
The Contact-Center Business Analyzer: a case
for Persistent Contextual Logic Programming

Claudio Fernandes1, Nuno Lopes?2, Manuel Monteiro3, and Salvador
Abreu1

1 Universidade de Évora and CENTRIA, Portugal
{cff,spa}@di.uevora.pt

2 Digital Enterprise Research Institute, National University of Ireland, Galway
nuno.lopes@deri.org

3 xseed, Lda., Portugal
manuel.monteiro@xseed.pt

Abstract. This article presents CC/BA, an integrated performance an-
alyzer for contact centers, which has been designed and implemented
using Persistent Contextual Logic Programming methods and tools. We
describe the system’s architecture, place it in perspective of the exist-
ing technology and argue that it provides interesting possibilities in an
application area in which timely and accurate performance analysis is
critical.

1 Introduction

The problem: The majority of the current contact center solutions pro-
vide extensive reporting, and some of them already provide even more
sophisticated business intelligence solutions, allowing their users to ana-
lyze thoroughly the operational aspects of the contact center activity [6].
Performance indicators [5] normally made available are those related with
how efficient the automatic call distributors (ACDs) are in distributing
the calls (waiting times, abandoned calls, etc.) and how efficient the agents
are in handling them (e.g. handled calls, call duration).

As there is normally little or even no integration with the surrounding
business systems and applications, and there is no integration with the
business data related with the various interactions processed by the con-
tact center, these solutions can not correlate the operational data with
the business data in order to provide more business oriented key perfor-
mance indicators, like costs, profits and related ratios (operation margins,
segment or customer value, ...).

? This author has been funded in part by Science Foundation Ireland under Grant
No. SFI/08/CE/I1380 (Lion-2).



Our purpose in developing CC-BA, the Business Analyzer tool, is to
overcome the identified lack of systems integration and to allow to model
and integrate business data with the existing operational data. Systems
that might need to be integrated are workforce management tools, CRM
and ERP tools.

Contexts: The idea of Contextual Logic Programming (CxLP) was in-
troduced in the late 1980s by Monteiro and Porto [8] in the ALPES II
project, and is related to similar efforts such as Miller’s λProlog module
system, described in [7].

The purpose of Contextual Logic Programming (CxLP) was initially
to deal with Prolog’s traditionally flat predicate namespace, a feature
which seriously hindered the language’s usability in larger scale projects.
The impact of these extensions has mostly failed to make it back into the
mainstream language, as the most widely distributed implementations
only provide a simple, SICStus-like module mechanism, if any.

A more recent proposal [2] rehabilitates the ideas of Contextual Logic
Programming by viewing contexts not only as shorthands for a modular
theory but also as the means of providing dynamic attributes which affect
that theory: we are referring to unit arguments, as described in Abreu
and Diaz’s work. It is particularly relevant for our purposes to stress the
context-as-an-implicit-computation aspect of CxLP, which views a context
as a first-class Prolog entity – a term, which behaves similarly to objects
in OOP languages.
Persistence: Having persistence in a Logic Programming language is a
required feature if one is to use it to construct actual information sys-
tems; this could conceivably be provided by Prolog’s internal database
but is quite adequately accounted for by software designed to handle
large quantities of factual information efficiently, as is the case in rela-
tional database management systems. The semantic proximity between
relational database query languages and logic programming have made
the former privileged candidates to provide Prolog with persistence, and
this has long been recognized.

ISCO [1] is a proposal for Prolog persistence which includes support
for multiple heterogeneous databases and which access to technology be-
yond relational databases, such as LDAP directory services or DNS. ISCO
has been successfully used in a variety of real-world situations, ranging
from the development of a university information system to text retrieval
or business intelligence analysis tools.

ISCO’s approach for interfacing to DBMSs involves providing Prolog
declarations for the database relations, which are equivalent to defin-



ing a corresponding predicate, which is then used as if it were originally
defined as a set of Prolog facts. While this approach is convenient, its
main weakness resides in its present inability to relate distinct database
goals, effectively performing joins at the Prolog level. While this may be
perceived as a performance-impairing feature, in practice it is not the
show-stopper it would seem to be because the instantiations made by the
early database goals turn out as restrictions on subsequent goals, thereby
avoiding the filter-over-cartesian-product syndrome.

Contexts and persistence: Considering that it is useful to retain the reg-
ular Prolog notation for persistent relations which is an ISCO character-
istic, we would like to explore the ways in which contexts can be taken
advantage of, when layered on top of the persistence mechanisms pro-
vided by ISCO. In particular we shall be interested in the aspects of
common database operations which would benefit from the increase in
expressiveness that results from combining Prolog’s declarativeness and
the program-structuring mechanisms of Contextual Logic Programming.

We shall illustrate the usefulness of this approach to Contextual Logic
Programming by providing examples taken from a large scale applica-
tion, written in GNU Prolog/CX, our implementation of a Contextual
Constraint Logic Programming language. More synthetic situations are
presented where the constructs associated with a renewed specification of
Contextual Logic Programming are brought forward to solve a variety of
programming problems, namely those which address compatibility issues
with other Prolog program-structuring approches, such as existing module
systems. We also claim that the proposed language and implementation
mechanisms can form the basis of a reasonably efficient development and
production system.

The remainder of this article is structured as follows: section 2 intro-
duces ISCO and Contextual Logic Programming as application develop-
ment tools, proposing a unified language featuring both persistence and
contexts. Section 3 addresses design issues for a performance analysis tool
and introduces CC-BA. The impact of some design issues and environmen-
tal requirements is further explored in section 4, where some experimental
results are presented. Finally, section 5 draws some conclusions and points
at interesting directions for future work.

2 Persistent Contextual Logic Programming

Logic Programming and in particular the Plug language has long been
recognized as a powerful tool for declaratively expressing both data and



processes, mostly as a result of two characteristics: the logic variable with
unification and nondeterminism as a result of the built-in bactracking
search mechanism.

While the Prolog is a consensual and relatively simple language, it is
lacking in a few aspects relevant to larger-scale application development;
some of these include:

– The lack of sophistication of its program structuring mechanisms: the
ISO modules [4] proposal is representative of what has been done to
take Prolog beyond the flat predicate space. The standard adds di-
rectives for managing sets of clauses and predicates, which become
designated as modules. There are several areas where modules com-
plicate matters w.r.t. regular Prolog: an example is the metacall issue,
in which predicate arguments are subsequently treated as goals inside
a module.

– The handling of persistent evolving data: one of Prolog’s most em-
blematic characteristics is the way in which programs could easily be
manipulated in runtime, by use of the assert and retract built-ins.
These can be used to alter the program database, by adding or re-
moving clauses to existing predicates. There are several issues with
these, namely how do these interact with goals which have an active
choice-point on a predicate being modified.
One interesting feature provided by traditional Prolog implementa-
tions is the possibility of asserting non-factual clauses, which effec-
tively endows the language with a very powerful self-modification
mechanism. Nevertheless, the most common uses for clause-level pred-
icate modification primitives deal with factual information only, this is
true both for predicates which represent state information (which are
typically updated in a way which preserves the number of clauses) and
for database predicates, which will typically have a growing number
of clauses.

Both of these aspects are addressed by the ISCO programming system,
when deployed over GNU Prolog/CX, which compiles Prolog to native
code. This implementation platform is discussed in [3] and briefly sum-
marized in the rest of the present section.

2.1 Modularity with GNU Prolog/CX

Contextual Logic Programming was initially introduced with the inten-
tion of addressing the modularity issue. At present and in the GNU Pro-
log/CX implementation, CxLP provides an object-oriented framework for



the development of Logic programs; this is achieved through the integra-
tion of a passive, stateful part (the context) with a dynamic computation
(a Prolog goal). The context is made up of instances of units which are
similar to objects with state in other languages.

The current implementation has support for dynamic loading and
unloading of units, which are implemented as OS-level shared libraries,
or DLLs.

2.2 Persistence and large Database Predicates

Relational Database Management Systems provide efficient implementa-
tions for data storage, tailored to certain ways of accessing the informa-
tion. The access is done via the SQL query language and the efficiency
comes partly as a consequence of the availability of certain optimization
features, such as multiple indexes on database relations. Prolog systems
have long incorporated similar optimizations which map onto abstract
machine-level features, such as clause indexing. Most prolog systems im-
plement forms of indexing which are less general than the possible coun-
terparts in an RDBMS.

Maintaining multiple indices – i.e. indexing predicates based on the
analysis of anything other than the first argument – is intrinsically ex-
pensive and implies a significant runtime overhead to decide which index
to use for a given call. As a consequence, very few Prolog systems in-
corporate any form of multi-argument indexing, usually requiring special
annotations to indicate the fact.

Moreover, the combination of indices with dynamic predicates requires
a dynamic rebuild of those indices, in particular one which does not sur-
vive the process in which it occurred. This means that, even if a Prolog
database was appropriate for representing a given fact base, its use incurs
the overhead of rebuilding the index each time:

– the predicate is updated (via assert or retract),
– the Prolog program is started

3 Application Design

The Contact Center Business Analyser is a web based application to
analyse and control the performances of the numerous operations real-
ized through managing a call center. Relying in data fetched from the
company clients, it builds detailed financial scopes to be used by different
management positions at the center.



A call center is a company department which purpose is to materialize
personal communication between a company commercial campaign and
their clients. The talking, realized by phone calls, is the job of the various
agents working at the center, although mail and faxes are used sometimes.

The CC-BA software presents different levels of usage, divided in two
groups: one for the administrator and the other for the end-users of the
application. As expected, running a contact center requires many “eyes”
over the operations, each pair monitoring different subjects. CC-BA maps
that concept by providing several kinds of analysis, each one oriented for
a particular profile. Each profile can then obtain different views of the
data, grouped as several KPIs - key performance indicators.

Every analysis has a time window. This time period can take two
forms: an interval period between two days, weeks or months, and a fixed
hour schedule, also included in a time period.

3.1 Architecture

The CC-BA structure is similar to the traditional three layer web based
applications, but with some slight differences. As shown in figure 1 (see
page 7), we have a local database, an ISCO + GNU Prolog/CX Logi-
cal layer, and finally a small PHP layer responsible for the Prolog and
Browser communication. When comparing to the traditional three layer
approach, the ISCO + GNU Prolog/CX layer implements both the Logic
and Presentation Layers. The Data layer is provided by a PostgreSQL
database, which is populated in the ETL [9] process.

The data used by the application must be fetched from the database
of the call center. However, only a small fraction of that data is relevant,
and before it is loaded some transformations are needed to be done over
it. This process must be done periodically and is called ETL (Extraction,
Transformation and Loading).

The internal database is compact compared with the ones where the
data originated from, however it is a very important component of the
application and it must be extremely well tuned to perform the best it can
over the queries. The tables are created through the definition of ISCO
classes. Those classes, when compiled, will generate Prolog predicates that
access the data as if they were regular clauses in a Logic Programming
environment.

The core of the application are the available outputs formed by groups
of key performance indicators. With the goal of achieving a modular sys-
tem, the implementation of those outputs were designed in a way that
adding new outputs formed by any aggregation of KPIs is a linear task.



Fig. 1. CC-BA Architecture

Each KPI and output are coded in specific and different contextual Pro-
log units, such that to create a new output one only has to aggregate the
KPIs desired into the new output unit. Any needed input parameters are
pushed in through the GNU Prolog/CX context mechanism.

3.2 Example

Figure 2 (on page 8) depicts the unit that implements one use-case: the
Database Information output. Just to name a few, we have the Database
Length that is just the length of the contact list of a campaign, the “Suc-
cessful Contacts”, “Reschedules” and “ Unsuccessful Contacts” that are
based on the “Contact Numbers”, switching the input parameter as it
needed (lines 13, 16 and 19). The context mechanism of GNU Prolog/CX
can also be used to specify unit parameters. In the example, the unit
param/3 is used to specify the arguments passed by, accordingly to what
comes instantiated. In this case, a Client, a Campaign or an Agent.

Of all the parameters passed by context, there is one which requires
special attention: the dates. Every analysis falls in a window period, and
therefore all queries have time boundaries. Since the system had strict



1 :- unit(trat_bd).

2

3 output(Output):-

4 var(’campaign’, CP),

5 campaign@(code=CP, list_size=Total),

6 format(d, Total):format(Total_DB),

7

8 param(_,CP,_).proc_regs:value(Regs),

9 format(d, Regs):format(ProcRegs),

10

11 rate(Regs, Total):value(ProcRate),

12

13 param(_,CP,_).contact_numbers([successful]):value(Succ),

14 format(d, Succ):format(SuccCont),

15

16 param(_,CP,_).contact_numbers([reschedule]):value(Resc),

17 format(d, Resc).format(RescCont),

18

19 param(_,CP,_).contact_numbers([unsuccessful]):value(Unsucc),

20 format(d, Unsucc):format(UnsuccCont),

21

22 Use is Succ + Unsucc,

23 format(d, Use):format(UseContact),

24

25 rate(Use, Total):value(PenetRate),

26 rate(Succ, Use):value(SuccRate),

Fig. 2. Unit “trat bd”

performance requirements, we had to explore alternative representations
for some information. In this case, every date is mapped to an integer
value, over which it is possible to set finite-domain constraints in GNU
Prolog/CX.

3.3 ETL

The ETL (Extraction, Transform and Load) process consists of loading
the database with the information provided about the Contact Center
operations. This is an “offline” process, i.e. it can be performed at any
time, without human intervention.

The extracted data is to be provided to the system in a predefined
format, which can be outputed by the operational system of the Contact
Center.



In the transformation process, the extracted data is converted into
data that can be directly loaded into CC-BA. This process starts by check-
ing the date of the last valid ETL and proceeds to loading the interactions
performed on a later date. This will include:

– loading new campaigns and agents
– delete older data from the tables “interaction” and “agentWork”
– manage the agents and campaign states

The existence of new campaigns or agents impose the input of data
from the system administrator, such as the income of the agent and the
costs of each interaction of a campaign. This will leave those agents and
campaigns in an unprocessed state until such information can be en-
tered, once the required information is defined the calculations can be
performed. The ETL process can also recognize new interactions in an
inactive campaign or agent and automatically active the campaign or
agent.

4 Performance Evaluation

One of the most sensitive facts about the CCBA is its efficiency. It was
necessary to guarantee that all the available analysis were computed in
a reasonable time. An initially identified problem involved some of the
analysis having a large search space. Several relations in the data model
will contain, at some point and for the time intervals being considered,
tens of millions of records. This fact makes it necessary to ensure that all
queries are made in a quick and efficient way.

Since the results of the raw data model were not satisfactory, we
had to find other approaches to improve performance. Also, due to some
technological restrictions (described later) it was necessary to reduce the
number of joins in the low-level (SQL) queries. We opted for the use
of data accumulation together with some pre-processing; the following
sections provide more detail on this.

4.1 Data Accumulation

With the exception of one output, all queries have a minimal granularity
of one day. This observation allows us to make daily accumulated values
of the records in the database, thereby obtaining very significant perfor-
mance gains w.r.t. the raw data. To achieve this, the following relations
were created, along with the system data model:



agentWork daily: This relation consists of the daily accumulates of a
agent’s work, i.e. the number of minutes an agent works per day and
per campaign as well as the cost associated with that work.

interaction daily: Here we collect the daily cumulates of all the in-
formation pertaining to the interactions made by the agents, grouped
by the outcome of the interaction, the number of interactions of that
type, the total duration of the calls and the total invoicing value.

interaction daily results: This relation is similar to the previous one
but, here, we do not include the agent information. This allows for a
smaller search space to be used in queries that do not need agent
information, for example searching by campaigns or clients.

4.2 Data Pre-processing

Data pre-processing is the action of inserting the correct data in the ac-
cumulator tables. This action needs to be done in two separate situations:

– After the ETL phase (see section 3.3);
– After the manager changes the values of a given campaign, or new

entities are configured.

As a consequence of the changes made by the manager to the invoice
model of a campaign or to the costs of the agents, the accumulator tables
have to be updated. Since all changes affect all the data in the database
(not only after the change is made), all data in the accumulator tables
has to be invalidated and recomputed. This process is transparent to the
user.

4.3 Computations using Pre-Processed Data

We present a few representative computations and discuss how they are
implemented using cumulative data tables.

Agent, Campaign and Client Costs. Using the pre-processed data,
the cost of an agent, campaign or client over a time period can be com-
puted resorting to the agentWork daily table, where the total value of
the cost is the sum of each day within the time period.

Total Work Time by Agent. The amount of time an Agent worked
over a specified time period can be computed using the pre-processed
information in the agentWork daily table.



Contact duration. Using the daily pre-processed information inter-
action daily, computing the average duration of the contacts of a cer-
tain type, performed by an agent, becomes more efficient than the pre-
vious implementation. Should it be necessary to request the contact du-
ration for a certain campaign, this information is available in the table
interaction daily results.

Invoice of an agent or campaign. Using the table interaction daily,
the calculation of the invoicing total for an agent within a time period
can be done with the sum of each day in the period, taking the value
stored in the invoice field. In the same way, the invoice for a campaign
can be calculated using the table interaction daily results.

Total talk-time. The total talk-time (in minutes) for an agent or cam-
paign, within a time period, can be computed using the tables inter-
action daily and interaction daily result.

Answered contacts and total number of contacts. The number of
daily answered contacts in a campaign can be calculated more efficiently
using the table interaction daily results, which is also used, together
with interactions daily, to obtain the total number of contacts per-
formed by an agent.

4.4 Views

With the correct use of indexes in the database fields and the cumulative
tables in place, almost all queries were completed in a satisfactory time,
given the desired operating conditions.1 Nevertheless, some situations re-
mained where the performance goals were not being achieved, namely in
computing the number of contacts made by an agent and the total costs
of the contact center.

In these situations, we chose to implement an SQL view for each
one which is then mapped to an ISCO class. This allows the fields of
the query to represent the desired result, while avoiding most further
processing of the tuple data at the ISCO/application level. Each view is
a filter for a larger table (possibly performing some computations), so

1 In the range of 1-3 million events to treat, over a period of one month. The compu-
tational resources are very limited, our goal being that a simple workstation-style
PC sould be enough to support CC-BA.



that the result is computed by the DBMS instead of retrieving all the
records and performing the filter in the application.

To achieve this goal, the view is designed to be similar to the table
it applies to, replacing all non relevant fields by similarly named fields
with a fixed value of the appropriate range and type (for instance the
minimum value in the records). All the fields needed to perform the query
are left unbound. An additional field with the result of the computation
is introduced, in general this is an aggregator such as sum or count.

The definition of these views in ISCO is made in the same manner as
for a regular database table. It extends the table it applies to by adding
the computed field. The ISCO Prolog access predicates are limited to the
“lookup” ones, i.e. a class which maps to a view is considered static.

The following are examples of situations which we dealt with by defin-
ing views at the database level:

Number of contacts performed by an agent in a hour: This query
cannot be computed by using the accumulator tables since its granularity
is smaller than one day (the granularity of the daily accumulator tables.)
As it was not feasible to use the simple table interaction to perform
this query, a view was created to perform the computation at the DBMS
level.

Processed Records: The total number of processed records of a cam-
paign in a given time interval consists, in SQL terms, in a count(dis-
tinct *) from the contacts present in the interaction table. However,
we know that interaction is the largest table present in the database
with well above one million records per month of activity for a medium
sized contact center, and computing this query cannot be directly done
over it and remain computationally reasonable.

The introduction of a view decreased the execution time required for
answering the query: in our first approach, this query was one of the
slowest in the entire application, due to the amount of data that needed
to be processed by ISCO. The use of the defined view, which left all the
computations in the SQL side improved this situation dramatically.

The SQL code used of this view is shown in figure 3 and the definition
of the view in ISCO is presented in figure 4. The ISCO side consists of
extending the already defined class “interaction” with a new subclass
which adds a “regs” field that is calculated in the view SQL code. Note
that the SQL view must reproduce the fields which exist in the parent
ISCO class.



1 CREATE VIEW "interaction_proc_regs" as

2 select

3 0 as oid,

4 campaign,

5 min(agent) as agent,

6 min(contact) as contact,

7 datetime,

8 min(duration) as duration,

9 min(result) as result,

10 count(distinct contact) as regs

11 from

12 interaction

13 group by campaign, datetime;

Fig. 3. Definition of “interaction proc regs” view

1 class interaction_proc_regs: interaction.

2 regs: int.

Fig. 4. ISCO definition of “interaction proc regs” view

When processing the records for 1.000.000 interactions, the times pre-
sented are for the first approach (all the calculations done in Prolog) are
approximately 10 times higher than when using the defined view and
cumlative data.

5 Conclusions and Directions for Future Work

Achieving the kind of data integration which CC-BA provides, coupled
with the optimization capabilities to process these potentially very large
amounts of data, results in great benefits for the call center management,
meaning that the business oriented key performance indicators can be
made available promptly, allowing the different manager roles to fine tune
the systems to better reach their business goals, not only the operational
ones.

One aspect of ISCO that turned out very useful is the ability to work
with multiple indexes for database-stored data. For the quantities of data
involved this turned out to be a critical aspect, as the same (factual)
predicates are being accessed with different instantiation patterns.



We found out the hard way that the ETL process still requires a lot
of manual effort and tuning. It would be worthwile to investigate the
automation of the process and the design of the internal database, pay-
ing particular attention to the unification of several heterogeneous data
sources, to the selection of the hierarchical cumulative sums, as well as
to the generation of the internal database schema. Some of these aspects
are already being worked on, in particular the design of declarative tools
to achieve a measure of automation of the ETL process is the object of
ongoing work.

On a finishing note, it is worth mentioning that our implementation
of CC-BA is able to adequately function inside a virtual machine running
Debian Linux with very low resource requirements: a simple Pentium-M
based laptop was enough to account for tracking a medium-sized contact
center.

References

1. Salvador Abreu. Isco: A practical language for heterogeneous information system
construction. In Proceedings of INAP’01, Tokyo, Japan, October 2001. Prolog As-
sociation of Japan.

2. Salvador Abreu and Daniel Diaz. Objective: in Minimum Context. In Catuscia
Palamidessi, editor, Logic Programming, 19th International Conference, ICLP 2003,
Mumbai, India, December 9-13, 2003, Proceedings, volume 2916 of Lecture Notes in
Computer Science, pages 128–147. Springer-Verlag, 2003. ISBN 3-540-20642-6.

3. Salvador Abreu and Vitor Nogueira. Using a Logic Programming Language with
Persistence and Contexts. In Osamu Takata, Masanobu Umeda, Isao Nagasawa,
Naoyuki Tamura, Armin Wolf, and Gunnar Schrader, editors, Declarative Program-
ming for Knowledge Management, 16th International Conference on Applications
of Declarative Programming and Knowledge Management, INAP 2005, Fukuoka,
Japan, October 22-24, 2005. Revised Selected Papers., volume 4369 of Lecture Notes
in Computer Science, pages 38–47. Springer, 2006.

4. ISO/IEC JTC1/SC22/WG17. Information technology – Programming languages –
Prolog – Part 2: Modules. Technical Report DIS 13211, ISO, 2000.

5. Ger Koole. Performance analysis and optimization in customer contact centers. In
QEST, pages 2–5. IEEE Computer Society, 2004.

6. Pierre L’Ecuyer. Modeling and optimization problems in contact centers. In QEST,
pages 145–156. IEEE Computer Society, 2006.

7. Dale Miller. A logical analysis of modules in logic programming. The Journal of
Logic Programming, 6(1 and 2):79–108, January/March 1989.

8. L. Monteiro and A Porto. Contextual logic programming. In Giorgio Levi and
Maurizio Martelli, editors, Proceedings of the Sixth International Conference on
Logic Programming, pages 284–299, Lisbon, 1989. The MIT Press.

9. Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. Conceptual modeling for
etl processes. In DOLAP ’02: Proceedings of the 5th ACM international workshop
on Data Warehousing and OLAP, pages 14–21, New York, NY, USA, 2002. ACM.


	The Contact-Center Business Analyzer: a case for Persistent Contextual Logic Programming

