are also
useful for improving the accuracy of Web searches, allowing search engines
to search for resources that refer to a specific concept in an ontology. Further
details about improving web searches are specified in Section 2.5.1 on page 18.

Ontology reasoning

Some possible uses of reasoning in ontologies are stated in [BHS05]:

11

“Reasoning is important to ensure the quality of an ontology. (...)
During ontology design, it can be used to test whether concepts
are non-contradictory and to derive implied relations. (...) [When
searching annotated Web pages] interoperability and integration
of different ontologies is also an important issue. Integration can,
for example, be supported by asserting inter-ontology relation-
ships and testing for consistency and computing the integrated
concept hierarchy. Finally, reasoning may also be used when the
ontology is deployed, i.e., when a Web page is already annotated
with its concepts. One can, for example, determine the consis-
tency of facts stated in the annotation with the ontology or infer
instance relationships”

The “Semantic Web Primer” [AvH04] indicates some of the forms of rea-
soning that are possible to be made with ontologies:

Class membership If x is an instance of a class C, and C is a subclass of
D, one can infer that x is an instance of D.

Equivalence of classes If class A is equivalent to class B, and class B is
equivalent to class C, then A is also equivalent to C.

Classification If certain property-value pairs are declared to be a sufficient
condition for membership in a class A and an individual x satisfies such
conditions, x can be concluded to be an instance of A.

2.3 Web Languages

Next are presented some of the available languages whose main focus is
the World Wide Web and ultimately were used as the basis for the ontology
language OWL.

Resource Description Framework

The Resource Description Framework (RDF) [MM04] is a W3C recom-
mendation that aims at standardizing the writing and use of metadata in
Web resources. RDF is also the base for other ontology languages.

RDF uses a simple data model consisting of resources (identified by URIs)
and statements that can be made about resources. A statement is a triple
pattern in the form of object, attribute and value (the attribute can also
be called property). This indicates a relation between two resources: the

12

object and value. The object is a resource or a blank node, the attribute is
a resource and the value may be a resource, blank node, or a literal (literals
are simple values, like numbers or strings).

RDF can use different forms of syntax: it has a standard syntax using
XML but it can also be presented, for instance, using the Turtle syntax. The
example of Turtle syntax shown in Figure 2.3 (page 14) corresponds to the
Turtle translation of the example in Figure 2.2.2

1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:dc="http://purl.org/dc/elements/1.1/"
4 xmlns:ex="http://example.org/stuff/1.0/">
5 <rdf:Description
6 rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
7 dc:title="RDF/XML Syntax Specification (Revised)">
8 <ex:editor>
9 <rdf:Description ex:fullName="Dave Beckett">

10 <ex:homePage rdf:resource="http://purl.org/net/dajobe/" />
11 </rdf:Description>
12 </ex:editor>
13 </rdf:Description>
14 </rdf:RDF>

Figure 2.2: RDF XML syntax example

Anonymous resources

Anonymous resources (also known as blank nodes or b-nodes) are re-
sources that have no name. Blank nodes are considered to be unique nodes
that can be used in one or more RDF statements allowing to model complex
data sets without creating unnecessary identifiers.

Topic Maps

Topic Maps are an alternative standard for representing information.
They were originally developed to handle automated indexing systems and

2These examples are available in http://www.dajobe.org/2004/01/turtle/

13

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix dc: <http://purl.org/dc/elements/1.1/> .
3 @prefix ex: <http://example.org/stuff/1.0/> .
4

5 <http://www.w3.org/TR/rdf-syntax-grammar>
6 dc:title "RDF/XML Syntax Specification (Revised)" ;
7 ex:editor [
8 ex:fullname "Dave Beckett";
9 ex:homePage <http://purl.org/net/dajobe/>

10] .

Figure 2.3: RDF Turtle syntax example

tables of contents but have evolved to handle a wide range of information
resources.

The standard for Topic Maps [ISO02] describes the organization of topic
maps and defines XML Topic Maps [Top01], a XML-based language for ex-
changing topic maps.

RDF Schema

RDF Schema (RDFS) [BG04] allows the association of semantics to a
domain. By defining classes, properties and relations it is possible to limit
the expressivity of RDF to statements that are coherent in the domain it is
representing. This is not possible to achieve using only RDF.

A class defines groups of objects with common characteristics, objects
that can be viewed as a set. The relationship between instances (elements
of a class) and classes is done in RDF. An important use of classes is to
impose restrictions in order to disallow certain statements to be made in the
RDF document that uses the schema. It is possible to impose restrictions
on the values of a property which corresponds to restricting the range of the
property. Or restrict the objects to which the property can be applied which
is in fact restricting the domain of the property.

Hierarchies and Inheritance

With classes it is possible to establish hierarchical relations among them:
the subclass relation defines this hierarchy. RDFS allows a class to have
multiple superclasses so, the subclass relation implies that instances of a

14

class are instances of each of its superclasses. RDF Schema also defines that
instances of a class “inherit” properties and restrictions from its superclasses.

Properties are defined globally, i.e., they are not defined in a specific
class. This makes it possible to define new properties and assign values for
that properties to the elements of an existing class without changing the
structure of that class.

Property Hierarchies It is also possible to define hierarchical relation-
ships between properties. Stating that property P is a subproperty of prop-
erty Q is equivalent to stating that the all pairs of resources that are related
by P are also implicitly related by Q.

Web Ontology Language

Although RDFS allows the definition of classes, properties and restric-
tions on these elements it may not be enough to model all intended situa-
tions. W3C identified a number of use-cases where the expressivity provided
by RDFS does not suffice [Hef04], for instance, it is not possible to detect
inconsistencies using only RDF and RDFS.

As an attempt to standardize an ontology language with more capabilities
than RDFS, the W3C developed OWL: Web Ontology Language. OWL is
an evolution of DAML+OIL which in turn was the result of merging the
European OIL (Ontology Inference Layer) and DAML [DAR07] (DARPA3

Agent Markup Language).
OWL is defined as three sublanguages (or species): Full, DL and Lite.

Their main differences are described next. A more detailed explanation of
the OWL language and the different species is available in [MvH04].

OWL Full corresponds to the entire OWL language, it allows for the un-
restricted use of all the OWL primitives, RDF and RDFS. OWL Full
is entirely compatible with RDF and RDFS: a valid RDF document is
also a valid OWL Full document.

The problem with OWL Full is that is does not guarantee complete or
efficient reasoning support: the full semantics of OWL do not guarantee
that a query contains a solution that is decidable in finite time.

OWL DL consists of a subset of the OWL Full constructors. It is based on
description logic, a proved complete and decidable form of first-order
logic.

3DARPA stands for Defense Advanced Research Projects Agency of the United States
of America

15

The main purpose of the DL language is to guarantee computational
decidability (which is not guaranteed in OWL Full). In order to do
this, several restrictions were imposed. These, among other things,
restrict the use of OWL constructors as the subject of other construc-
tors. In practice this prevents the ontology developer from changing
the meaning of the constructors.

These restrictions allow OWL DL to provide efficient reasoning support
with the disadvantage of losing the full compatibility with RDF and
RDFS.

OWL Lite OWL Lite is an even stronger restriction of the OWL language,
adding more restrictions to OWL DL. This way, OWL Lite is a language
that is easy to understand for users and also easy to build tools for.

OWL Lite provides the basics for hierarchy construction such as sub-
classes and property restrictions.

OWL allows the definition of two types of properties: object properties
and datatype properties. Object properties relate instances to other instances
and datatype properties relate instances to datatype values (for example text
strings or numbers).

Axioms are used to provide information about classes and properties, for
example to specify the equivalence of two classes or the range of a property.

OWL uses the classes and properties defined in RDFS. Due to the restric-
tions of OWL DL and OWL Lite, instances of a class must be individuals
(classes cannot be defined as individuals of other classes).

Closed-World and Unique-Names Assumptions

In the scenario of the World Wide Web, where only partial information
may be available, OWL follows the open-world assumption model. This im-
plies that if a statement cannot be proved true, it is not possible to conclude
that it is false.

It also assumes that individuals with different names may be inferred to
be same individual. This means OWL does not follow the unique-names as-
sumption: the same individual may be identified by more that one identifier.
This assumption is also valid for classes and properties.

2.4 Query Languages

Another important aspect of the Semantic Web is the ability to retrieve
data modeled by the languages described in the previous section.

16

Query answering on the Semantic Web is a complex process due to some
peculiarities of the Web [FHH04]:

• Include several kinds of query-answering services with access to differ-
ent types of information represented in different formats.

• Different specifications of servers (partial information, performance lim-
itations or the inability to handle the query).

• It may be necessary to query without specifying the knowledge base
that shall be used to answer the query.

• The set of notations and surface syntactic forms used on the Web is
already large, and various communities have different preferences, none
of then universal.

Furthermore, Semantic web querying must take into account the meaning
that is defined by metadata and has to properly understand and process it.

To achieve this there are several query languages available for RDF.
Overviews and comparisons of query languages are presented in [FLB+06,
BBFS05, HBEV04]. There are also attempts to develop a query language for
OWL: OWL-QL [FHH04].

SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a query lan-
guage for RDF based on RDQL [Sea04] and SquishQL [MSR02]. It defines
both a query language [PS06], a protocol for the query interaction [Cla06]
and the output of results in XML [BB06].

SPARQL works as a query language by matching graph patterns against
the data source. The graph pattern may include restrictions and other con-
ditions like optional parts, union, nesting of graphs and filtering of the values
of the results.

After the selection of the results, several solution modifiers can be applied,
for instance it is possible to change the order of the results, limit their number
or change the starting element (by applying an offset).

The result of the query can have different forms: selections of bindings
for the variables, yes or no answers or construction of other triples. These
results can be presented in the XML format defined in [BB06].

A more detailed description of the SPARQL language is presented in Sec-
tion 5.1 and the semantics and query forms are presented in [Par06, PAG06].

17

2.5 Applications for the Semantic Web

There are many different perspectives on what the general idea of the
Semantic Web is. Some of the most significant ideas are now presented:

2.5.1 Improving Web search

Much of the success of World Wide Web is due to search engines. Search
engines, like Yahoo or Google, currently work on a keyword basis and are able
to retrieve the most relevant web pages in each search. One serious problem
is that the relevant resources found are of little use if they are among several
thousand less relevant, or even irrelevant other resources.

Another problem with the current web searches is their high sensitivity to
vocabulary. If the initial search keywords are not the same as those contained
in the web documents, the results will not include all the relevant web pages.
This can be the case if the web documents and the search query do not use
the same terminology.

Also, the required information may not be present in a single web page.
In this case, it is necessary to perform several queries and manually gather all
the information from each query result in order to retrieve all the information.

Currently there are tools that can interpret the structure of a web docu-
ment and perform operations on the text. However, there are still sentences
that are hard to differentiate in terms of meaning. There are two alternatives
to improve the web search. One is to continue, as has been done so far, to
develop artificial intelligence techniques to further filter the results. Another
is to represent the web content in a form that is more easily processed by
machines. It is for the latter that the information brought by the Semantic
Web can help.

2.5.2 Web as a database

As stated in [SBLH06] one of the motivations of the Semantic Web comes
from the possibility of accessing relational databases by exporting them to
the Web using a system of URIs (Universal Resource Identifiers). Relational
databases are a common way to store information and it is now possible to
retrieve information contained in these databases over the Web.

There is also a large amount of information stored in the Web that is not
in the form of relational databases. This data, be it in a relational database
or web documents, is generally separate and not easily merged. A part of
the Semantic Web vision is to unify the description and retrieval of stored
data, thus considering the Web as part of a virtual database.

18

2.5.3 Ubiquitous Computing and Web services

Ubiquitous computing is a paradigm of personal computing where the
focus is to have the computing power embedded in the daily environment
(using small handheld devices and wireless technologies).

Semantic Web technologies can be used in Ubiquitous Computing to pro-
vide better service discovery mechanisms. Current discovery systems are
based on standardization: the representation of the service and all commu-
nication processes must be known before the communication begins.

With the advent of Semantic Web technologies it would be possible to
build discovery systems capable of working almost without any prior inter-
vention.

Semantic gadgets, devices capable of semantic discovery [LA03], are de-
vices that can discover and use other services or devices without any human
intervention. This is possible using Semantic Web technologies such as RDF,
URIs and metadata.

Web Services

Also in the context of web services one could use Semantic Web technolo-
gies for Web Service discovery. The composition and execution can also be
automated by enabling the semantic description of the Web Services.

This would allow keeping the human intervention to a minimum. Cur-
rently both the discovery and query of Web Services require human interven-
tion, at least the first time, in order to analyse the structure of the service.

2.6 Conclusion

Now that the Semantic Web is getting more focus and attention, new
terms and views of the Semantic Web arise. The idea to retain is that it is
part of an evolutionary process: evolution of the current web into an also
machine-friendly Web.

19

Chapter 3

Contextual Logic Programming

Aristotle, a Greek philosopher that lived between 384 and 322 BC, is
commonly considered to be the father of logic for bringing forth a shift in the
focus of mathematics: from computation to proof [AvH04, Pas04]. Logic is
the study of correct reasoning, that can be used to deduct correct conclusions,
as exemplified by the well known syllogism:

All men are mortal

Socrates is a man

Therefore, Socrates is mortal

This Chapter is structured as follows: Section 3.1 briefly describes Logic
Programming and its use in the Semantic Web and Section 3.2 describes
an extension to Logic Programming called Contextual Logic Programming.
Later, Section 3.3 and Section 3.4 introduce two used frameworks: ISCO and
PiLLoW.

3.1 Logic Programming

Logic Programming consists of the interpretation of First-Order Logic (or
Predicate logic) as a programming language, as explained in [Kow74, EK76].
Logic Programming is widely used in theorem proving, knowledge represen-
tation and artificial intelligence.

Prolog is one of the most widely used logic programming languages and
some of the basic concepts: facts, queries and variables, are briefly described
next (these concepts are further detailed in [SS86]):

Rules and Facts describe relations between other facts or state knowledge.
These can be called a logic program.

20

Queries can be used to retrieve information, i.e., ask if a relation is true.

Variables represent an unspecified value and can be used in facts, rules and
queries.

Compound terms consist of a functor (the name of the term) followed by
a finite number of arguments. The arity of a compound term is the
number of arguments it contains. It is possible to identify a compound
term by the form: functor/arity.

Query evaluation

A query is evaluated by finding a pattern in the logic program that
matches the given query. If such a pattern is found, the query is said to
succeed and any variables in the query are unified with the terms in the pat-
tern, making the variable identical to the term. Otherwise the query will fail
and not perform any unification (also called instantiation).

In the case of a successful query, there may exist other facts that match
the query that would perform different bindings for the variables in the query.
These bindings are performed by the backtrack process: it will return new
bindings for the variables based on the new pattern found.

3.1.1 Logic Programming and the Semantic Web

In the Semantic Web context, logic programming can be used to over-
come problems that may not be possible using only OWL. They are stated
in [MHRS06]:

Higher Relational Expressivity With OWL it is only possible to model
domains whose objects are connected in a tree-like manner. It may
be necessary to model other types of relations: for example, the lack
of composition constructor in OWL does not allow the definition the
“uncle” relation.

Closed-World Reasoning The open-world semantics of OWL only allows
to answer positive queries, i.e., answer queries about known facts. Facts
not present in the database cannot be considered false so it is not
possible to answer these queries.

Modeling Exceptions OWL does not allow to model exceptions. Excep-
tions are common in the real world and it may be necessary to model
them. In order to enable exception modeling it is usually necessary to
use a form of default negation.

21

3.2 Contextual Logic Programming

Contextual Logic Programming [MP93, MP89] (CxLP) intends to address
the issue of modularity in Logic Programming using the concept of units. A
unit consists of a set of predicates, combining them under the same identifier:
the name of the unit. An example of a unit is presented in Figure 3.1 using
the syntax of GNU Prolog/CX (taken from [NAD04]).

1 :- unit(teacher).
2

3 name(Name):- teacher(Name, _, _).
4 department(Dep):- teacher(_, Dep, _).
5 degree(Deg):- teacher(_, _, Deg).
6

7 teacher(john, computerScience, phd).
8 teacher(bill, computerScience, msc).

Figure 3.1: Example unit: teacher/0

These units can then be combined to arrange a context, called an exe-
cution context. It is in this dynamically created context that a goal will be
executed.

3.2.1 GNU Prolog/CX

Throughout this work, a specific implementation of CxLP was used: GNU
Prolog/CX [AD03]. This implementation introduces the possibility of defin-
ing arguments for units. These arguments act as global variables in the unit
where they are defined, i.e., every clause in the unit can access them in the
same manner as if they were a variable of the clause. These unit arguments
can also act as input of information for a unit when creating a context.

Using unit arguments, the unit shown in Figure 3.1 can be rewritten in
the form illustrated in Figure 3.2 (presented in [NAD04]). In this unit, the
predicates that access the name, department and degree simply access the
corresponding unit argument. A new predicate item/0 is introduced that
will instantiate all the units arguments with the facts defined by predicate
teacher/3.

A context can be generated using any possible combination of the avail-
able units. The contexts are constructed using the defined operator of context

22

1 :- unit(teacher(NAME, DEPARTMENT, DEGREE))
2

3 name(NAME).
4 department(DEPARTMENT).
5 degree(DEGREE).
6

7 teacher(john, computerScience, phd).
8 teacher(bill, computerScience, msc).
9

10 item:- teacher(NAME, DEPARTMENT, DEGREE).

Figure 3.2: Example unit: teacher/3

extension: ’:>’ . The use of this operator, generally in the form U :> G, ex-
tends the current context with unit U and then resolves the goal G in the
new context.

Unit arguments can also be used to transparently query data defined in
a unit. For instance, the goal

?- teacher(bill, D, _) :> item.

will instantiate variable D with ’computerScience’.

Context resolution

Consider the following definition (presented in [NAD04]): “To derive an
atomic goal G in a context u1u2 . . . un a search for the smallest i, 1 ≤ i ≤ n,
such that G can be derived with a clause of ui, is made. The derivation of
the body of that clause is considered in the reduced context ui . . . un.”

In a nutshell, when executing a goal G in a context C, a CxLP Engine
will traverse C looking for the first unit u that contains a definition for G’s
predicate. G is then executed, as if it were regular Prolog, in a new context
C ′. C ′ is the suffix of the context C which starts with unit u. The body of
the clause (if present) is then derived using the reduced context C ′.

A CxLP context can be represented by a list of units where the empty
list ([]) represents the empty context.

Context operators

A goal will be executed in the context that is headed by the first unit
that contains a clause for the goal but there are operators defined that will

23

allow the manipulation the contexts or change the method of resolution.
Some of the operators of GNU Prolog/CX are presented next.1 These are

called context operators and enable the modulation of the context as a part
of the computation.

Context extension: U :> G, this operation extends the current context
with unit U and then reduces goal G.

Context switch: C :< G, attempts to evaluate goal G in context C, ig-
noring the current context.

Supercontext: :^ G, evaluates goal G in the context resulting of removing
the top unit from the current context.

Current context: :< C, unifies C with the current context.

Calling context: :> C, unifies C with the calling context.

Lazy call: :# G, evaluates the goal G in the calling context.

3.3 ISCO

The ISCO (Information System COnstruction) [AN06] programming lan-
guage aims to be a mediator between the user and relational databases and
provides a way to develop and access organizational information systems.

As stated in [AN06], the Prolog implementation used by ISCO, GNU
Prolog/CX, also provides the constraint logic programming paradigm, which
is a very useful extension to the traditional Prolog programming style in
that it allows for problems to be solved by providing a priori search-space
pruning, through the constraint propagation mechanism. ISCO fully takes
advantage of this feature.

An ISCO class consists of a data structure definition equivalent to a table
on a database. After an ISCO file with class definitions is compiled by the
ISCO compiler, the system will create those tables on the appropriate back
end database and generate access predicates to manipulate that structure.

Figure 3.3 shows the definition of some ISCO classes. According to
that figure, the ISCO compiler will create the predicates dictionary/2 and
dictionary use/3 which can be used to consult the database.

1For a more detailed and formal description, the reader is referred to [AD03].

24

1 mutable class dictionary.
2 id: serial. key.
3 name: text. unique.
4

5 mutable class dictionary_use.
6 code: int. key.
7 key: dictionary.id.
8 some_field: text.

Figure 3.3: Example class definitions in ISCO

3.4 PiLLoW

Another tool that is widely used in this work is the PiLLoW library [CH07,
CHV96]. This library, originally designed for Ciao Prolog allows the genera-
tion of HTML structured documents, produce HTML forms and its handlers
and also to access and parse WWW documents. In this work PiLLoW is
being used mainly to generate the XML files in which SPARQL returns its
results.

PiLLoW reads a formatted Prolog term and generates the corresponding
HTML/XML. The name of the node corresponds to the functor of the term
and the properties of the node are specified in a list after the ’$’ character. It
is possible to define a list of elements of this same structure as the argument
of the predicate. This list will represent the children of the node.

For example the output presented in Figure 3.5 is generated by the term
shown in Figure 3.4.

1 node([

2 subnode([

3 element([x])$[name=element1],

4 element([y])$[name=element2]

5])

6])$[property1=a,property2=b]

Figure 3.4: PiLLoW term example

25

1 <node property1="a" property2="b">

2 <subnode>

3 <element name="element1">x</element>

4 <element name="element2">y</element>

5 </subnode>

6 </node>

Figure 3.5: PiLLoW output

3.5 Conclusion

This chapter introduced the notion of Contextual Logic Programming
(CxLP), necessary for the reader to understand the technology this work
is based on, along with some of the concepts and keywords often used to
describe it.

26

Chapter 4

The XPTO system

The main objective of the XPTO1 (XPTO Prolog Translation of Ontolo-
gies) system is to represent Web ontologies from the perspective of Contextual
Logic Programming.

As mentioned in Section 2.3 on page 15, Web ontologies can be repre-
sented using the OWL language and OWL is sub divided into three sub
languages: OWL Lite, OWL DL and OWL Full. XPTO is capable of parsing
and representing ontologies described in OWL (Lite and DL sub languages).
OWL DL emerged as the target for the mapping and representation capability
of XPTO since it guarantees computational completeness and decidability,
i.e., all conclusions are computable and will finish in finite time [AvH04].
This is not guaranteed by the OWL Full language.

In XPTO the information represented in the ontology is translated into
GNU Prolog/CX predicates and units. This process is performed in two
phases: the ontology parsing and the unit generation.

During the first phase, the ontology is parsed as a plain XML structure,
resulting in a Prolog term representing the complete ontology. This process
is described in Section 4.1.

In the unit generation phase, the Prolog term is transformed into a dic-
tionary, an incomplete structure annotated with the necessary information
for the generation of the units. Subsequently the unit files are created and
loaded into the running instance of the program. Section 4.2 details this
process.

In this section the ontology examples are taken from the Wine ontol-
ogy [W3C06] and the queries are also performed over this ontology.

1This work was developed in cooperation with Cláudio Fernandes.

27

This chapter presents the XML parser used in Section 4.1. Section 4.2
describes the internal representation of ontologies and Section 4.3 introduces
the manner in which to retrive the information from the representation. Some
use cases for the developed system are presented in Section 4.4 and, finally,
Section 4.5 presents the results of the benchmarks performed.

4.1 Parsing an ontology

The first step towards building the ontology representation is parsing the
ontology file. The parser must be able to read an ontology from a document
and represent it in an adequate data structure.

In this phase the ontology is handled as a plain XML file and read in
using an available XML parser. To achieve this, several XML parser libraries
were considered (mostly Prolog and C parsers and, for benchmark purposes,
parsers in other languages such as Java, Python and Caml). The results of
these benchmarks are presented in Section 4.5.

The selected parser was the Expat XML parser [Coo06]. The main reasons
that influenced the choice of this parser were the results of the benchmark
tests and the easy integration of C and Prolog. These reasons are further
explained in Section 4.5.1.

The Expat library parses the XML by matching patterns in the text. This
way the parser incrementally creates a data structure representing the XML.
Once the end of the file is reached, a term is generated based on the created
structure and returned to Prolog. This term is an accurate representation of
the XML file: apart from any possible comments in the XML file, there is
no further loss of information in this transformation.

Prolog representation for XML

The internal Prolog representation used for a XML structure is a list of
XmlElement, where an XmlElement is a term of the following form:

node(ElementName, ElementAttributesList, ElementChildList).

This representation will produce the structure represented on Figure 4.2
(page 30) for the XML code in Figure 4.1 (page 29). Each part of the
structure is detailed below:

ElementName represents the name of the XML element and is stored as an
atom or, for URIs, a compound term whose functor is ’#’ and contains
the URI and local part as arguments. In the case of the XML element

28

name does not contain the URI part, the URI will be the empty atom:
’’.

This simplifies the handling of these elements within Prolog since it is
possible to access each part of the element directly.

ElementAttributesList is a list of the attributes of the XML node in the
form AttributeName = AttributeValue.
AttributeName and AttributeValue will be represented in the same
form as ElementName.

SubElementsList is a list off all nodes that are exactly one level below in
the same branch of the XML document structure. These may be other
nodes (elements of the same structure) or element values which will be
represented only by the value.

1 <!DOCTYPE rdf:RDF [
2 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
3]>
4 <rdf:RDF xmlns:xsd = "http://www.w3.org/2001/XMLSchema#">
5 <owl:Class rdf:ID="Vintage">
6 <rdfs:subClassOf>
7 <owl:Restriction>
8 <owl:onProperty rdf:resource="#hasVintageYear"/>
9 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

10 1
11 </owl:cardinality>
12 </owl:Restriction>
13 </rdfs:subClassOf>
14 </owl:Class>
15 </rdf:RDF>

Figure 4.1: XML example: OWL Class definition

4.2 Representation of an ontology

XPTO is prepared to translate ontologies defined in OWL Lite or OWL
DL into Prolog. This mapping process must allow for easy access to the
information represented in the ontology, using standard Prolog goals.

29

1 [node(rdf:’RDF’, [xmlns:xsd=’http://www.w3.org/2001/XMLSchema’],
2 [node(owl:’Class’, [rdf:’ID’=’Vintage’],
3 [node(rdfs:subClassOf,[],
4 [node(owl:’Restriction’,[],
5 [node(owl:onProperty,
6 [rdf:resource= #(’’,hasVintageYear)],
7 []),
8 node(owl:cardinality,
9 [rdf:datatype=#(’http://www.w3.org/2001/XMLSchema’,

10 nonNegativeInteger)],
11 [’1’]
12)]
13)]
14)]
15)]
16)]

Figure 4.2: Prolog XML Representation of the example in Figure 4.1

After parsing, the entire ontology is represented by a Prolog term, as ex-
plained in Section 4.1. The work at hand is now to generate a dictionary with
the necessary information to later create the GNU Prolog/CX units. These
generated units are then compiled and loaded into the running program.

The next sections describe the process of translating the Prolog term into
the incomplete structure and present the representation of the ontology using
GNU Prolog/CX units and predicates.

4.2.1 Ontology representation

A GNU Prolog/CX unit is a named and possibly parametrised set of
Prolog predicates (as described in Section 3.2). In XPTO, ontologies are
represented using units and these will be used to represent each OWL class
and property, the individuals and one unit containing information about the
ontology. This schema is represented in Figure 4.3.

The information about the ontology is represented in a unit with the
name ontologies. It lists the namespaces, headers, classes and properties
of each loaded ontology.

Each class and property is defined in a unit named after the class or
property and contains the information that is defined in the ontology about
the element. This naming schema for the units of properties and classes does

30

not present a problem in OWL DL since, as stated in [SWM04], there could
never exist a class with the same name as a property:

“OWL DL requires a pairwise separation between classes, datatypes,
datatype properties, object properties, annotation properties, on-
tology properties [. . .], individuals, data values and the built-in
vocabulary. This means that, for example, a class cannot be at
the same time an individual.”

The ontology individuals are represented in the unit individuals. It con-
tains the name of the individuals, individual relations and class memberships.

The following sections describe the structure of these units and also dis-
cuss some alternative representations previously experimented.

Figure 4.3: Ontology representation schema: units

ontologies Unit

This unit represents the ontology information: XML namespaces, ontol-
ogy headers, classes and properties. This is done by defining predicates for
each case: ns/3, header/3, class/2 and prop/2. Each predicate contains,
in the case of headers and namespaces, an entry with the ontology name, the
respective “abbreviation” and value and, for classes and properties, simply
the ontology name and the class or property name. The ontology name is
included in these predicates to allow the possibility of representing several
ontologies.

31

Property Units

Each property unit contains the information relative to a specific property.
The type of the property (datatype or object) and, if specified any other
information such as domain and range, property inheritance and property
relations.

These properties also define the method to access their value for spe-
cific individuals, that shall be previously retrieved from the context. The
way to perform queries on the representation of the ontology is described in
Section 4.3.

For example, the definition of a property and the representation are
shown, respectively, in Figure 4.4 and Figure 4.5. An example of its usage is
shown if Figure 4.11 on page 40.

1 <owl:ObjectProperty rdf:ID="locatedIn">

2 <rdf:type rdf:resource="&owl;TransitiveProperty" />

3 <rdfs:domain

4 rdf:resource="http://www.w3.org/2002/07/owl#Thing" />

5 <rdfs:range rdf:resource="#Region" />

6 </owl:ObjectProperty>

Figure 4.4: OWL property definition

1 :- unit(locatedIn).

2

3 object(rdf : type(’TransitiveProperty’)).

4 domain(’Thing’).

5 range(’Region’).

6 type(object).

Figure 4.5: Prolog representation of Figure 4.4

Class Units

These units will represent each class of the ontology and all information
relevant to it; this includes restrictions on the individual properties (class
membership) and class inheritance.

32

It also includes a predicate class name/1 that provides the name of the
current class. This predicate is used in by the query engine to determine the
class that the query refers to as described in more detail in Section 4.3.

Unnamed classes These are classes defined implicitly by a set of individ-
uals. They are represented internally by a unit (in the same manner as a
named class) but, since they are not assigned a name in the ontology, one
is generated for them. This generated name consists of the prefix class

followed by a sequential number.
An example of the use of unnamed classes, using an enumeration, is shown

in Section 4.2.2.

individuals Unit

This unit contains all the individuals, their properties and information
about individual relations. The individual properties are stored as triples, in
the manner of RDF, defined in the predicate property/3. The first argument
of this predicate indicates the name of the individual, the second corresponds
to the property and the third argument contains the value of the property
for that individual.

Class membership is defined in the predicate individual class/2. This
predicate lists all the individuals, along with their class. Individuals from
unnamed classes are not included in this listing: they are only present in the
unit that represents the class. This is done to avoid unwanted repetitions
when querying the ontology that would be generated if the individuals of the
unnamed classes were listed as the other individuals. These individuals are
only available in the predicate individual/1 present in each unnamed class
unit.

Individual relations In this unit there are also predicates that repre-
sent the individual relations, such as differentFrom/2 and sameAs/2, each
with individual names as their arguments. These indicate, respectively, that
the referred individuals are different or the same [MvH04]. The construc-
tor owl:AllDifferent is represented as several differentFrom statements,
each individual present in the constructor will generate one differentFrom

statement relating it to every other individual in the list. This is detailed in
Section 4.2.2.

33

Alternative representations

To achieve the described representation of the ontology two other repre-
sentations were tested. The representations described next are the ones that
were explored and other solutions may exist:

1. One approach to map an ontology is to represent each property and
class in the ontology as a unit and represent the individuals as an
instantiation of a goal of the unit that represents the class.

The units that represent each class have their arity determined by the
number of properties defined in the ontology and one extra argument
to represent the individual name. This extra argument is referred inter-
nally with the name “id” and thus any query asking for the argument
“id” will match the name of an OWL individual. An example of a class
with this structure is shown in Figure 4.6.

The individuals of a class are stored in a unit named ClassName owl.
This unit contains the instantiations of the predicate individual/1

defined in the class unit.

The call to the predicate item/0 (or item/1) instantiates the units ar-
guments. The item/1 goal returns a compound term that represents
the individual and the value of the properties for that individual. The
item/0 allows accessing the individual properties by their name and
enables to select only some properties to be shown by using the predi-
cates defined in the unit that access the correct property (as presented
in Figure 4.6).

In this representation, the fixed arity of the representation for the indi-
viduals was not appropriate as some individuals may not have a value
for all the properties and may have values for properties that are not
present in the representation. The solution would be to include all
the properties of the ontology in the representation of the individuals.
This would implicate an arbitrarily large number of arguments in the
class units arguments (equal to the number of properties defined in the
ontology).

2. Another representation would be to include in each class unit a list of
the names of their individuals, defined in the predicate individual/1.
Each individual would also be represented in a unit named after the
name of the individual. The class unit also defines the method to access
the individuals: item/1 and item/2. The first predicate instantiates
the argument, by backtracking, with the name of each individual that

34

1 :- unit(’IceWine’(A,B,C)).
2

3 % access-predicates
4 item:- item(_).
5 item(’IceWine’(A,B,C)) :- individual(’IceWine’(A,B,C)).
6

7 % properties
8 id(A).
9 hasBody(B).

10 hasFlavor(C).

Figure 4.6: IceWine class unit (first version, partial)

belongs to the class. The item/2 predicate also instantiates its sec-
ond argument with a list of all the properties of the individual. The
definition of these predicates is illustrated in Figure 4.7.

The representation of each individual in a separate unit could pose a
problem as the number of individuals increases, both in terms of repre-
sentation and querying. In terms of representing this would cause the
number of generated units to be very large and cause the compilation
process to take long amounts of time.

1 item(A) :-

2 individual(A).

3 item(A, B) :-

4 individual(A),

5 findall(C = D, individuals :> property(A, C, D), B).

Figure 4.7: Class item goals example

4.2.2 Name analysis

The next process in the loading of ontologies consists in building a dictio-
nary with all the information necessary to generate the units and predicates
that will represent the ontology.

The dictionary is implemented as an incomplete structure in Prolog. It is
split into four sections: ontology, classes, individuals and properties.
The properties and classes sections are each a dictionary where the key is

35

the name of the element at hand. The ontology entry stores information
about the ontology, i.e, the info expressed in the owl:Ontology node; fi-
nally the individuals entry stores all the information about individuals.
The information about individuals is also grouped by the predicates defined
in the individuals unit (individual class, property, differentFrom and
sameAs) as previously described (Section 4.2.1).

The term that represents the ontology is parsed according to the speci-
fications of the OWL language as detailed in [MvH04]. Next are presented
some of the representation choices that were made.

Enumeration

An enumeration can be defined as an anonymous class that is defined
by a set of individuals and is used, for instance, with the AllValuesFrom

constructor as represented in Figure 4.8. Classes like this are represented
internally like any other OWL class and, in order to do this, they are as-
signed an internal name (that consists of the prefix class followed by a
sequential number). The individuals of these classes are listed directly in the
unit that represents the class and are not present in the individuals unit
(as explained in Section 4.2.1).

1 <owl:allValuesFrom>

2 <owl:Class>

3 <owl:oneOf rdf:parseType="Collection">

4 <owl:Thing rdf:about="#CheninBlancGrape" />

5 <owl:Thing rdf:about="#PinotBlancGrape" />

6 <owl:Thing rdf:about="#SauvignonBlancGrape" />

7 </owl:oneOf>

8 </owl:Class>

9 </owl:allValuesFrom>

Figure 4.8: AllValuesFrom example

owl:AllDifferent

The owl:AllDifferent constructor indicates that all the individuals it
lists are different from each other and, as stated in Section 4.2.1 (see page 33),
is represented as several differentFrom statements. This is done to simplify

36

the representation and computation by having only one representation for the
same type of information.

For each individual present in the owl:AllDifferent list, are generated
owl:differentFrom facts relating it to every other individual that comes
after it in the list. Since the constructor owl:differentFrom is symmetric,
this will relate all the individuals between them without generating redun-
dant information. For instance, the element in Figure 4.9 will generate the
facts represented in Figure 4.10 in the unit individuals.

1 <owl:AllDifferent>

2 <owl:distinctMembers rdf:parseType="Collection">

3 <vin:WineColor rdf:about="#Red" />

4 <vin:WineColor rdf:about="#White" />

5 <vin:WineColor rdf:about="#Rose" />

6 </owl:distinctMembers>

7 </owl:AllDifferent>

Figure 4.9: AllDifferent example

1 differentFrom(’Red’, ’White’).

2 differentFrom(’Red’, ’Rose’).

3 differentFrom(’White’, ’Rose’).

Figure 4.10: AllDifferent representation

Document Checker Conformance

The W3C defines [CR04] what actions a OWL document checker should
do. As a syntax checker, it should receive a document as input and identify
it as belonging to a specific OWL specie (Lite, DL or Full) or Other if it does
not correspond to any of the species.

XPTO performs some consistency checks that are described next:

• A check that is done is to validate the types of properties: in OWL
DL a property cannot be subproperty of another that is not of the
same type e.g., a DatatypeProperty cannot be subproperty of an

37

ObjectProperty and vice-versa. This consistency is achieved by using
type inference.

• Another test that is performed is to ensure that only constructors al-
lowed by the selected OWL variant are used, for example, it is not
possible to use owl:hasValue in OWL Lite.

Namespaces and Annotations

Annotations are textual notes that can be defined and used within OWL
documents. There are five annotation properties predefined by OWL:

• owl:versionInfo

• rdfs:label

• rdfs:comment

• rdfs:seeAlso

• rdfs:isDefinedBy

OWL DL allows annotations on classes, properties, individuals and ontol-
ogy headers, but only under certain conditions described in [DSB+04]. Anno-
tations are currently being discarded by XPTO. One possible representation
for the annotations would have been to define a predicate annotation/1 in
the unit of the element that the annotation corresponds to.

Within the ontology headers are the namespaces. They provide a method
of unambiguously interpreting identifiers and making the rest of the ontology
presentation more readable. The namespaces of the ontology are being stored
by XPTO in the ontology unit as described in Section 4.2.1, however the
namespaces are currently not being returned along with the solutions to a
query, i.e., the solutions are not URIs and are identified only by the name or
value of the element.

4.2.3 Unit generation and loading

After parsing the ontology and performing semantic analysis to achieve an
annotated representation of the ontology, the information required to build
the formal representation of the ontology is entirely available. The process
of loading the representation of the ontology can be disassembled into three
distinct steps:

38

Unit generation: The first step is to generate all the unit files. For each
symbol in the dictionary, a unit with the same name as the symbol is
generated.

Compilation: In order to be loaded into the running program, each unit
must be compiled using the GNU Prolog/CX compiler. This means
the system, after parsing an ontology and generating the units, must
compile every Prolog file that contains a generated unit.

Loading: After all the units have been compiled they are ready to be loaded
into the program. This is done using the dynamic loading of GNU Pro-
log/CX. Loading each compiled unit makes the ontology representation
fully integrated with the running program.

4.3 Querying an ontology

At the end of the representation process the ontology is available to be
queried using the regular GNU Prolog/CX environment. The way to query
the ontology is to build a context using the units that represent the properties
and calling the goal item/0 to activate the query resolution. The query
must be prefixed with the ’/>’ operator and optionally a class unit. Other
units, described in 4.3.1, can be placed in the context to add further query
capabilities or be used as a filter for the results.

For convenience purposes there is also available the goal item/1. This
goal will instantiate its argument, by backtracking, with the names of the
individuals that match the query. This is explained further in Section 4.3.1.

By placing a class unit before the operator ’/>’ it is possible to access
only the individuals of that class, or all the individuals of the ontology if the
operator is used alone. Querying property values can be achieved by adding
to the context the unit that represents the property (Figure 4.11) or by the
inclusion of the unit property/2 to access a value without knowing the name
of the property (as shown in Figure 4.12).

The responsibility of setting up a complete query context lies with the
’/>’ operator, it places the individuals/0 and access/0 units in the con-
text. For example, for the query present in Figure 4.11, the complete context
is shown in Figure 4.13. The individuals/0 unit is the unit that contains the
individuals and property values. The unit access/0 (partially represented
in Figure 4.14) is responsible for accessing the individuals of the ontology,
or of a specific ontology class, and instantiating the argument of the item/1

goal with the individual name. This is the individual that will be used by
the other units in the context.

39

1 | ?- ’IceWine’ /> locatedIn(L) :> hasFlavor(F) :> item(I).
2

3 F = ’Moderate’
4 I = ’SelaksIceWine’
5 L = ’NewZealandRegion’ ?

Figure 4.11: ontology query (direct access)

1 | ?- ’IceWine’ /> property(locatedIn,L) :>
2 property(F,’Moderate’) :> item(I).
3 F = hasFlavor
4 I = ’SelaksIceWine’
5 L = ’NewZealandRegion’ ?

Figure 4.12: ontology query (property/2 example)

There is also the possibility of defining custom predicates that use this
operator in order to be used by a Prolog programmer (this is presented in
Section 4.3.2).

4.3.1 Units for refining ontology queries

There are also available some units that can be used in the query to
retrieve other values or perform some operations. They are described next:

individual/1 Including this unit in the context unifies the argument of the
unit with the individual name. Using this unit provides a explicit query
form, by querying the individual name and calling the goal item/0. It
is also possible to query the individual name by using the item/1 goal.

1 | ?- individuals :> access :>
2 ’IceWine’ :> locatedIn(L) :> hasFlavor(F) :>
3 item(I).

Figure 4.13: Example of a complete query context

40

1 :- unit(access).
2

3 item(A) :-
4 :# class_name(CL), % check if there is a class
5 individuals(CL, A). % in the context and get the elements
6

7 individuals(CL, I):-
8 individual_class(I, CL). % elements of the class
9 individuals(CL, I):-

10 [CL] :< superClassOf(C), % elements of the subclasses
11 individuals(C, I).

Figure 4.14: unit access/0 (partial)

1 | ?- /> individual(I) :> item.

2 I = ’WhitehallLanePrimavera’ ?

class/1 If this unit is included in the context it will unify its argument with
the class of the matching individual. This is useful to determine the
class of the individual when querying the entire ontology. This also
allows to restrict the results of the query to a specific class, i.e, not
including the individuals of the subclasses, as is the default behaviour
when including the class unit before the ’/>’ operator.

1 | ?- /> class(C) :> item(I).

2 C = ’DessertWine’

3 I = ’WhitehallLanePrimavera’ ?

property/2 This unit allows to access the properties of the individual with-
out prior knowledge of the property name or to query the property
name based on the property value. The first argument is the property
name and the second the property value.

1 | ?- ’IceWine’ /> individual(I) :> property(P,V) :> item.

2 I = ’SelaksIceWine’

3 P = locatedIn

4 V = ’NewZealandRegion’ ?

41

all/2 Including this unit in the execution context is analogous to using a
findall in Prolog. The first argument is the element structure and
the second will be the list of the elements in the specified form. This
allows to retrieve the set of solutions for the variables present in the
query.

1 | ?- ’Chardonnay’ /> individual(I):> all(I, L) :> item.

2 L = [’BancroftChardonnay’,

3 ’FormanChardonnay’,

4 ’MountEdenVineyardEdnaValleyChardonnay’,

5 ’MountadamChardonnay’,

6 ’PeterMccoyChardonnay’]

optional/1 This unit receives as argument another unit such as property/2
or a property unit and will succeed with the results if the specified
unit succeeds. Otherwise it will succeed leaving any variables in the
argument unbound. This is similar to the SPARQL optional state-
ment [PS06].

4.3.2 Native Prolog query representation

To make simple queries easier for Prolog programmers, custom predicates
can be created to encapsulate the contextual queries. The arguments to these
predicates must be defined explicitly after loading the ontology and follow
the conventions:

• The predicate functor is the name of the class

• The first argument is the name of the individual.

The arguments that are present in the predicate after the individual name are
specified when defining the predicates. This specification requires indicating
the class for which to generate the predicate (that will be the functor of
the predicate) and a list of properties that corresponds to the sequence of
arguments after the individual as shown for example in Figure 4.15. This
allows the user to choose which properties will be present in the generated
predicate. The generated Prolog representation is listed in Figure 4.16.

This approach is limited due to the fixed arity of the predicates. Individ-
uals may not have a value for some of the properties (an unbound variable
for that property will be returned in this case) and may contain properties
that are not present in the predicate.

42

1 pred(’IceWine’,[hasMaker,hasColor])

Figure 4.15: predicate definition example

1 ’IceWine’(A, B, C) :-
2 ’IceWine’ /> optional(hasMaker(B)) :>
3 optional(hasColor(C)) :>
4 item(A).

Figure 4.16: generated predicate

It does, however, conform to standard Prolog programming practice, by
allowing the use of positional arguments. It is also possible to define, for
each class, several predicates with different arities each containing different
properties to be queried.

4.4 Example Use Cases

In this section some use case examples for XPTO are presented. First,
XPTO queries are compared with SPARQL2 queries in terms of expressive-
ness. Then a possible scenario is presented, in which ontology data access
using XPTO is merged with database access using ISCO [AN06].

4.4.1 SPARQL Query examples

Next are shown some SPARQL query examples and the corresponding
query performed using XPTO query syntax. These examples queries are
taken from the SPARQL examples of [BBFS05].

Query 1

This query is meant to show the selection and extraction capabilities
of SPARQL and the intended meaning is stated to be: “Select all Essays
together with their authors (i.e. author items and corresponding names)”
(Figure 4.17). The corresponding query in XPTO is shown in Figure 4.18.

2The SPARQL language is described in Section 5.1.

43

In XPTO, the SELECT statement has no direct representation, it is im-
plicitly defined by the Prolog variables present in the query. As stated in
Section 4.2.2, the namespaces are currently being ignored.

1 PREFIX books: http://example.org/books#

2 PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

3 SELECT ?essay, ?author, ?authorName, ?translator

4 FROM http://example.org/books

5 WHERE (?essay books:author ?author),

6 (?author books:authorName ?authorName)

7 OPTIONAL (?essay books:translator ?translator)

Figure 4.17: SPARQL example: Query 1

1 | ?- /> author(AUTHOR) :> item(ESSAY),

2 /> authorName(AUTHORNAME) :> item(AUTHOR),

3 /> optional(translator(TRANSLATOR)) :> item(ESSAY).

Figure 4.18: Query 1 - XPTO syntax

Query 4

Query 4 (Figure 4.19) is: “Invert the relation author (from a book to an
author) into a relation authored (from an author to a book).”

This query intends to show the SPARQL ability to return RDF triples
using the CONSTRUCT statement. The developed system does not directly
address this, it allows only variable binding queries. In order to return the
desired structure it would have to be done explicitly, using additional Prolog
goals. The query that returns the data necessary is shown in Figure 4.20.
The use of the individual/1 unit has the same effect as using the item/1

goal.

Query 9

Query 9 is stated as: “Return the co-author relation between two persons
that stand in author relationships with the same book.” (Figure 4.21). The
query using XPTO query syntax is shown in Figure 4.22.

44

1 PREFIX books: http://example.org/books#

2 CONSTRUCT (?y books:authored ?x)

3 FROM http://example.org/books

4 WHERE (?x books:author ?y)

Figure 4.19: SPARQL example: Query 4

1 | ?- /> author(Y) :> individual(X) :> item,

2 I = authored(X,Y).

Figure 4.20: Query 4 - XPTO syntax

4.4.2 Database integration using ISCO

One important aspect of the Semantic Web vision is the aim for shar-
ing and open data access. Data can be provided from different sources and
formats. In this section is demonstrated, with an example about the Pe-
riodic Table3, how to write a Prolog program that can, using XPTO and
ISCO [AN06], query different data sources, namely ontologies and databases.

The Periodic Table

For example purposes, two sources of information about the periodic ta-
ble are used. One will be an ontology4 that describes the main components

3A periodic table to use as a reference can be found at http://www.webelements.com/
4The OWL representation of the Periodic Table that was used was written by Michael

Cook: http://www.daml.org/2003/01/periodictable/

1 PREFIX books: http://example.org/books#

2 CONSTRUCT (?x books:co-author ?y)

3 FROM http://example.org/books

4 WHERE (?book books:author ?x)

5 (?book books:author ?y)

6 AND (?x neq ?y)

Figure 4.21: SPARQL example: Query 9

45

1 | ?- /> author(X) :> item(BOOK),

2 /> author(Y) :> item(BOOK),

3 X \= Y,

4 I = coauthor(X,Y).

Figure 4.22: Query 9 - XPTO syntax

of the periodic table as ontology classes, e.g., Groups, Blocks, Elements,
etc, and the other a database with detailed information about each element.
Combining both, it is possible to access information about the detailed char-
acteristics of the elements that belong to a particular Group or Period.

Accessing the data

The definition of the Group class in the Periodic Table ontology, contains,
among others, the following properties: number, name and element. An
individual of this class: group 10, is shown in Figure 4.23.

1 <Group rdf:ID="group_10">

2 [...]

3 <number rdf:datatype="&xsd;integer">10</number>

4 <element rdf:resource="#Ni"/>

5 <element rdf:resource="#Pd"/>

6 <element rdf:resource="#Pt"/>

7 <element rdf:resource="#Uun"/>

Figure 4.23: Periodic table ontology example: group 10

Information about the periodic table elements is present in a database
that can be defined with ISCO [AN06]. Part of the table element definition
is illustrated in Figure 4.24.

Now, having both the referred ontology loaded into XPTO and the database
accessible via ISCO, it is possible to write Prolog programs to query both
data sets. Using the Group class defined by the ontology and the elements

table defined in the database, the following query can be formulated: what is
the classification and color of the elements belonging to the group group 10

(Figure 4.25).

46

1 mutable class element.
2 code: int. key.
3 name: text. unique
4 symbol: text. unique
5 group int.
6 color text.
7 classification int.
8 [...]

Figure 4.24: Database table example: element

1 | ?- % access ontology

2 ’Group’ /> element(ELEMT) :>

3 number(_NUM) :> item(group_10),

4

5 % access DB using ISCO

6 element@(group=_NUM, name=ELEMT,

7 classification=CLASSF, color=COLOR).

8

9 CLASSF = ’Metallic’

10 COLOR = ’lustrous, metallic, silvery tinge’

11 ELEMT = ’nickel’

Figure 4.25: Query example (ontologies and ISCO)

Variables ELEMT and NUM will bind both data sources and, by backtrack,
CLASSF, ELEMT and COLOR will return all the solutions available.

4.5 Benchmarks

This section presents the performed benchmarks. These include the XML
parser, the representation of the ontology and finally, the XPTO representa-
tion times are further explained.

47

4.5.1 XML Parsers

Next are presented benchmark results of the parsers tested and the rea-
sons for choosing the XML Expat library are stated.

The files listed in the tables shown are a subset of the files used in the
benchmark process. It is an illustrative subset covering several different file
sizes, ranging from 400KB to 99MB.

Test Conditions The parsers are tested in a dedicated workstation: a
Intel Pentium 4 with hyperthread running at 3.2Ghz with 1GB of RAM.

Parse times are measured using the time(1) Linux command collecting
the elapsed time, system time and user time of 100 runs of the parser.
The final average is obtained by removing the 5 worst and best times and
calculating the average of the remaining times. As reported by time(1)

the system time represents the number of seconds used by the system in
operations for the process, the user time is the number of seconds used
directly by the process and elapsed time corresponds to the real time (total
amount of time) used by the process. In order to time only the parse process
(not taking into account process allocation times, etc) the average time it
takes for each parser to read an empty file is deducted from the parse time
of each file.

Libxml2, Libexpat1 and Prolog overhead

The Expat XML parser and Libxml2 are two of the available XML parsers
written in the C language. The Expat parser is used by the Mozillabrowser
and Libxml2 by the Gnome Project [Vei06]. Both parsers were tested in
equal environments and in two different situations: as standalone parsers
and integrated with Prolog in order to time the overhead of this integration.
Table 4.1 and Figure 4.26 show the results obtained. The times labeled as
pl-expat and pl-libxml2 are those of each parser integrated with Prolog,
respectively Expat and Libxml2.

As Table 4.1 illustrates, in both tested cases the Expat library presents
better times that Libxml2.

The times presented in Table 4.1 for pl-expat are different from those in
Table 4.2 for pl-expat-v2: the parser pl-expat does not return anything to
Prolog (it behaves as expat with the difference that it is called from a Prolog
process) but the pl-expat-v2 parser builds the structures and terms that
represent the XML file and returns the term to Prolog. The pl-expat parser
was tested to time the Prolog overhead whereas the pl-expat-v2 parser is
the parser used in XPTO.

48

Table 4.1: Libxml2 and Libexpat comparison (seconds)
File (Size) Expat pl-expat libxml2 pl-libxml2
file02 (3,5 MB) 0.04 0.06 0.07 0.08
file03 (1.2 MB) 0.03 0.04 0.07 0.07
file10 (5.5 MB) 0.14 0.16 0.25 0.3
file13 (1.6 MB) 0.04 0.05 0.06 0.07
file17 (24.8 MB) 0.69 0.79 2.02 2.04
file19 (2.6 MB) 0.05 0.06 0.1 0.1
file21 (2.3 MB) 0.05 0.06 0.09 0.1
file22 (14.4 MB) 0.37 0.45 0.8 0.8
file25 (21 MB) 0.55 0.63 0.97 0.97
file27 (32.9 MB) 0.62 0.75 1.61 1.84
file33 (98 MB) 2.68 3.1 4.82 4.83
file34 (4.5 MB) 0.12 0.15 0.25 0.25

As the results presented in Table 4.1 and Figure 4.26 show, the impact
of integrating Prolog with Libxml2 is virtually irrelevant. For Libexpat, on
file 33 (98 MB) there is a 15% overhead. On the smaller files, although the
overhead percentage remains the same, the impact is also not relevant due
to small times measured (under one second).

Comparison with other parsers

The implemented parser module was benchmarked against other existing
XML parsers. The tested are presented next:

PiLLoW (in GNU-Prolog): Pillow [GH01] is a web programming library
developed at UPM - Technical University of Madrid that provides
World Wide Web connectivity for Logic Programming and Constraint
Logic Programing systems. It contains a module that implements pred-
icates which generate and parse HTML/XML documents.

SWI-Prolog: This is a parser implemented in SWI-Prolog [Wie03], which
parses a XML file into a Prolog term. It uses the SWI-Prolog SGML/XML
parser, which means it allows for processing partial documents and pro-
cess the DTD (Document Type Definition) separately.

W4: A non-validating parser written in XSB Prolog by Carlos Damásio [Dam07]
that produces a Prolog representation of the XML document. It has
support for XML Namespaces, XML Base and complying to the rec-
ommendations of XML Info Sets.

49

Figure 4.26: Expat Library vs Libxml2

Jena: Jena [Jen06] is a semantic Web framework for Java. Among other
tools, it has a RDF/XML parser called APR which can be used inte-
grated with Jena or as a standalone parser. Within the framework, two
packages were used: one provides a set of abstractions and convenience
classes for accessing and manipulating ontologies represented in RDF,
and another for creating and manipulating RDF graphs.

Ciao Prolog: Ciao [GH99] is a public domain multi-paradigm programming
environment, it is a complete Prolog system that allows both restricting
and extending the language. Ciao also supports programming with
functions, constraints and objects and enables the use of persistence
and concurrency. It has a module that implements the predicates of
the PiLLoW package related to HTML/ XML generation and parsing.

OCaml: Objective Caml [Rém00] is one of the most popular variant of
the ML language. It extends the core Caml language with an object-
oriented layer and a module system. To parse XML documents, the
PXP [Sto07] OCaml library: Polymorphic XML Parser was used.

Performing benchmarks with these parsers enables the comparison of the
XPTO parser not only with similar Prolog driven parsers but also with

50

parsers written in different programming languages and following different
paradigms.

Table 4.2 shows all the parse times measured for each of the files and
parsers tested. The parser pl-expat-v2 is the parser used in XPTO.

Table 4.2: Benchmark results (seconds)
File (Size) Ciao pl-expat-v2 jena ocaml-pxp swi w4 pillow
file02 (3,5 MB) 3.7 0.19 2.08 1.4 0.33 9.96 2.94
file03 (1.2 MB) 0.91 0.89 1.51 – 0.19 3.55 1.15
file10 (5.5 MB) – 17.3 3.48 6.76 0.82 16.74 –
file13 (1.6 MB) 1.24 0.84 2.37 1.66 0.2 3.25 1.62
file17 (24.8 MB) – – – – 4.29 84.25 –
file19 (2.6 MB) 1.99 2.65 1.51 2.82 0.36 7.81 2.29
file21 (2.3 MB) 1.67 2.2 1.58 1.66 0.3 6.63 2.05
file22 (14.4 MB) – – 23.03 – 2.26 45.34 –
file25 (21 MB) – – 10.89 25.2 3.39 63.86 –
file27 (32.9 MB) – – – 39.03 4.75 64.97 –
file33 (98 MB) – – – 127.37 17 – –
file34 (4.5 MB) – 73.22 3.86 – 0.79 13.43 4.46

The results shown in Table 4.2 are from different parsers, not only in terms
of programming language but also in terms of features of the parser. The w4
parser performs some validations (in terms of encodings) and represents the
whole information in the file. The ocaml-pxp is not able to parse some files
due to not recognizing statements encountered.

Overall, the swi parser revels the best results, both in terms of parse
times and number of files parsed. The pl-expat-v2 parser used in XPTO,
as expected cannot handle the larger files, however it presents good results
for smaller files (up to 6MB).

Speedups

The speedups were also calculated, based on the presented results. The
purpose is to compare the results using an entity as base and thus relating
the others to the chosen one. This enables a better understanding of the
results as they are directly compared with a common reference.

Table 4.3 shows the obtained results for the speedup calculations. As the
base results were chosen the times measured by Jena since it is one of the
most often used and wide spread parsers. So, every speedup is calculated by
dividing the Jena time by the parser time.

51

Table 4.3: Speedups results. Jena used as reference.
File (Size) Ciao pl-expat-v2 ocaml swi w4 pillow
file02 (3,5 MB) 0.56 10.85 1.49 6.22 0.21 0.71
file03 (1.2 MB) 1.66 1.69 – 7.91 0.43 1.31
file10 (5.5 MB) – 0.2 0.51 4.22 0.21 –
file13 (1.6 MB) 1.92 2.83 1.43 11.64 0.73 1.47
file19 (2.6 MB) 0.76 0.57 0.53 4.17 0.19 0.66
file21 (2.3 MB) 0.95 0.72 0.95 5.32 0.24 0.77
file22 (14.4 MB) – – – 10.2 0.51 –
file25 (21 MB) – – 0.43 3.21 0.17 –
file34 (4.5 MB) – 0.05 – 4.91 0.29 0.87

Table 4.4: Speedups results (percentage). Jena used as reference.
File (Size) Ciao pl-expat-v2 ocaml swi w4 pillow
file02 (3,5 MB) -44% 985% 49% 522% -79% -29%
file03 (1.2 MB) 66% 69% – 691% -57% 31%
file10 (5.5 MB) – -80% -49% 322% -79% –
file13 (1.6 MB) 92% 183% 43% 1064% -27% 47%
file19 (2.6 MB) -24% -43% -47% 317% -81% -34%
file21 (2.3 MB) -5% -28% -5% 432% -76% -23%
file22 (14.4 MB) – – – 920% -49% –
file25 (21 MB) – – -57% 221% -83% –
file34 (4.5 MB) – -95% – 391% -71% -13%

Figure 4.27 graphically illustrates the results obtained by the speedup

calculations. Analyzing the values it is possible to conclude that the parser
chosen as reference (Jena) is not the one that presents the best results. The
best values are from the SWI Prolog parser.

For a better understanding of the results, Table 4.4 shows these repre-
sented as percentages. From the calculations it is possible to see that the
pl-expat-v2 parser performs better (in relation to Jena) for 3 files, worse
times for 4 files and that it can not parse two files that Jena can. The largest
difference is in file02, where the pl-expat-v2 parser presents a measured
time 985% better than Jena. For the other results it is also possible to con-
clude that the times measured by the SWI Prolog are always better than
Jena.

52

Figure 4.27: Speedup graph

4.5.2 Ontology representation

Next the benchmarks of the complete representation of the ontology are
presented. For XPTO this includes the parse, semantic analysis, generation,
compilation and loading of the units.

In addition to XPTO, in the tests were included other systems that pro-
vide similar capabilities: Thea and Pellet. These systems are further de-
scribed in Section 1.3. Pellet implements a species verification when parsing
the ontology, the times were measured with this feature disabled. Thea rep-
resents the ontology as predicates stored in the Prolog Knowledge Base. The
representation of the ontology adopted in XPTO is described in Section 4.2.1.

Table 4.5 contains the times measured for all the systems, these times
were measured using the same method as described in Section 4.5.1. The
times of the XPTO system are further detailed in Section 4.5.3.

The values present in the performance gain table (Table 4.6) allow to
compare the systems in terms of time of ontology representation. We can
state that Pellet is the fastest of the benchmarked systems and that the
XPTO is, on average, 97.5% times slower than the Pellet system. The XPTO
system is further timed in Section 4.5.3 where explanations for the slowdown
are given.

53

Table 4.5: Time (in seconds) of representing the ontologies
File (Size) Thea XPTO Pellet
file35 (2.3 MB) 21.22 206.33 4.39
file36 (1.2 MB) 6.96 98.78 2.61
file37 (2.2 MB) 105.15 204.91 5.57
file38 (1.2 MB) 4.66 96.4 2.5

Table 4.6: Performance gain of representing the ontologies
File (Size) Thea XPTO Pellet
file35 (2.3 MB) -79.33% -97.87% 0.00%
file36 (1.2 MB) -62.45% -97.35% 0.00%
file37 (2.2 MB) -94.71% -97.28% 0.00%
file38 (1.2 MB) -46.29% -97.41% 0.00%

4.5.3 XPTO time analysis

In this section is analyzed the time it takes for XPTO to parse each file.
These times are measured using the statistics/2 predicate of GNU Prolog,
using the real time statistics key.5

The times are presented in Table 4.7 and the parts of the system that
were measured are:

parse: This represents the time it takes for the ontology file to be parsed
using Expat (as explained in Section 4.1, page 28).

build: Is the time to build the dictionary.

print: Corresponds to the time used in generating the ontology representa-
tion files.

compile: Is the time it takes to compile all the generated files.

load: Is the time of dynamically loading the ontology into the running in-
stance of the program.

As presented in the average times of each step on Table 4.7, it is possible
to realize that most of the time used to integrate the ontology into the system
is spent in external processes: compiling and loading the ontology takes over
90% of the process time.

5Further information about this predicate can be found in the GNU Prolog manual
available at http://www.gprolog.org/manual/gprolog.html#htoc232

54

Table 4.7: Average time of each part of the representation time
File (Size) parse build print compile load
file35 (2.3 MB) 0.01 0.03 0.02 0.79 0.15
file36 (1.2 MB) 0 0.04 0.02 0.86 0.07
file37 (2.2 MB) 0.01 0.04 0.01 0.8 0.14
file38 (1.2 MB) 0.01 0.03 0 0.89 0.07
Average 0.75% 3.50% 1.25% 83.50% 10.75%

This indicates that the compilation process should be done separately
and build an executable with the representation of the ontology that can, at
a later time, be loaded and queried.

4.6 Conclusion

This chapter presented the prototype system for representing and query-
ing ontologies that was developed. The representation used for the ontology
was described and also shown were the possibilities of querying the represen-
tation and some use cases of the implemented system.

Although the capabilities of the XPTO system are enough for a prototype
status, some improvements must be performed to allow a more wide spread
use:

• improve the parser to handle larger ontologies.

• enable loading several ontologies at the same time.

• improving the support for the semantics of the OWL language.

55

Chapter 5

SPARQL Query Engine

This chapter describes the Front End (FE) of the system described in
Chapter 4. The FE is the component of the application dedicated to SPARQL
query resolution: it allows for the possibility of querying the internal repre-
sentation of the ontology (described in Section 4.2.1) using the SPARQL
query language. A schema of the structure of the FE is presented in Fig-
ure 5.1.

The FE is split into 3 parts: the parser, the query resolution and the
returning of the results as XML.

The SPARQL query is parsed using Flex [Pax07] and Bison [ED07] to
produce a GNU Prolog/CX context representing the query that is then ac-
tivated to calculate the output and display the resulting XML. The imple-
mented SPARQL parser follows the specifications of the language defined
in [PS06] and the results are returned in XML as specified in [BB06].

The query examples in this section are presented in the SPARQL speci-
fications [PS06] or are examples that query the Wine ontology [W3C06].

This chapter briefly describes the SPARQL query language in Section 5.1,
the representation and resolution of queries (Sections 5.2 and 5.3 respectively)
and the XML output of the system (Section 5.4). Section 5.5 shows some
examples where the developed system can be used.

5.1 Querying in SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a Candidate
Recommendation for a RDF query language [PS06] and is under continued
development towards becoming the standard query language for the Semantic
Web [FLB+06].

56

Figure 5.1: SPARQL query engine architecture

SPARQL has no inference engine inherent to the language, it merely
specifies a syntax for the query and a means for returning the intended in-
formation.

At the time of the development of the system the current SPARQL specifi-
cations were: SPARQL Query Language for RDF - W3C Candidate Recom-
mendation 6 April 2006 [PS06] and SPARQL Query Results XML Format -
W3C Candidate Recommendation 6 April 2006 [BB06].

5.1.1 SPARQL query elements

The structure of a SPARQL query is illustrated in Table 5.1 (this rep-
resentation is adapted from the one available in [Bec07]). For a more in
depth explanation there are available the following documents: “SPARQL
Query Language for RDF” [PS06], “SPARQL Protocol for RDF” [Cla06]
and “SPARQL Query Results XML Format” [BB06].

Next are introduced some of the elements of SPARQL.

57

Table 5.1: SPARQL Query Language Structure (adapted)
Prologue BASE <iri>
(optional) PREFIX prefix: <iri> (repeatable)
Query Result forms SELECT (DISTINCT) {?variable, *}
(required, choose 1) DESCRIBE {?variable, <iri>, *}

CONSTRUCT graph pattern
ASK

Query Dataset Sources FROM <iri> (repeatable)
(optional)
Add a named graph: FROM NAMED <iri>

(repeatable)
Graph Pattern WHERE graph pattern [FILTER expression]
(optional, required for ASK)
Query Results Ordering ORDER BY ...
(optional)
Query Results Selection LIMIT n, OFFSET m
(optional)

RDF datasets

A SPARQL query can indicate the dataset that is to be used to perform
the query matching. This is done using the FROM clause that specifies the IRI
of the desired dataset. There is also available the FROM NAMED clause that
can be used to add named graphs. These graphs can later be specifically
queried using the GRAPH keyword.

Variables

Variables in SPARQL are identified by the prefix ’?’ or ’$’ and can be
present in any part of the graph pattern. Query variables have global scope;
use of a given variable name anywhere in a query identifies the same variable.
The prefix is not part of the variable name and represents the same variable
with either prefix: in a SPARQL query, $abc and ?abc are the same variable.

Blank Nodes

A blank node is a node in an RDF graph that is not a URI reference
or a literal, it corresponds to a unique node. A blank node can be present
in the subject or object positions in an RDF triple and can be indicated
using the label form: :a, or by using []. When written in the form :a,

58

they represent a blank node with label a. Blank nodes that are used only
once can be represented as [], this will create a unique blank node and use
it in the triple pattern. A more in depth analysis of blank nodes and their
semantics can be found in [Par06].

The [:p :v] construct can also be used in triple patterns, this will create
a blank node label which is used as the subject of all the contained pairs.

Namespaces

Namespaces can be used to abbreviate IRIs using two different types:
BASE and PREFIX. The same IRI can be represented using any of the following
forms (shown in [PS06]):

IRI: IRIs are delimited by the atoms ’<’ and ’>’, for instance:

<http://example.org/book/book1>

Relative IRI: The BASE keyword defines the IRI that is used to resolve
relative IRIs:

BASE <http://example.org/book/>

<book1>

Prefixed Name: A prefixed name consists of two parts, the label and a
local part, separated by a colon ’:’. The final IRI is obtained by the
concatenation of the IRI associated with the prefix and the local part.

PREFIX book: <http://example.org/book/>

book:book1

Basic Graph Pattern

A basic graph pattern is the core of the SPARQL language: it is respon-
sible for connecting the query with the queried data. This way, basic graph
patterns are represented using the triple form of RDF [KC04]: subject,
predicate and object, with the possibility of any of them being a variable.

59

Group Graph Pattern

Group graph patterns are complex graph patterns that can be created by
using simpler graph patterns such as basic graph patterns. A solution for
a group graph pattern is any solution that is also a solution for each of the
elements of the group graph pattern.

Using value constraints, optional graph patterns or alternative graph pat-
terns are other ways of creating group graph patterns:

Optional The OPTIONAL statement indicates that the next triple pattern
may not be bound in the solutions. If there is a graph pattern that
matches the graph one or more pattern solutions will be generated,
otherwise no additional bindings will be performed.

Optional patterns can occur inside any group graph pattern, including
one that is itself an optional, thus forming a nested pattern. In this
case, the outer optional graph pattern must match before any of the
inner optional pattern can be matched.

Union The UNION operator provides the means of combining graph patterns.
It allows solutions that match only one of the specified graph pattern,
to be considered a solution of the group graph pattern.

Value Constraints The FILTER operator can be used to constrain the value
of a variable based on an arithmetic expression, string contents or other
operators and functions defined in [PS06].

5.1.2 Query forms and results

The result of a query is a sequence of solutions, with the variables instan-
tiated by matching against the data in the dataset. A solution can consist of
several bindings for the variables and the sequence in which they are shown
can be modified using the solution modifiers listed in Section 5.1.3. By de-
fault, query patterns generate unordered solutions sequences.

After sequence modifiers are applied to the bindings, the SPARQL results
format is determined based on the available query forms:

select: Returns the selected variables bound with the results.

construct: Returns an RDF graph with the structure indicated in the query
and the variables instantiated.

describe: Returns the information known about the resources as an RDF
graph.

60

ask: Returns a boolean indicating whether the specified query matches the
data.

SELECT query

There are two essential parts to a SPARQL select query: the SELECT

clause and the WHERE clause. They allow the formulation a simple query in
which the SELECT clause indicates the variables to be presented in the results
and the WHERE clause consists of a graph pattern representing the conditions
of the query. An example of such a query is shown in Figure 5.2.

1 SELECT ?title
2 WHERE
3 {
4 <http://example.org/book1>
5 <http://purl.org/dc/elements/1.1/title>
6 ?title .
7 }

Figure 5.2: SPARQL query example

5.1.3 Solution modifiers

The available solution modifiers are: order by, distinct, offset and
limit. They are explained next:

order by The order by statement enables to define an order for the (oth-
erwise unordered) solution sequence. This will order the results using
the expressions present in the statement. It is also possible to define
the direction by using the keywords asc for ascending order or desc

for descending. By default the direction is ascending.

If this statement is not present in the query the order of the results is
undefined and may even be different between equal queries.

Specifying the order of a sequence of solutions does not change the
number of solutions of a query.

distinct Using the distinct keyword in the query will ensure that each
solution in the sequence is unique, i.e., all the elements in the sequence
are different.

61

offset will cause the specified number of solutions to be discarded from the
beginning of the solution set. This enables ignoring part of the solutions
that may have already been returned in a previous query.

Using limit and offset to select different subsets of the query solu-
tions will not be useful unless the order is specified by using order by

statement.

limit Using the limit statement will indicate that the query shall return
at most the specified number of solutions. If the actual number of
solutions to the query is greater than the specified limit, all the extra
solutions are discarded.

5.1.4 Querying OWL ontologies using SPARQL

SPARQL is a query language for RDF and the semantics of using it to
query OWL ontologies are not completely defined. To overcome this situa-
tion, a proposal for a subset of the SPARQL language with defined semantics
for querying OWL DL is presented in [SP07]. Although not implemented in
the XPTO system, SPARQL should be used to query RDF datasets. A pos-
sible implementation of this feature would be to enable XPTO to access RDF
datasets as shown in Figure 5.1 (page 57).

The developed system is using SPARQL to query an ontology, allowing
access to properties and resulting in individuals and property values in the
same way as other available systems: Protégé [Knu07], Pellet [SPG+07] or
Jena [Jen06].

5.2 Representation of a SPARQL query

The query representation process consists of a SPARQL parser that con-
verts a query defined in the SPARQL syntax [PS06] into a GNU Prolog/CX
context. This context represents the entire query and can then used to re-
turn the results. The execution of the generated context, triggered by a
default message, that will bind the variables present in the query and show
the results.

5.2.1 Element representation

The representation of query elements, such as SPARQL variables and
resources, is presented next.

62

Variables

The SPARQL variables are represented as Prolog variables. Thus, once
the result is calculated, the query resolution system simply binds the corre-
sponding variable to return the results.

There are some other structures needed to display the results: it is neces-
sary to store the name of the variable in the SPARQL query in order to return
it in the results. To achieve this, all the variables in the SPARQL query are
stored in a list that will be the argument of the unit vars/1. The elements
of this list are in the format SparqlVariableName = PrologVariable.

SparqlVariableName corresponds to the name of the variable in the
SPARQL query and PrologVariable is the Prolog variable assigned to rep-
resent it. PrologVariable will start unbound and, as the context is resolved,
will be instantiated with the solutions it may have.

In the case of a select query, the SPARQL variables that are to be
shown in the results are stored as the argument of the unit select/1, using
the same representation as unit vars/1.

SPARQL variables appear in the generated context for the query using the
PrologVariable representation, enabling a simple access to the value of the
variable or direct instantiation of an unbound variable. This representation
can be seen in the GNU Prolog/CX context shown in Figure 5.4.

Resources

Resources are represented using Prolog terms or atoms. If the resource
is an absolute IRI (delimited by ’<’ and ’>’) it is represented as an atom
containing the entire IRI. For example the IRI

<http://example.org/book/book1>

is represented as

’http://example.org/book/book1’

If it corresponds to a prefixed name (a prefix label and a local part sep-
arated by a colon ’:’) it is represented as Prolog compound term of arity 2
with the functor ’:’. The arguments of the term are the prefix name and the
local part respectively. This representation is similar to the representation
ElementName presented in Section 4.1. If the prefix name is empty the atom
’’ will be used to represent it. The following prefixed IRI

PREFIX : <http://example.org/book/>

:book1

63

is represented as

’’:book1

This representation allows for the IRI to be resolved using the informa-
tion stored in the unit prefix which contains the prefixes specified in the
SPARQL query. This is further described in Section 5.3.1.

5.2.2 Query representation

A SPARQL query is represented as GNU Prolog/CX context whose struc-
ture is similar to the structure of the query. The elements of the query can
be clearly identified in the representation: select, where as well as the
Modifiers (if there are any present in the query).

1 SELECT

2 ?flavor ?color

3 WHERE {

4 ?t :hasFlavor ?flavor .

5 ?t :hasColor ?color .

6 }

Figure 5.3: Query example (simple select)

1 [where([set([

2 triple(A,hasFlavor,B),

3 triple(A,hasColor,C)])

4]),

5 select([flavor=B,color=C]),

6 vars([flavor=B,color=C,t=A])]

Figure 5.4: Generated context (partial) for the query in Figure 5.3

The example query presented in Figure 5.3 is a select query containing
two basic graph patterns with a shared variable: ?t and the context produced
by the parser in shown in Figure 5.4. The order in which units may appear in
the context is shown explained in Table 5.2. The units are further described
in Section 5.3.1.

64

Table 5.2: Query context structure
Unit/Arity Description
limit/1 Optional
offset/1 Optional
order/1 Optional
where/1 Query conditions
from/1 Indicates RDF datasets
select/1 or ask/0 Indicates the type of query
prefix/1 Prefixed Namespaces
base/1 Base Namespace
vars/1 Contains all the variables in the query

A context is represented by a Prolog list containing unit names. The first
element of the list will be the unit that first tries to evaluate the goal upon
execution. The individuals and property values are gathered from the units
in a higher position in the context. This way in the final positions of the
list are found the units select/1 (in the case of a select query) and vars/1.
These units contain in their arguments a list of variables and will allow any
unit in the context to access either all the variables in the context or the
selected variables.

Context examples

In addition to the partial context example presented in Figure 5.4, a
complete context is presented in Figure 5.6 (page 67) and further explained.

Each of the elements present in the SPARQL query is represented in the
generated context by one or more parametrized units. The already described
vars/1 and select/1 units hold the all the variables present in the query
and the variables that are to be returned, respectively.

Although not presented in Figure 5.3 the units from, prefix and base

are always present in the generated context (even if absent in the query). If
any of these keywords are not present in the query the corresponding unit will
contain an empty list (this can be noted in the complete context presented
in Figure 5.6).

A group of graph patterns, that appears in the SPARQL query enclosed
by ’{’ and ’}’ is represented as the unit set/1, where the argument of the
unit contains the representation (as units) of the enclosed graph patterns.

The unit that is the core of the query engine is triple/3. This unit
will represent a simple graph pattern and the arguments of the unit are
respectively the subject, property and object of the graph pattern. This

65

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 PREFIX dc: <http://purl.org/dc/elements/1.1/>

3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4 SELECT ?name

5 WHERE { ?x foaf:givenName ?givenName .

6 OPTIONAL { ?x dc:date ?date } .

7 FILTER (bound(?date)) }

Figure 5.5: Query example

unit will be responsible for accessing the dataset in order to bind the variables
that may appear in the arguments or test if the pattern has a solution.

Other presented units, such as the optional/1 and filter/1 units, are
described in Section 5.3.1.

5.2.3 SPARQL parser

The SPARQL parser was implemented using Flex [Pax07] and Bison [ED07].
Flex and Bison are widely used in compiler construction and can be easily
integrated with GNU Prolog through the use of foreign C declarations.
The SPARQL parser could be implemented completely in Prolog using, for
instance Definite Clause Grammars (DCGs). By using Flex and Bison, it was
possible to use previously defined functions, namely to achieve the element
representation described in Section 5.2.1.

In order to achieve the desired representation for the SPARQL query
(described in Section 5.2.2) it was necessary to use additional structures in
Bison (presented in Figure 5.7), mostly to represent the nested patterns. The
query is represented in the structure stack. This structure contains an array
of levels that will ultimately contain the whole query, the total size of the
array and the number of elements already occupied.

Each level also contains an array of PlTerm1 elements, in this case of the
elements (that will be represented as units) of the depth level of the SPARQL
query. It also contains the size (number of elements) and the index of the
next available element.

Typically a new level is created when entering a grouped graph pattern
(identified by the ’{’ character) and ended when leaving it (’}’). When
ending a level a Prolog list with all the terms of that level is created and

1PlTerm is the C representation for a Prolog Term

66

1 [where([set([

2 triple(A,foaf:givenName,B),

3 optional([set([

4 triple(A,dc:date,C)

5])]),

6 filter([bound(C)])

7])]),

8 from([]),

9 select([name=D]),

10 prefix([foaf=’http://xmlns.com/foaf/0.1/’,

11 dc=’http://purl.org/dc/elements/1.1/’,

12 xsd=’http://www.w3.org/2001/XMLSchema#’]),

13 base([]),

14 vars([name=D,x=A,givenName=B,date=C])]

Figure 5.6: Context generated for the query in Figure 5.5

stored as the next element of its parent level.
The generated parser was tested against a set of the most common SPARQL

queries and against SPARQL syntax examples present in [PS06]. Although
there are cases not being handled by the resolution system (further described
in Section 5.3) the parser itself is able to generate the correct context for the
query.

5.3 SPARQL resolution system

The SPARQL query language is based on matching graph patterns. A
basic graph pattern is the triple pattern, similar to an RDF triple, but with
the possibility of a variable begin present in the subject, predicate or object
positions.

“A pattern solution can then be defined as follows: to match
a basic graph pattern under simple entailment, it is possible to
proceed by finding a mapping from blank nodes and variables in
the basic graph pattern to terms in the graph being matched; a
pattern solution is then a mapping restricted to just the variables,
possibly with blank nodes renamed.” in [PS06].

67

1 struct level {

2 int size;

3 int pos;

4 PlTerm * array;

5 };

6

7 struct stack {

8 int size;

9 int pos;

10 struct level ** array;

11 };

Figure 5.7: Auxiliary Parser structures

All the units that are present in the context generated by the SPARQL
parser will answer to the goal item/0 (or item/1 in case of the unit returning
a solution). Each unit will then perform the operation it implements, based
on its arguments and on the result of the parent context. The query resolution
is triggered by evaluating the goal item/0 in the context returned by the
mapping process.

The following guidelines were followed when implementing the units:

• each unit defines the interface predicates item/0 and item/1. These
are the predicates that trigger the semantics of the unit.

• Units that change the result set retrieve all the results from the super
context (using the a predicate call similar to: :^ item(I)). These units
then operate over this set of results and return one by one the results
that are valid.

5.3.1 Unit description

In this section are presented some of the units that can be included in
the context that represents the SPARQL query and are detailed the most
important ones.

Query form These units indicate the type of query:

ask/0 Indicates the specified query is an ask query.

68

select/1 Indicates that the query is a select query. The unit argu-
ment contains a list of the variables that are to be returned in the
query results.

Solution Modifiers The following units allow to restrict the results or
change the result set:

distinct/0 Eliminates the repetitions in the result set.

filter/1 Selects the elements of the result set based on the restrictions
provided.

limit/1 Returns only the indicated number of elements in the results.

offset/1 Eliminates the specified number of solutions from the begin-
ning of the results set.

optional/1 This unit is used to indicate that individuals that do not
match the specified graph pattern are also to be included in the
results.

order/1 Orders the solution set according to the conditions provided.

union/1 This unit is the representation of the SPARQL UNION oper-
ator that allows to combine several graph patterns.

Other These are auxiliary units or the implementation of other SPARQL
operators:

prefix/1 The argument of this unit is instantiated with a list contain-
ing the namespaces present in the query.

set/1 This unit represents a group graph pattern in the query and
allows the presence of nested patterns.

triple/3 This is the unit that is responsible for binding the query
variables. There are also available the triple/4 and triple/5

units.

vars/1 Contains a list of all the variables present in the query.

where/1 Contains the representation of the graph patterns to be used
to select the individuals.

Next are detailed some of the most important units, each of these units
redefine the goals item/0 and item/1. The normal workflow of these pred-
icates is to retrieve the results from the “super-context” using the operator
“:^”, perform the intended operation on the results and return them one by
one using the Prolog backtrack mechanism.

69

triple/3

The core unit in the query resolution process is the triple/3 unit, which
is responsible for instantiating the variables in the query by accessing the
data.

This unit can be redefined in order to access data available from different
sources. The implementation of this unit to access the ontology representa-
tion described in Section 4.2.1 is shown in Figure 5.8. It generates one query
to the XPTO system for each property that appears in the SPARQL query.
The pattern in line 2 of Figure 5.4 (page 64) will generate the following query:

/> property(hasFlavor,F) :> item(I).

As explained in Section 4.3 (page 39) the argument of the item/1 goal will
be instantiated with the name of the individual. The arguments of the unit
property/2 are the name of the property being queried and the value of that
property for the returned individual. Using the property unit to query the
internal representation has the advantage of being able to perform the query
using a Prolog variable in the position of the property name, thus enabling
to return all the properties of the individual or querying the property name
based on the property value.

1 :- unit(triple(S, P, O)).

2

3 item :-

4 /> property(P,O) :> item(S).

Figure 5.8: Unit triple/3

There are also available the units triple/4 and triple/5 that are the
representation assigned to the ’,’ and ’;’ SPARQL notations. The ’;’

notation indicates that triple patterns have a common subject (it is only
necessary to write it once) and ’,’ indicates that the patterns share both
subject and predicate.2 These units simply call the triple/3 unit with the
correct arguments.

These representations could be handled in the parser (generating two
different triple/3 units). The approach that was followed makes the rep-
resentation more complex (introducing two new units) but enables for im-
provements to be done by redefining these units to perform different types
of operations.

2Further information is available in http://www.w3.org/TR/rdf-sparql-query/#predObjLists

70

offset/1 and limit/1

These units change the number of results returned by the query. Both
of the units contain an argument that must be an integer. The offset/1

unit will discard the given number of solutions from the beginning of the
solution set and the limit/1 will cause the solution set to contain at most
that number of solutions.

1 SELECT ?name

2 WHERE { ?x foaf:name ?name }

3 ORDER BY ?name

4 LIMIT 5

5 OFFSET 10

Figure 5.9: limit and offset query example

optional/1

The optional keyword in SPARQL defines that a graph pattern does
not cause the query to fail if it has no bindings. The corresponding unit,
optional/1, receives as input the representation of the graph pattern of the
SPARQL query and resolves the context (by sending it the item/1 goal). If
the goal succeeds the variables present in the context are bound to its values
and these values will be shown in the query results. On the other hand, if
the item/1 goal fails, the goal in the optional/1 unit will succeed without
instantiating any of the variables. Since unbound variables are not returned
in the results these variables will not be shown in the XML output.

This unit also checks, in accordance to the optional keyword definition,
if there is not a more specific solution to the query i.e., a solution with
less unbound variables. Any given solution is only considered to be a valid
solution if there is no other solution, with the same values for the instantiated
variables, that contains less unbound variables. In order to perform this
check, the unit, after retrieving all the solutions from the representation of
the group graph pattern in its argument, removes the solutions that are not
valid.

distinct/0

This unit, after gathering all the results from the context, removes the
duplicates by checking if an element is present in the rest of the list of results.

71

The comparison predicate compares the values without instantiating any
Prolog variables that may still be present in the results set. The item/1 goal
then instantiates its argument traversing the list using the member/2 Prolog
predicate.

filter/1

The filter keyword restricts the results of the query according to the ex-
pressions provided. It can be used to select the results of the query based the
values of the variables, only returning those that correspond to a successful
evaluation of the expression.

Currently this is implemented in the same way as the previously described
units: collecting all the solutions and then selecting the valid results. A sim-
ple improvement that can be done is to restrict the results before retrieving
them with the use of constraints.

Also, at this point, it is only possible to use numerical expressions to
filter the results: the SPARQL builtin functions STR, LANG, LANGMATCHES,
DATATYPE, BOUND, sameTerm, isIRI, isURI, isBLANK, isLITERAL and REGEX

as well as function calls are not supported.

5.3.2 Unimplemented features

Besides the partially implemented filter operator, some SPARQL fea-
tures are not currently implemented; these are now described:

from The from clause has no effect since the query resolution is done over
a previously loaded ontology. This implies that it is not possible to
specify an external ontology and run the query over that ontology.

namespaces As is done in the XPTO system, namespaces are currently
being ignored in the SPARQL front end. All matching is done against
the internal representation of the ontology that is considered the BASE

ontology.

describe The describe statement is indicated as returning a unconstrained
information about the node and is currently marked as “Feature at
Risk” as stated in [PS06]:

“The DESCRIBE feature of SPARQL is an intentionally
unconstrained query feature. On the one hand, it has been
the subject of a number of critical comments (. . .); on the

72

other hand, it is required by a number of interesting semi-
structured query use cases (. . .) the feature has been marked
non-normative and at-risk (. . .)”

construct The construct statement returns an RDF graph with the struc-
ture specified in the query. It is possible to implement this feature by
defining the output unit that shows the correctly formatted output (the
other units should be used without any change).

5.4 Returning Query Results

As explained in the previous sections the structure of the XML output
of the SPARQL query is decided by the inclusion in the context of the units
select/1 or ask/0. These unis are responsible for retrieving the query bind-
ings from the context and building the XML that corresponds to the type of
query.

As presented in [BB06], the XML format of the SPARQL query results
is a XML document with a sparql element. This element always contains
an element head as the first sub-element. The elements after this one are
specific to the form of query.

The XML is generated using the PiLLoW library (described in Sec-
tion 3.4, page 25).

5.4.1 Select query

For a select query, the element after the head element, is the results

element. In the select query the head element contains a list of all the vari-
able names present in the SPARQL query ordered in the order they appear
in the query.

The second element (results) is a list of result elements, each con-
taining bindings for a variable present in the query. The results element
has two boolean attributes: ordered and distinct, that are always specified.
They indicate, respectively, if the list of results is ordered and if the elements
are all different. The value of these attributes is defined by the presence or
absence of the modifiers distinct and order by in the SPARQL query. The
resulting XML of the query in Figure 5.3 (page 64) is shown in Figure 5.10.

5.4.2 Ask query

For an ask query (that only returns a boolean), after the head element,
there is a single element with the name boolean that indicates if the specified

73

1 <?xml version="1.0"?>

2 <sparql>

3 <head>

4 <variable name="flavor"></variable>

5 <variable name="color"></variable>

6 </head>

7 <results ordered="false" distinct="false">

8 <result>

9 <binding name="flavour">Medium</binding>

10 <binding name="color">White</binding>

11 </result>

12 </results>

13 </sparql>

Figure 5.10: XML output of the query example in Figure 5.3

query is true or false (as can be seen in Figure 5.11).

1 <?xml version="1.0"?>

2 <sparql>

3 <head></head>

4 <boolean>true</boolean>

5 </sparql>

Figure 5.11: XML output for an ASK query

5.5 Examples

Here are presented two examples of use for the developed system (XPTO
and SPARQL front-end). One example uses only the developed SPARQL
parser and resolution system to enable querying relational databases in SPARQL.
The other consists of a implementation of a SPARQL Web Service allowing
the system to be queried over the Web.

74

5.5.1 Using SPARQL to query a relational database

By using the ISCO [AN06] framework it is possible to enable using SPARQL
to query a relational database. In this example, the database that was used
contains data relative to an Academic Services application: Universidade de
Evora’s Integrated Information System (SIIUE) [GQA03]. An example of
a SPARQL query that can be performed is shown in Figure 5.13 and the
queried relation is represented, using the ISCO syntax, in Figure 5.12.

In order to be able to query fields with the same name from different
relations, it is necessary to define that each field name is prefixed by the
name of the relation and an ’ ’ forming: RelationName FieldName. This
way, the :student number query in line 2 of Figure 5.13 represents the field
number of table student. The name of the individual, that will be mapped
to each tuple in the relation, is the Postgresql internal OID3 of the tuple.

The query presented in Figure 5.13 selects the students (represented by
the OID of the tuple), the number and institution of the student, for the
students whose number is between 300 and 500. The context that is generated
by the SPARQL parser is shown in Figure 5.14 and the SQL queries generated
by the ISCO framework to access the database is shown in Figure 5.15.

1 mutable class student.

2 id: individual.id. unique.

3 number: int. unique.

4 institution: institution.id.

Figure 5.12: ISCO definition of the relation student

This feature is implemented as an example and there are several improve-
ments to be made in order to make it efficient. Some are, for instance:

• allow to query more than one relation field. As the query is being
translated to the ISCO language it is performing one query to the
database for each property present in the SPARQL query. This could
be improved by detecting patterns in the query and rewriting it to
minimize the number of queries to the database.

3The OID is a unique number across the entire installation automatically
assigned to a row and that identifies it. PostgreSQL uses OIDs to link
its internal system tables together. Further information can be found in
http://www.postgresql.org/docs/8.2/static/datatype-oid.html

75

1 SELECT ?number ?inst WHERE {

2 ?student :student_number ?number .

3 ?student :student_institution ?inst .

4 FILTER (?c > 300 && ?c < 500)

5 }

Figure 5.13: using SPARQL to query a relational database

1 [where([set([

2 triple(A,’’:student_number,B),

3 triple(A,’’:student_institution,C),

4 filter([and(bigger(D,300),smaller(D,500))])

5])]),

6 from([]),

7 select([number=B,inst=C]),

8 prefix([]),

9 base([]),

10 vars([number=B,inst=C,student=A,c=D])]

Figure 5.14: Generated context for the query in Figure 5.13

• enable filtering the elements before they are retrieved from the relation.
Currently all the elements are gathered from the relation being queried
and filtered later in the filter statement.

5.5.2 SPARQL Web service

As another example of the developed system is a Web interface that was
built in order to allow answering of SPARQL queries over the Web. This
consists of a simple user interface in which users can specify the queries and
retrieve the results. It is possible to use XML Transformation languages
like XSLT [Cla99] to change the presentation of the results in order to be
displayed in a user-friendly manner.

There is also available a version in which the query is specified as part
of the URL and the results are then returned to the browser or agent. This
form of input is mostly aimed for automatic use by a SPARQL agent.

The SPARQL web service example may work in two different ways:

76

1 select o.oid, ’student’ as instanceOf, o."number"

2 from "student" o;

3

4 select o.oid, ’student’ as instanceOf, o."institution"

5 from "student" o where o."oid"=19918;

Figure 5.15: SQL queries generated for the context in Figure 5.14

• the XPTO system has to load the ontology for each query that is per-
formed. This would allow, in each query, to specify the dataset to be
used to perform the matching.

• the dataset over which the query will be performed is already inte-
grated with the system but, in this case, there is only the possibility of
querying the available dataset.

The example implements the second method: the ontology is integrated
with the system and the SPARQL query will be performed over that ontology.
This is done because, as presented in Section 4.5.2, loading the ontology is a
slow process and it would cause the overall time (loading and querying the
ontology) to be unsustainable.

5.6 Conclusion

This chapter has described the approach taken to add to the XPTO sys-
tem the capabilities of being queried using the SPARQL query language.
Each query is mapped into a GNU Prolog/CX context and executing it ob-
tains the results of the query. These results are returned using the XML
structure defined by the SPARQL protocol.

77

Chapter 6

Conclusion

The main objective of this work was to introduce a framework for access-
ing web ontologies using Contextual Logic Programming (CxLP) that also
supports integration of information from other data sources.

The most important integration is with relational databases using the
ISCO framework, this enables the database to be queried either inside the
GNU Prolog/CX environment or by using the SPARQL query language.

The developed system, XPTO, is able to represent an ontology described
in OWL DL and enables querying the ontology based on the generated rep-
resentation. The representation consists of CxLP units and querying can be
performed by building a context that includes the units of the representation.

The loaded ontology is represented using several units: the unit named
ontologies is used to represent data about the ontology such as the prop-
erties and classes it contains. Another unit, the individuals unit, is used
to represent the individuals of the ontology, the individual relations and the
class memberships. There is also one unit for each class and property present
in the ontology. Each unit will contain information about the element it rep-
resents.

With this representation, querying can be performed by using a specific
operator that was introduced for this action: ’/>’. This operator can op-
tionally be preceded by the unit that represents a class in order to query
only the elements of that specific class. It can also be followed by the unit of
a property to query the value of the individual for that property, or several
other defined units to perform actions such as querying the property name
based on the property value or indicating optional parts of the query.

A front-end capable of answering queries expressed using SPARQL was
also developed, meant to act as a web service, it can access data available
in several repositories, such as relational databases or the representation of

78

the ontology. This front-end acts as a translator: mapping SPARQL queries
to a representation of the query that is based on CxLP units. In this repre-
sentation each operator and each part of the SPARQL query corresponds to
a unit occurring in the context and the complete query is represented by a
context that combines the available units. The triggering of the context reso-
lution performs the desired effect either accessing the ontology representation
for retrieving the results or performing the several SPARQL operations for
manipulating the answer set.

The presented representation of the ontology was not the first approach,
having suffered two major changes:

• The first approach was to represent the individuals and their properties
as instantiations of the classes: they would be represented as a com-
pound term containing the name of the class as functor and list the
name of the individual and all the properties as arguments in a pre-
defined order. The individuals were stored in the class they belonged
to.

This representation was later abandoned due to the difference in the
number of properties each individual could contain: each class unit
would have one argument for each property defined in the ontology.

• Later, a representation in which each individual was represented in a
different unit was tested. This representation although being the most
modular and representative of the original ontology structure was also
replaced by the described structure, in which all the individuals of the
ontology are stored in the same unit. This allows to take advantage
of some Prolog predicate optimizations such as indexing (as described
in [AK91]).

Some presented benchmarks show the developed system is slow in rep-
resenting the ontologies when compared to other systems. Also presented
where the reasons for this slowdown: the compilation and loading of the
generated units. This indicates that the XPTO system should be used to
generate an executable with the representation of the ontology instead of
loading the units on the fly. This executable can be loaded at a later time
to perform queries on the ontology.

79

Future Work

Further improvements can be performed on the developed system, both
in the ontology representation layer and on the SPARQL resolution. On the
representation side one can point out:

Allow multiple ontologies to be loaded: Currently it is only possible to
work with one ontology at a time. Allowing for an arbitrary number of
ontologies to be loaded and thus enable querying them, is considered
to be an essential part of improving the system. This will probably
require a change in the representation of the ontology, at least in the
naming of the units that represent the classes and properties of the
ontology.

Semantics of OWL: The several OWL constructors are only currently be-
ing stored in the unit that represents the element they refer. It is also
vital the development of the system into a more elaborate reasoning
system, that the semantics of these constructors be taken into account
and correctly mapped in the representation of the ontology. To achieve
this, there is a lot of space for improvement in the micro-representation
of the ontology, i.e., the predicates that are present in each unit of the
representation, or by developing rules that implement the semantics.

Strengthen the integration with ISCO: Although this was one of the
main objective and motivation for this work this integration is still very
small. To further integrate the system with ISCO, it should be possible
to describe an ontology in a similar form to the ISCO description of
a database (as presented in [AN06]) and to develop a uniform and
desirably indistinct way to query both an ontology and a relational
database.

In the SPARQL query answering component the more relevant develop-
ments are:

Complete the SPARQL support: Currently not all of the SPARQL con-
structors are implemented. Although not necessary to achieve the de-
sired prototype status of the system, a full support for the SPARQL
specifications and protocol is necessary for the deployment of the sys-
tem.

Adopt the latest SPARQL specifications: The SPARQL system was de-
veloped against the specifications of 6 April 2006 in which SPARQL was
considered W3C Candidate Recommendation. There have been further

80

developments to the SPARQL language since then and it is necessary
to update the implementation.

Throughout the development of this work some choices had to be made:
from choices of representation to language choices. In terms of representa-
tion, after some evolution, the achieved representation is considered to be
efficient and straightforward. In the field of languages, the most difficult
choice was SPARQL since, although there are no valid alternatives, there are
also undefined issues when using SPARQL to query OWL ontologies.

This concludes the description of the developed system. XPTO allows to
represent, query OWL ontologies and answer SPARQL queries using GNU
Prolog/CX.

81

Bibliography

[AD03] Salvador Abreu and Daniel Diaz. Objective: in Minimum Con-
text. In Catuscia Palamidessi, editor, Logic Programming, 19th
International Conference, ICLP 2003, Mumbai, India, Decem-
ber 9-13, 2003, Proceedings, volume 2916 of Lecture Notes in
Computer Science, pages 128–147. Springer-Verlag, 2003. ISBN
3-540-20642-6.

[AK91] Hassan Aı̈t-Kaci. Warren’s abstract machine: a tutorial recon-
struction. MIT Press, Cambridge, MA, USA, 1991.

[AN06] Salvador Abreu and Vı́tor Nogueira. Using a Logic Programming
Language with Persistence and Contexts. In Masanobu Umeda
and Armin Wolf, editors, Declarative Programming for Knowl-
edge Management, volume 4369 of LNCS, Fukuoka, Japan, 2006.
Springer.

[AvH04] Grigoris Antoniou and Frank van Harmelen. A Semantic Web
Primer. The MIT Press, 2004.

[BB06] D. Beckett and J. Broekstra. SPARQL Query Results XML
Format. W3C recommendation, W3C, April 2006. Available at:
http://www.w3.org/TR/2006/CR-rdf-sparql-XMLres-20060406/.

[BBF+06] Pedro Barahona, François Bry, Enrico Franconi, Nicola Henze,
and Ulrike Sattler, editors. Reasoning Web, Second Interna-
tional Summer School 2006, Lisbon, Portugal, September 4-8,
2006, Tutorial Lectures, volume 4126 of Lecture Notes in Com-
puter Science. Springer, 2006.

[BBFS05] James Bailey, François Bry, Tim Furche, and Sebastian Schaf-
fert. Web and semantic web query languages: A survey. In
Norbert Eisinger and Jan Maluszynski, editors, Reasoning Web,
volume 3564 of Lecture Notes in Computer Science, pages 35–
133. Springer, 2005.

82

[Bec07] Dave Beckett. SPARQL RDF Query
Language Reference. Available at:
http://www.dajobe.org/2005/04-sparql/SPARQLreference-1.8.pdf,
15 July 2007.

[BG04] D. Brickley and R. V. Guha. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C Recommendation, RDF Core
Working Group, World Wide Web Consortium, 2004.

[BHS05] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description
logics as ontology languages for the semantic web. In Dieter
Hutter and Werner Stephan, editors, Mechanizing Mathematical
Reasoning, volume 2605 of Lecture Notes in Computer Science,
pages 228–248. Springer, 2005.

[BK07] Harold Boley and Michael Kifer. RIF Core Design - W3C Work-
ing Draft 30 March 2007. Technical report, W3C, 2007.

[BLF99] Tim Berners-Lee and Mark Fischetti. Weaving the Web : The
Original Design and Ultimate Destiny of the World Wide Web
by its Inventor. Harper San Francisco, September 1999.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.
Scientific American, 284(5), 2001.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
and François Yergeau. Extensible Markup Language (XML) 1.0
(fourth edition). Technical report, W3C, 2006.

[CDA+06] Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist,
Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo,
editors. The Semantic Web - ISWC 2006, 5th International
Semantic Web Conference, ISWC 2006, Athens, GA, USA,
November 5-9, 2006, Proceedings, volume 4273 of Lecture Notes
in Computer Science. Springer, 2006.

[CH07] Daniel Cabeza and Manuel Hermenegildo. The PiL-
LoW Web Programming Library. Available at:
http://www.clip.dia.fi.upm.es/Software/pillow/, 12
June 2007.

[CHV96] D. Cabeza, M. Hermenegildo, and S. Varma. The PiL-
LoW/CIAO Library for Internet/WWW Programming using

83

Computational Logic Systems. In P. Tarau, A. Davison, K. De-
Bosschere, and M. Hermenegildo, editors, Proc. 1st Workshop
on Logic Programming Tools for INTERNET Applications, page
(Electronic proceedings), 1996.

[Cla99] J. Clark. XSL transformations (XSLT) version 1.0 W3C recom-
mendation 16 november 1999. Technical report, W3C - World
Wide Web Consortium, 1999.

[Cla06] Kendall Grant Clark. SPARQL Protocol for RDF. Technical
report, W3C, 6 April 2006.

[Coo06] Clark Cooper. The Expat XML Parser Homepage.
http://expat.sourceforge.net/, 27 November 2006.

[CR04] J. J. Carroll and J. De Roo. OWL web ontology language
test cases. W3C recommendation, W3C, 2004. Available at
http://www.w3.org/TR/2004/REC-owl-test-20040210/.

[Dam07] Carlos Viegas Damásio. W4 xml parser.
http://centria.di.fct.unl.pt/˜cd/projectos/w4/xmlparser/index.htm,
20 February 2007.

[DAR07] DARPA. DAML. http://www.daml.org/, 3 February 2007.

[DFvH03] J. Davies, D. Fensel, and F. van Harmelen, editors. Towards the
Semantic Web: Ontology-Driven Knowledge Management. John
Wiley & Sons, 2003.

[DSB+04] M. Dean, G. Schreiber, S. Bechhofer, Frank van Harme-
len, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL web ontology lan-
guage reference. W3C recommendation, W3C, Feb 2004.
http://www.w3.org/TR/owl-ref/.

[DSW06] John Davies, Rudi Studer, and Paul Warren, editors. Semantic
Web Technologies - trends and research in ontology-based sys-
tems. John Wiley & Sons, 2006.

[ED07] Paul Eggert and Akim Demaille. Bison - GNU parser genera-
tor. Available at: http://www.gnu.org/software/bison/, 21
February 2007.

84

[EK76] M. H. Van Emden and R. A. Kowalski. The semantics of predi-
cate logic as a programming language. J. ACM, 23(4):733–742,
1976.

[FHH04] Richard Fikes, Patrick J. Hayes, and Ian Horrocks. OWL-QL -
a language for deductive query answering on the Semantic Web.
J. Web Sem., 2(1):19–29, 2004.

[FLA07] Cláudio Fernandes, Nuno Lopes, and Salvador Abreu. On query-
ing ontologies with contextual logic programming. In Golbreich
et al. [GKP07].

[FLB+06] Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis,
and Georg Gottlob. Rdf querying: Language constructs and
evaluation methods compared. In Barahona et al. [BBF+06],
pages 1–52.

[GH99] Daniel Cabeza Gras and Manuel V. Hermenegildo. The ciao
module system: A new module system for prolog. Electr. Notes
Theor. Comput. Sci., 30(3), 1999.

[GH01] Daniel Cabeza Gras and Manuel V. Hermenegildo. Distributed
www programming using (ciao-)prolog and the pillow library.
TPLP, 1(3):251–282, 2001.

[GKP07] Christine Golbreich, Aditya Kalyanpur, and Bijan Parsia, ed-
itors. OWL: Experiences and Directions 2007, volume 258 of
CEUR Workshop Proceedings ISSN 1613-0073, June 2007.

[GQA03] Joaquim Godinho, Luis Quintano, and Salvador Abreu. Univer-
sidade de Évora’s Integrated Information System: An Applica-
tion. In Hans Dijkman, Petra Smulders, Bas Cordewener, and
Kurt de Belder, editors, The 9th International Conference of
European University Information Systems, pages 469–473. Uni-
versiteit van Amsterdam, July 2003. ISBN 90-9017079-0.

[Gru93] Thomas R. Gruber. A Translation Approach to Portable On-
tology Specifications. Knowledge Acquisitation, 5(2):199–220,
1993.

[HBEV04] Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael
Volz. A comparison of RDF query languages. In Proceedings of
the Third International Semantic Web Conference, Hiroshima,
Japan, 2004., NOV 2004.

85

[Hef04] Jeff Heflin. OWL Web Ontology Language Use Cases and Re-
quirements. W3C Recommendation, World Wide Web Consor-
tium, 2004.

[HM01] V. Haarslev and R. Möller. Description of the racer system and
its applications. In Proceedings International Workshop on De-
scription Logics (DL-2001), Stanford, USA, 1.-3. August, pages
131–141, 2001.

[ISO02] ISO/IEC. ISO/IEC 13250 Topic Maps. Technical report,
ISO/IEC, 2002.

[Jen06] Jena. A Semantic Web Framework for Java.
http://jena.sourceforge.net/, 30 November 2006.

[KC04] G. Klyne and J. Carroll. Resource description framework
(RDF): Concepts and abstract syntax. W3C recommenda-
tion, W3C, 2004. Available at http://www.w3.org/TR/rdf-
concepts/.

[KK01] José Kahan and Marja-Ritta Koivunen. Annotea: an open rdf
infrastructure for shared web annotations. In WWW ’01: Pro-
ceedings of the 10th international conference on World Wide
Web, pages 623–632, New York, NY, USA, 2001. ACM Press.

[KM02] Marja-Riitta Koivunen and Eric Miller. W3C Semantic Web
Activity. In E. Hyvonen, editor, Semantic Web Kick-off in Fin-
land, pages 27–44, 2002.

[KMR04] Holger Knublauch, Mark A. Musen, and Alan L. Rector. Edit-
ing description logic ontologies with the protégé owl plugin. In
Volker Haarslev and Ralf Möller, editors, Description Logics,
volume 104 of CEUR Workshop Proceedings. CEUR-WS.org,
2004.

[Knu07] Holger Knublauch. Protégé: Using sparql in Protégé-
owl. http://protege.stanford.edu/doc/sparql/, 14 Octo-
ber 2007.

[Koi07] Marja-Riitta Koivunen. Annotea project. Available at:
http://www.w3.org/2001/Annotea/, 12 June 2007.

[Kow74] Robert Kowalski. Predicate logic as programming language. In
IFIP Congress, pages 569–574, 1974. Reprinted in Computers

86

for Artificial Intelligence Applications, (eds. Wah, B. and Li, G.-
J.), IEEE Computer Society Press, Los Angeles, 1986, pp. 68–73.

[LA03] Ora Lassila and Mark Adler. Semantic gadgets: Ubiquitous
computing meets the semantic web. In Dieter Fensel, James A.
Hendler, Henry Lieberman, and Wolfgang Wahlster, editors,
Spinning the Semantic Web, pages 363–376. MIT Press, 2003.

[LD01] Martin S. Lacher and Stefan Decker. RDF, Topic Maps, and the
Semantic Web. Markup Lang., 3(3):313–331, 2001.

[LFA07] Nuno Lopes, Cláudio Fernandes, and Salvador Abreu. Contex-
tual logic programming for ontology representation and query-
ing. In Axel Polleres, David Pearce, Stijn Heymans, and Edna
Ruckhaus, editors, 2nd International Workshop on Applications
of Logic Programming to the Web, Semantic Web and Semantic
Web Services, September 2007.

[MHRS06] Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler.
Can owl and logic programming live together happily ever after?
In Cruz et al. [CDA+06], pages 501–514.

[MM04] Frank Manola and Eric Miller. RDF Primer. W3C Recommen-
dation, World Wide Web Consortium, February 2004.

[MP89] Lúıs Monteiro and António Porto. Contextual logic program-
ming. In ICLP, pages 284–299, 1989.

[MP93] Lúıs Monteiro and António Porto. A language for contex-
tual logic programming. In Logic programming languages: con-
straints, functions, and objects, pages 115–147, Cambridge, MA,
USA, 1993. MIT Press.

[MSR02] Libby Miller, Andy Seaborne, and Alberto Reggiori. Three im-
plementations of squishql, a simple rdf query language. In Ian
Horrocks and James A. Hendler, editors, International Seman-
tic Web Conference, volume 2342 of Lecture Notes in Computer
Science, pages 423–435. Springer, 2002.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL Web
Ontology Language Overview. W3C Recommendation, World
Wide Web Consortium, February 2004.

87

[NAD04] Vitor Beires Nogueira, Salvador Abreu, and Gabriel David. To-
wards temporal reasoning in constraint contextual logic pro-
gramming. In Proceedings of the 3rd International Workshop
on Multiparadigm Constraint Programming Languages Multi-
CPL’04 associated to ICLP’04, Saint–Malo, France, September
2004.

[PAG06] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics
and Complexity of SPARQL. In Cruz et al. [CDA+06], pages
30–43.

[Par06] Bijan Parsia. Querying the Web with SPARQL. In Barahona
et al. [BBF+06], pages 53–67.

[Pas04] Thomas B. Passin. Explorer’s Guide to the Semantic Web. Man-
ning, Greenwich, 2004.

[Pax07] Vern Paxson. flex: The Fast Lexical Analyzer Manual.
http://www.gnu.org/software/flex/manual/html mono/flex.html,
21 February 2007.

[Pro06] Protégé. Free, open source ontology editor and knowledge-
based framework. http://protege.stanford.edu/, 30 Novem-
ber 2006.

[PS06] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query
Language for RDF. Technical report, W3C, 2006. Available at:
http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/.

[Rém00] Didier Rémy. Using, understanding, and unraveling the ocaml
language. from practice to theory and vice versa. In Gilles
Barthe, Peter Dybjer, Luis Pinto, and João Saraiva, editors,
APPSEM, volume 2395 of Lecture Notes in Computer Science,
pages 413–536. Springer, 2000.

[SBLH06] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The Se-
mantic Web Revisited. IEEE Intelligent Systems, 21(3):96–101,
2006.

[Sea04] Andy Seaborne. RDQL - A Query Language for RDF (Member
Submission). Technical report, W3C, January 2004.

[Sof07] Software Systems Institute. Racer Manager.
http://racerproject.sourceforge.net/, 19 February
2007.

88

[SP07] Evren Sirin and Bijan Parsia. Sparql-dl: Sparql query for owl-dl.
In Golbreich et al. [GKP07].

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya
Kalyanpur, and Yarden Katz. Pellet: A practical owl-dl rea-
soner. J. Web Sem., 5(2):51–53, 2007.

[SS86] Leon Sterling and Ehud Y. Shapiro. The Art of Prolog - Ad-
vanced Programming Techniques. MIT Press, 1986.

[Sto07] Gerd Stolpmann. The xml parser for o’caml. http://www.ocaml-
programming.de/programming/pxp.html, 27 March 2007.

[SWM04] Michael K. Smith, Chris Welty, and Deborah L. McGuinness.
OWL Web Ontology Language Guide. W3C Recommendation,
World Wide Web Consortium, February 2004.

[Top01] TopicMaps.org. XML Topic Maps (XTM) 1.0. Technical report,
TopicMaps.org, 2001.

[Van06] Vangelis Vassiliadis. Thea OWL Parser for Prolog.
http://www.semanticweb.gr/TheaOWLParser/, 12 October
2006.

[Van07] Vangelis Vassiliadis. Thea A Web Ontol-
ogy Language - OWL Parser for [SWI] Prolog.
http://www.semanticweb.gr/downloads/Thea%20OWL%20Parser.doc,
19 January 2007.

[Vat07] Irène Vatton. Amaya home page. http://www.w3.org/Amaya/,
12 June 2007.

[Vei06] Daniel Veillard. Libxml - the XML C parser and toolkit of
Gnome. http://xmlsoft.org/, 27 November 2006.

[W3C06] W3C. Wine Ontology. http://www.w3.org/TR/owl-guide/wine.rdf,
22 July 2006.

[Wie03] Jan Wielemaker. An overview of the swi-prolog program-
ming environment. In Frédéric Mesnard and Alexander Sere-
brenik, editors, WLPE, volume CW371 of Report, pages 1–16.
Katholieke Universiteit Leuven, Department of Computer Sci-
ence, Celestijnenlaan 200A, B-3001 Heverlee (Belgium), 2003.

89

