
Integrating Heterogeneous Data by Extending
Semantic Web Standards

Nuno Lopes

Supervisor: Priv.-Doz. Dr. Axel Polleres

Internal Examiner: Dr. Siegfried Handschuh

External Examiner: Prof. Dr. Claudio Gutiérrez

Dissertation submitted in pursuance of the degree of Doctor of Philosophy

Digital Enterprise Research Institute, Galway
National University of Ireland, Galway / Ollscoil na hÉireann, Gaillimh

26th November 2012

Copyright c© Nuno Lopes, 2012

The research presented herein was supported by Science Foundation Ireland under Grant No. SFI/08/CE/I1380
(Lion-2).

Acknowledgements

First of all I would like to thank Axel and Stefan for all their help, support, and directions provided
during my Ph.D. Thanks to my examiners Claudio Gutiérrez and Siegfried Handschuh for their time.

Also a big thanks to all of my co-authors and co-workers for countless hours spent tackling interesting
problems. Notably the persons I was closely working with: Stefan Bischof, Gergely Lukácsy, Antoine
Zimmermann, Sabrina Kirrane, Umberto Straccia, Thomas Krennwallner, and other URQ members.
I would like to thank all the people that helped in reviewing and proofreading this thesis: Sabrina

Kirrane, Deirdre Lee, Antoine Zimmermann, Alexandre Passant, Stefan Bischof, and Aidan Hogan.
Especially thanks to Aidan and Sabrina for all their invaluable comments and their patience for my
incessant nagging. Thanks also to Jürgen: it was great to have someone close to share the agony of thesis
writing.

For the times when we needed some distraction from hard work the Foosball (thanks to the UDI2
members that supplied the table) or Magic The Gathering crowd was always close by!

Above all, I would like to thank my family and give credit to my partner Ana, for all the support and
always understanding the (many) times when I had to prioritise work.

i

“To truly know something, you must become it. The trick is to not lose yourself
in the process.”

—“Thirst for Knowledge”, Magic the Gathering card

Abstract
In enterprises different software applications are used to manage specific functions: customer relations,
human resources, and manufacturing, each requiring specialised software. Relational databases are
commonly used as the underlying storage mechanism for most of these software applications, often causing
the same entities to be replicated in independent databases. In order to obtain an accurate overview of
an enterprise, these independent data sources need to be combined. This hard task is commonly known
as data integration and becomes even more difficult if we consider that the original data sources can be
stored according to heterogeneous models. The Extensible Markup Language (XML) has become widely
used on the World Wide Web (WWW) and in order to reuse Web data, XML needs to be included into
the data integration process along side relational databases.

The Linking Open Data (LOD) initiative has also increased focus on another data model: the Resource
Description Format (RDF). With the increasing availability of structured information on the Web, exposed
following the Linked Data principles, RDF has also become an attractive format for representing integrated
data, allowing existing enterprise data to be enriched, by connecting it to other data on the WWW.

Established approaches for data integration involve the development of custom applications that bridge
the different sources and data formats. In this thesis we propose to make this bridge via a query and
transformation language and propose optimisations for such a language that aim at reducing the execution
times of the transformation queries.
RDF is already regarded as a useful format for representing integrated data but we argue that an

extension of the RDF data model is necessary. This extension, which we call Annotated RDFS, allows us
to represent domain-specific meta-information about the integrated data. For instance, defined Annotated
RDFS domains allow temporal or provenance information to be maintained. Temporal information can
help to determine the most up-to-date data, while provenance information can help to track information
back to their original sources.

The language introduced in this thesis, called XSPARQL, combines different standard query languages
– SQL, XQuery, and SPARQL – for accessing the heterogeneous data sources – relational, XML, and
RDF data, respectively – and transforming between the different formats. The XSPARQL language also
extends the SPARQL query language to allow for easily writing RDF transformations that can otherwise
be cumbersome to write in SPARQL.

By further extending XSPARQL to support querying and creating Annotated RDFS, XSPARQL also
allows meta-information to be extracted and attached to RDF triples. We illustrate this approach by
introducing a use case where enterprise data from different systems is integrated and annotated with
data from a novel Annotated RDFS domain: access control. This new domain maintains information
regarding which agents are allowed to access the integrated information by replicating any access control
information present in the original sources. We also propose a framework based on this new annotation
domain that can enforce the access restrictions attached to each triple.

iii

Declaration

I declare that this thesis is composed by myself, that the work contained herein is my own except where
explicitly stated otherwise in the text, and that this work has not been submitted for any other degree or
professional qualification except as specified.

Nuno Lopes

30th July 2013

iv

Contents

1. Introduction 1
1.1. Problem Statement . 4
1.2. A Model for Integrated Data . 4
1.3. Hypothesis . 6
1.4. Contributions . 7

1.4.1. Impact . 8
1.4.2. Other Contributions . 8

1.5. Thesis Outline . 9

I. State of the Art 10

2. Data Models 11
2.1. Relational Model . 12
2.2. Extensible Markup Language (XML) . 14

2.2.1. XML Namespaces . 15
2.2.2. XML Validation . 15
2.2.3. XML Abstract Representations . 18

2.3. JavaScript Object Notation (JSON) . 19
2.4. Resource Description Framework (RDF) . 20

2.4.1. Representation Syntaxes . 22
2.4.2. Semantics . 25
2.4.3. RDF Schema . 27

2.5. Comparison of the Data Models . 28
2.6. Conclusion . 30

3. Query Languages 31
3.1. Querying Relational Databases . 31

3.1.1. Conjunctive queries . 31
3.1.2. SQL . 32

3.2. Querying XML . 34
3.2.1. XPath . 34
3.2.2. XSLT . 36
3.2.3. XQuery . 36

3.3. Querying RDF with SPARQL . 40
3.4. Conclusion . 46

v

II. Contributions 47

4. The XSPARQL Language 48
4.1. Syntax . 52

4.1.1. SparqlForClause . 53
4.1.2. ConstructClause . 54
4.1.3. SQLForClause . 56

4.2. Semantics . 58
4.2.1. XSPARQL Types . 58
4.2.2. XSPARQL Semantics for Querying Relational and RDF data 60
4.2.3. Extensions to the XQuery Semantics . 64
4.2.4. Semantics Rules for XSPARQL Expressions . 66

4.3. Semantic Correspondence between XSPARQL, SQL, XQuery, and SPARQL 72
4.4. Consuming JSON Data . 73
4.5. Processing RDB2RDF Mappings in XSPARQL . 75

4.5.1. Direct Mapping . 75
4.5.2. The R2RML mapping language . 75
4.5.3. R2RML Implementation in XSPARQL . 77

4.6. Related Work . 78
4.7. Conclusion . 82

5. XSPARQL Evaluation and Optimisations 83
5.1. Implementation . 83

5.1.1. SQLForClause and SparqlForClause . 84
5.1.2. ConstructClause . 87
5.1.3. Soundness & Completeness of the Implementation 88

5.2. The XMarkRDF benchmark . 90
5.2.1. Experimental Setup . 92
5.2.2. Base System Results . 92

5.3. Optimisations of Nested for Expressions . 93
5.3.1. Dependent Join implementation in XQuery . 94
5.3.2. Dependent Join implementation in SPARQL . 101
5.3.3. Nested Queries in XMarkRDF . 109
5.3.4. Evaluation of the Proposed Optimisations . 111

5.4. Related Work . 114
5.5. Conclusion . 115

6. An Extension of RDF and SPARQL towards Meta-Information 117
6.1. RDF(S) with Annotations . 118

6.1.1. Syntax . 119
6.1.2. Annotation Domain Specification . 120
6.1.3. Semantics . 121
6.1.4. Examples of Annotation Domains . 122
6.1.5. Deductive system . 125
6.1.6. Query Answering . 129

6.2. AnQL: Annotated SPARQL . 131
6.2.1. Syntax . 131
6.2.2. Semantics . 133

vi

6.2.3. Further Extensions of AnQL . 135
6.3. AnQL Issues and Pitfalls . 136

6.3.1. Constraints vs Filters . 136
6.3.2. Union of Annotations . 137
6.3.3. Temporal Issues . 137

6.4. Implementation Notes . 138
6.5. Related Work . 139
6.6. Conclusion . 142

III. An Integrated Use case 143

7. A Secure RDF Data Integration Framework 144
7.1. The Access Control Annotation Domain . 144

7.1.1. Entities and Annotations . 144
7.1.2. Annotation Domain . 146
7.1.3. Domain Implementation . 147

7.2. An Access Control Aware Data Integration Architecture 148
7.2.1. Combining XSPARQL and AnQL . 148
7.2.2. Access Control Enforcement Framework . 149
7.2.3. Experimental Evaluation . 151

7.3. Related Work . 152
7.4. Conclusion . 153

IV. Conclusion 154

8. Conclusions 155
8.1. Critical Assessment . 156
8.2. Future Directions . 157

vii

1. Introduction

The term database is commonly used to denote a large collection of data stored within a computer.
While initial database systems focused mainly on the physical representation of the database, relying
on files stored in the computers’ filesystem, new database models were introduced that provided an
abstraction layer over the physical representation of the database (Abiteboul, Hull et al., 1995; Silberschatz
et al., 2005). One of these new database models, the relational model, is nowadays an almost-ubiquitous
representation model and, since the introduction of this model by Codd (1970), there have been continuous
advancements on storage and querying mechanisms for relational data. Several companies have focused
on the commercialisation of relational database products, like Oracle, IBM DB2, and Microsoft SQL
Server or open-source solutions like PostgreSQL and MySQL. The relational model relies on a strict
separation between the data and the organisational schema of the data, where the schema must be
provided beforehand to the database management system. An historical evolution of the data models in
databases was presented by Navathe (1992) and, with the ultimate focus on graph databases, by Angles
and Gutiérrez (2008a).
Database research also began to focus on different aspects of their data, for instance maintaining

extra information such as temporal and provenance. Temporal information allows to determine when
tuples were inserted into the database or to represent time periods when the tuple is considered valid.
Provenance information becomes especially important when combining data from different sources, as it
can be used determine from which sources information was derived from.

A timeline of the different data models, approaches for representing temporal and provenance informa-
tion, and query languages is presented in Figure 1.1.1 The aim of this figure is to show trends in research
rather than exact dates for several topics. For example, research in semantic data models (like the
Entity-Relationship model), temporality and provenance in databases, as well as graph databases, has
spanned over several years.

Web Data Models

With the increased importance of the World Wide Web (WWW) in our daily lives, we have also witnessed
a shift in the focus of enterprise applications: from the desktop to the Web (Abiteboul, Buneman et al.,
1999). While the Web was initially used to boost the visibility of the enterprise, e.g. the corporate website
quickly became an important form of attracting new business and clients, nowadays more enterprise tasks
are accomplished though Web applications. For example, it is becoming commonplace for enterprises to
use online calendars and meeting scheduling systems or even word processing systems that allow employees
to collaboratively and concurrently work on the same document. Many of these Web applications follow
a multitier approach, where data sources (often residing in relational databases) are integrated before
exposing the result as HyperText Markup Language (HTML) pages, possibly linked to other information
sources across the Web (Silberschatz et al., 2005; Abiteboul, Buneman et al., 1999).
For an open environment, such as the WWW, the predefined schema requirement of the relational

model does not provide the flexibility necessary to deal with different representations of the same concepts
and agreeing on a common representation of concepts (also referred to as a global-schema) is often not
an achievable objective (Abiteboul, Buneman et al., 1999). Thus, semi-structured data emerged as a
1The models and languages we are particularly interested in for this thesis are highlighted in bold.

1

2

Data Models

Meta-
Information

Query
Languages

1970 1980 1990 2000

RDB

SQL

Temporal
databases

TSQL2

Provenance

Semantic
Object Oriented

Graph
OEM

XML

XSLT
XQuery

Temporal
XML

RDF

SPARQL

Temporal
RDF

JSON

Figure 1.1.: Overview of data models and query languages

possible solution for avoiding the need for a predefined schema and several flexible data models, well
suited for representing integrated data, were introduced (Papakonstantinou et al., 1995; Cluet et al., 1998;
Buneman, 1997). Most of the presented data models for semi-structured data are tree or graph-based.
On the WWW the Extensible Markup Language (XML) has become a widely used data representation
format and is regarded by Abiteboul, Buneman et al. (1999) as the de-facto standard for information
exchange.2 XML follows a semi-structured, tree-like data model and several information integration
projects relied on XML for representing their data (Draper et al., 2001b; Draper et al., 2001a; Baru et al.,
1999; Manolescu et al., 2001; Yu and Popa, 2004).

Another data model, the Resource Description Framework (RDF)3 (Manola and Miller, 2004) has
recently been gaining importance on the Web and the Semantic Web (Berners-Lee, Hendler et al., 2001),
supported by efforts like the Linking Open Data (LOD) initiative (Bizer, Heath et al., 2009). With the
increase of data published in RDF as Linked Data, for example the DBpedia project (Bizer, Lehmann
et al., 2009), a valuable and steadily growing source of structured information from various domains
is being made available. The possibility of using LOD structured information in integration scenarios,
allowing for an easy and low cost enrichment of enterprise data, provides further incentive for an enterprise
to represent its integrated data in RDF (Stephens, 2007).

Data Segmentation and Data Integration

Four decades past the introduction of the relational model, most current software applications still rely
on relational databases (RDB) to store their information. Enterprises commonly use RDB-based software
applications to manage each aspect of their business, ranging from human resources to manufacturing.
However, the use of specialised applications results in data segmentation, where the enterprise’s valuable
data is spread across different applications and relational databases (Dillnut, 2006; Silberschatz et al.,
2005; P. A. Bernstein and Haas, 2008).

For instance, having an integrated view on customers allows an enterprise salesman to better target its
product, or enables decision support systems to provide the management with a high-level view of all of
the enterprise resources, from manufacturing to human resources and sales. As such, data integration
in the context of relational databases has been a research topic in the past (Halevy, Rajaraman et al.,
2006) and a good overview of integration techniques is provided by Doan and Halevy (2005). Focusing on
enterprise data integration, common issues and possible solutions are described in Ziegler and Dittrich
(2004); Halevy, Ashish et al. (2005).

Common approaches for integrating segmented data over relational database systems involve the use of

2More recently, JavaScript Object Notation (JSON) is becoming the preferred information exchange format, often in
determent of XML.

3The RDF data model is considered essentially a directed labelled graph, however, in Section 1.2 we discuss different views
on this representation model.

2

3

mediator or data-warehousing systems (Wiederhold, 1992; Abiteboul, Buneman et al., 1999; Ziegler and
Dittrich, 2004). Mediator systems provide an abstraction layer over the original data sources often using
a global-schema (or mediated-schema), where queries over this schema are executed over the original
sources. On the other hand in the data-warehousing approach, data in the original sources is materialised
into a common data model. Although both of these approaches have advantages and disadvantages,
data-warehousing is particularly unsuitable in changing environments: consider for instance that one of
the sources is highly dynamic e.g. containing data gathered from sensors: this would cause the integrated
data to become quickly outdated (Abiteboul, Buneman et al., 1999). Other forms of data integration may
also be considered, such as federated databases (Sheth and Larson, 1990), using Web services (Abiteboul,
Benjelloun et al., 2002), or peer-to-peer systems (Arenas, Kantere et al., 2003).

For the scope of this thesis we consider performing the data integration by relying on a newly defined
query language that is capable of accessing and transforming data stored in heterogeneous data sources
and models that can be used as an implementation language for both mediator and data-warehousing
scenarios.

Meta-information in the Data Integration Process

Although existing systems provide a way to solve the data segmentation problem, additional questions
often arise when integrating data, such as which sources were involved in producing a specific piece of
information or how to deal with conflicting information contained in the original sources. For example,
different enterprise systems can store different addresses for an employee. There are several forms
of dealing with conflicting information, for example, maintaing provenance information (also known
as lineage) allows to determine from which of the original sources the specific information has been
derived (Cui et al., 2000; Woodruff and Stonebraker, 1997; Benjelloun et al., 2008) in order to trace
the origin of the contradiction and possibly correct it. Other approaches include maintaining temporal
or uncertain information, which caters for evolving data, possibly avoiding contractions, and levels of
confidence or certainty to be assigned to the conflicting data, respectively.4 These aspects of data have
been identified as an important part of the data integration process by Halevy, Rajaraman et al. (2006),
and for example, the Trio system (Widom, 2005; Agrawal et al., 2006) extends the relational data model
to consider both provenance and uncertain information.
Meta-information can become an important aspect of any data integration process and as such any

suitable data model for representing integrated data needs to cater for this kind of information. Even aside
from our core focus on data integration, meta-information is still an important aspect in any software
application. It is common in applications and database schemas to maintain temporal information, for
example, keeping logs of specific changes to the database, records of past employees, or having historical
data available for manufacturing materials in order to predict future needs. In certain scenarios, temporal
information even constitutes a critical aspect, where well known examples involve real-time monitoring
such as air-traffic control. In these cases, temporal information is considered an important dimension,
warranting its introduction into the relational model (Abiteboul, Hull et al., 1995; Snodgrass, 1999),
which in turn lead to the concept of temporal databases.5 Similar extensions have also been proposed
to represent temporal information in XML (Amagasa et al., 2000; Rizzolo and Vaisman, 2008) and
RDF (Gutiérrez, Hurtado and Vaisman, 2007; Pugliese et al., 2008; Tappolet and A. Bernstein, 2009).
However temporal information is not the only kind of meta-information we can consider. Other extensions
to the relational model also allow to represent ambiguous or approximate data in the form of fuzzy
information. An overview of fuzzy databases is provided by Ma and Yan (2008), where fuzzy extensions
were later also proposed for the XML (Ma and Yan, 2007) and RDF models (Straccia, 2009; Mazzieri

4In the following we refer to “information about data” commonly as meta-information.
5An historical overview of temporality in databases is presented by Snodgrass (1990).

3

1.1. Problem Statement 4

and Dragoni, 2008; Lv et al., 2008).

1.1. Problem Statement

Currently established data models do not easily support the data integration process: a data model
suitable for representing integrated data needs to be flexible and to cater for meta-information. However,
even such a flexible data model is not enough for a complete data integration application: while a flexible
data model facilitates the representation of integrated data, it still does not help the task of data gathering
and transformation. For a complete solution, the data integration application must be aware of both the
input sources and the target data model.
Existing solutions for enterprise data integration rely on specialised or custom-built applications,

following either the mediator or data-warehouse approaches, to bridge the distributed sources and different
data models. However, the costs of such applications quickly becomes too high (Halevy, Ashish et al.,
2005). Another option is to consider using a query language for the data integration task (Draper et al.,
2001a), but traditional query languages focus only on one data format and are thus not a possibility
when the distributed data adheres to different data formats. In such cases, the use of a query language
requires translating the original data into a common data model, much like the data-warehousing
approach, and then performing the queries over the integrated data. A scenario that may also complicate
such an approach is when the original data is protected by some form of access control, where these
access restrictions would also need to be replicated in the mediator or data-warehouse in order to avoid
information leakage.

With the introduction of the WWW, the data integration task can become unfeasible using traditional
approaches due to the large amount of sources and different models. The evolution of the Web into the
Semantic Web has also introduced a new data model, RDF, which can facilitate the representation of
integrated data. However, the currently standardised RDF-based specifications do not cater for any type
of meta-information regarding the individual RDF triples.6

1.2. A Model for Integrated Data

Software applications are now focused on the Web, having evolved from single-user applications and the
personal computer. When we look at data models we find a similar evolution (cf. Figure 1.1), starting
from data models that were mostly aimed at storing information in a single computer system to current
ones that allow to share and link information to and from different sources. The widely disseminated
relational data model, although perfect for a closed environment such as a specific application within an
enterprise system, is not so well suited for open environments like the Web, or for representing integrated
data since, in both cases, the data schema cannot always be determined a priori.

Given the variety of data and formats to be integrated, in this thesis we argue for a unifying data model
and a query language capable of integrating data represented in different formats and models. Several
semi-structured data models were presented that cater for dynamic, open, and flexible environments.

OEM. One of the most notable semi-structured data models is the Object Exchange Model (OEM)
model (Papakonstantinou et al., 1995), defined in the context of the TSIMMIS data-integration pro-
ject (Garcia-Molina et al., 1997). OEM is considered a semi-structured data model, consisting of a graph
of objects. An object is represented as a quadruple (label , oid , type, value), where label aims to be a
human readable description of the object, thus making the data model self-describing. The oid is a unique

6One possible way of attaching meta-information to RDF triples is by using reification. However the use of this feature
may be discouraged in future revisions of the RDF language cf. http://www.w3.org/2010/09/rdf-wg-charter.

4

http://www.w3.org/2010/09/rdf-wg-charter

1.2. A Model for Integrated Data 5

identifier for each object and type indicates the type of the value. Finally, value consists of an atomic
value or a set of objects.

XML. As presented by Suciu (1998), XML has important differences to semi-structured data, one of
which is that XML more naturally represents data as trees whereas semi-structured data models, namely
the OEM model, are usually graph-based.7 Another core difference between XML and the OEM model
resides in the ordering of the data model: XML is an intrinsically ordered data model, where each element
has a specific order among its siblings, while the OEM model consists of an unordered graph similar
(in terms of lack of ordering) to the relational model. The tree and ordered data model of XML makes
integrating different documents a difficult task, even requiring Turing-complete languages for arbitrary
transformations (Kepser, 2004). There are diverging opinions regarding whether XML is self-describing.
Undoubtably, its unrestricted modelling features allow to specify the meaning of the data it contains,
however, without the use of an XML Schema, it is impossible to accurately determine the types of the
values (Siméon and Wadler, 2003). Finally, another difference between these models is the use of XML
attributes and although the OEM model could be trivially extended to cater for similar representations,
it does not have a natural equivalent (Suciu, 1998).

RDF. The RDF data model is closely related to the OEM data model for semi-structured data: (i) its
representation model is a graph; (ii) it is unordered; and (iii) it is schema-less and self-describing,
relying on Uniform Resource Identifiers (URIs) (Berners-Lee, Fielding et al., 2005) as unique identifiers
for resources. The major differences between these data models is that the RDF data model is more
correctly represented by an hypergraph since, as described by J. Hayes and Gutiérrez (2004), properties
can themselves be the subject and object of other RDF triples, making the RDF model go beyond the
theoretical notion of a graph. The existence of blank nodes in RDF, akin to existential variables, is
another significant difference between the RDF and OEM data models. When compared to XML, RDF is
schema-unware: the task of RDF Schema (RDFS) is to deduce implicit information rather than restricting
the structure of the RDF data, as is the task of XML Schema for XML data. A survey of other graph
models, focusing mostly on databases, is presented by Angles and Gutiérrez (2008a).

Requirements of a Data Model for Integrated Data

In the following we define the characteristics of a data model that is suitable for representing integrated
data. Most importantly, any such data model needs to be composable i.e. the merging of data should be
an easy task and, inspired by semi-structured data models, we can present the desired features of a data
model for achieving composability as:

Entity-Centric Global Identifiers: The need for global identifiers is justified by the fact that we can, in
any closed system, uniquely identify an entity, for example, by giving it a unique sequential identifier.
For a global system, we also need to uniquely identify an entity, thus requiring a global identifier.
In the case of RDF, this global identifier is the URI. For global identifiers, we need to make some
assumptions, namely that they are used consistently i.e. the same identifier is not allowed to be
used to identify different entities. It is however possible for the same entity to be identified by
distinct identifiers.

Schema-less: A schema-less data model is one of the premises of semi-structured data: in an open and
possibly global environment, obtaining agreement on the schema to represent any domain is a
difficult and often impossible task. Monetary considerations aside (it would be extremely expensive

7XML does cater for representing arbitrary graphs, by assigning unique identifiers to nodes and then using XML references
to point to those identifiers.

5

1.3. Hypothesis 6

to develop a global schema) cultural differences or simply personal preferences often stand in the way
of achieving agreement on a schema (Goh et al., 1994). Some common examples are the cultural,
and often legislative, differences in the concepts of marriage: in some cultures marriage must be
monogamous while for others this is not a requirement. Another example of schema conflicts
would be modelling monotheistic and polytheistic views of religion. Conversely, under a closed
environment, it is possible to obtain a level of agreement over a topic, for example all users of a
specific system can agree on the use of a single domain model. For the WWW, one noteworthy
attempt at defining a collection of models is schema.org; supported by the Google, Yahoo! and
Bing search engines, the major incentive for using this vocabulary is that webpages will be better
indexed by these search engines. However, the concepts defined so far are unambiguous, such as
Places, Events, or Organisations. No vocabulary is yet provided that caters for ambiguous concepts
such as those presented above.

Self-Describing: Also related to the previous topic, a self-describing data model is a necessary character-
istic derived from existing semi-structured data models that allows arbitrary data to be merged
and exchanged without the need for domain specialists. This requirement allows us to arbitrarily
combine information about the same object, where object identity can be determined by global
identifiers.

Graph-Based: The need for a graph-based data model is necessary for the data integration step. If we
focus on the data models we presented so far, we rapidly come to the conclusion that we need a
graph-based data model: RDF is in itself graph-based and XML, although naturally a tree-based
model, includes forms of graph representation (by means of giving XML nodes identifiers and then
referring to them). As for the relational model, although it consists of a set of relations, the schema
is actually a graph when we take into account foreign key constraints between different relations.
When we take a schema-less data-model as the target data model, the schema information needs to
be encoded in the data and as such, even for the relational model, we require a target data model
that is a graph.

As we have seen, RDF has clear advantages over the relational and XML formats as a representation
model for integrated data: (i) RDF is per se schema-unaware; (ii) by relying on URIs, it uses a standard
mechanism for providing global identifiers for entities; and (iii) it is self-describing, since according to
the LOD principles, by accessing each URI we obtain further information about the resource or by using
RDF Schema (Brickley and Guha, 2004) we can further deduce implicit information.

1.3. Hypothesis

In this thesis we propose the use of RDF as a representation model for integrated data and extend
RDF with support for meta-information, thus allowing us to deal with temporal and uncertain data.
Several data models suitable for representing integrated data have been presented before, mostly tree or
graph-based (Cluet et al., 1998; Papakonstantinou et al., 1995; Abiteboul, 1997), and we consider that
RDF, being graph-based, is a well suited format for representing integrated data. We are particularly
focusing on the conversion of data stored in legacy models, such as relational databases and XML, into
RDF. The objective is to facilitate this data integration process by providing a query language that is
capable of accessing the data stored in different source formats and thus, as opposed to traditional query
languages, avoid the explicit need for a priori data translation, while allowing the target RDF data to be
created.

Support for meta-information in RDF is necessary not only for representing integrated data, but also if
the original source already contains some form of meta-information, such as temporal data, or access

6

schema.org

1.4. Contributions 7

restrictions. To represent temporal, fuzzy, provenance, or access control information, we need to consider
an extension of the RDF data model that caters for such kinds of meta-information and further make the
query language aware of this extension.
The main hypothesis of this thesis can be summarised as follows:

Efficient data integration over heterogeneous data sources can be achieved by:
(i) a query language that allows to access data adhering to different formats in
the original sources (without the need for data transformation); (ii) a set of
optimisations that allow for efficient query evaluation in such a query language;
and (iii) an interchange representation format based on RDF with support for
meta-information, allowing to represent temporal, uncertain, provenance, or even
access-control information.

The proposed query language must be expressive enough to represent arbitrary transformations between
data models, an important characteristic since one of the considered data models is the tree-based XML,
where the merging of XML data needs to based on tree transformations.

When representing the integrated data as RDF extended with meta-information, other issues arise:
how should RDFS handle such meta-information in the inference process? Or how can we query the
meta-information? Extending the RDF data model with meta-information also requires a similar extension
to SPARQL: the World Wide Web Consortium (W3C) recommended query language for RDF.

1.4. Contributions

We validate our hypothesis by designing a query language, called XSPARQL, that combines the XQuery,
SPARQL, and the Structured Query Language (SQL) query languages, thus providing a cross-model
query language suitable for data integration. The initial proposal of combining the XQuery and SPARQL
query languages was presented before the start of this thesis by Akhtar et al. (2008). Shortly after
this initial paper, I joined the project and started working on the following aspects, which constitute a
substantial part of the presented thesis:

• formalising the existing XSPARQL language and extending its semantics to cater for both the XML
and relational models;
• a set of optimisations over this novel language, specifically targeted at nested queries, that improve
the evaluation times for such types of queries, including both formal proof of the correctness and
empirical proof of the efficiency of such optimisations; and
• a general extension of the RDF data model, called Annotated RDFS, that allows to represent

meta-information and forms the target data model for integrated data. We also detail extensions of
the RDFS inference rules and the SPARQL query language that allow to infer new information and
query this novel data model.

The difference in ordering of the data models is bridged at the query language level: even for the
unordered data models (relational and RDF) their query languages (SQL and SPARQL, respectively)
impose an ordering on the query results.8 The XSPARQL query language is based on XQuery, which
is an intrinsically ordered query language for XML data, and we rely on the implicit ordering provided
the SQL and SPARQL query languages to maintain an ordered query language. For the purposes of
data integration, where we are interested in generating RDF, the ordering in the query language is not
important (since the target data model is unordered).9

8This is further detailed in Chapter 3.
9In Chapter 5 we exploit features of the XQuery language (and thus inherited by XSPARQL) that allow to disregard
ordering during query evaluation.

7

1.4. Contributions 8

1.4.1. Impact

For tackling our hypothesis points (i) and (ii), the consolidated work on the XSPARQL language,
catering for the integration of the XML and RDF formats has been published in the Journal on Data
Semantics (Bischof et al., 2012). This work formalises XSPARQL and introduces the optimisations for
nested SPARQL queries in our current implementation of the XSPARQL language. Further expanding on
our hypothesis point (i), the extension of XSPARQL to also support relational databases (Lopes, Bischof,
Decker et al., 2011) was presented at the Portuguese Conference on Artificial Intelligence (EPIA2011).
Regarding our novel data model, hypothesis point (iii), we introduced the initial Annotated RDFS

framework, along with the definition of the Fuzzy and Temporal annotation domains, was accepted to
the AAAI Conference on Artificial Intelligence (AAAI 2010) (Straccia et al., 2010). Lopes, Polleres et al.
(2010) later introduced the extension of the SPARQL query language that caters for querying domain
annotations. This work was presented at the International Semantic Web Conference (ISWC-10). The
consolidation of the Annotated RDFS model and the AnQL query language (Zimmermann et al., 2012)
was published in the Journal of Web Semantics.

Finally, based on the data model proposed in this thesis, Lopes, Kirrane et al. (2012) specialises
Annotated RDFS to the access control domain. This is also an important aspect when considering
data integration since the underlying sources often to have their data protected by some form of access
control. Using the combined XSPARQL query language, it is possible to extract the data and access
control information from the underlying sources and replicate it as Annotated RDFS. This work has been
accepted to the International Conference on Logic Programming.

1.4.2. Other Contributions

Since the focus of this thesis is on Web languages and data models, in addition to research publications,
another important aspect of the dissemination of our results is the impact regarding standardisation. As
such, parts of the work developed for this thesis have been submitted to the W3C in the form of Member
Submissions or at the W3C organised workshop on RDF Next Steps: the first contribution was a W3C
Member Submission describing the XSPARQL language. The aim of such Member Submissions is to
make the W3C aware of technology being developed, which may be considered as input to future working
groups. The XSPARQL W3C Member Submission was composed of four documents: (i) XSPARQL
Language Specification (Polleres et al., 2009); (ii) XSPARQL: Implementation and Test-cases (Lopes,
Krennwallner et al., 2009); (iii) XSPARQL: Semantics (Krennwallner et al., 2009); and (iv) XSPARQL:
Use cases (Passant et al., 2009).
Two position papers were accepted to the W3C Workshop on RDF Next Steps. The purpose of this

workshop was to gather feedback on possible improvements (if any) for the next iteration of the RDF
language. The accepted position papers argued for the need to integrate XML and RDF by means of a
query language (Lopes, Bischof, Erling et al., 2010), largely inspired by the XSPARQL language, and the
need to cater for meta-information in RDF (Lopes, Zimmermann et al., 2010), calling for a framework
similar to Annotated RDFS.
A presentation detailing the XSPARQL language and focusing on the integration of heterogeneous

sources on the Web, such as XML and RDF in the form of Linked Data, was presented at the 2011
Semantic Technology (SemTech) Conference (Lopes and Polleres, 2011).
Also, my participation in the W3C RDB2RDF working group, currently a W3C recommendation,

resulted in an implementation of the RDB2RDF Direct Mapping (Arenas, Prud’hommeaux et al., 2012)
and R2RML (Das, Sundara et al., 2012) language specifications, using the XSPARQL language described
in this thesis. The implementation of these specifications in XSPARQL was submitted to the W3C
RDB2RDF Working Group.

8

1.5. Thesis Outline 9

1.5. Thesis Outline

Next we present an overview of each of the following chapters in this thesis:

Chapter 2 (Data Models) presents the necessary background information regarding the relevant data
models considered in the integrated query language: the relational, XML, and RDF data models.

Chapter 3 (Query Languages) gives an overview of the query languages that can be used over the
different data models: SQL for relational databases, XQuery for XML data, and SPARQL for data
adhering to the RDF model.

Chapter 4 (The XSPARQL Language) introduces our combined query language, called XSPARQL, that
allows data adhering to the relational, XML, and RDF data models to queried using a common
language. The XSPARQL language consists of an extension of the XQuery query language with
syntactical constructs taken from SQL and SPARQL. We present the syntax and semantics of
XSPARQL, based on extending the XQuery formal semantics, and show correspondences between
this novel query language and its composing languages.

Chapter 5 (XSPARQL Evaluation and Optimisations) describes our current implementation of the
XSPARQL language, presents the experimental evaluation and some possible optimisations for
XSPARQL queries. These optimisations focus on the interface between the different data formats,
which in the case of nested queries, may cause severe evaluation overhead when compared with
their single data model counterparts. We present an evaluation of the proposed optimisations based
on a newly defined benchmark suite encompassing different data models.

Chapter 6 (An Extension of RDF and SPARQL towards Meta-Information) presents a common ex-
tension of the RDF data model, called Annotated RDFS, that caters for different kinds of meta-
information, and facilitates the modelling of Temporal, Fuzzy, and Provenance meta-information in
RDF. This chapter also includes the extension of the SPARQL query language to query the RDF
annotated with meta-information. This extension of the SPARQL language, called AnQL, allows
the user to write meta-information aware queries and we extend the SPARQL algebra to allow for
the propagation of this meta-information in the query.

Chapter 7 (A Secure RDF Data Integration Framework) illustrates an integrated use case where the
XSPARQL language further extended to support Annotated RDFS is used to extract legacy
information contained in several enterprise systems and convert it to RDF while maintaining any
existing access control permissions. We give an overview of a system architecture that, based on
XSPARQL, extracts the data (along with the access control information) from the original sources,
converts this data into Annotated RDFS, and enforces the access control permissions.

Chapter 8 (Conclusions) contains critical discussion of the presented work, highlights future directions
of research and finishes with some concluding remarks.

9

Part I.

State of the Art

10

2. Data Models

This chapter details how data is represented in each of the data models mentioned in the previous chapter.
In the context of databases, a common definition for the term data model is presented by Silberschatz
et al. (1996) as “a collection of conceptual tools for describing the real-world entities to be modeled in
the database and the relationships among these entities”. This definition focuses on the (essential) data
representation capabilities of a data model; however more fine-grained definitions, namely by Codd (1980),
also include in the notion of data model operators and inference rules for retrieving or deriving data as
well as integrity rules for determining accepted database states. In this chapter, we consider the definition
by Silberschatz et al. (1996) and are thus particularly interested in the data representation aspects of
each data model: the relational model, the tree based data models XML and JSON, and RDF. However,
we do touch upon the inferencing capabilities of RDF in Section 2.4.3 with RDF Schema; these will be
required later in Chapter 6. In Chapter 3, we will focus on querying the presented data models.

Running example

In this thesis we will use examples from the music domain, where we are interested in representing persons,
bands, albums, and songs. In our simplified model, persons can be members of bands and can listen
to specific songs. Bands release albums, which in turn include songs. For presentation purposes and
conciseness of examples, we will use a reduced set of entities, included in Example 2.1.
We chose to use the music domain, as opposed to more enterprise oriented examples, due to the

availability of information. We note that data required for this use case is available in the WWW,
for instance, information regarding bands can be found in Wikipedia (http://www.wikipedia.org/) or
MusicBrainz (Swartz, 2002), while personalised information about the songs individuals listen to can be
found in Last.fm (http://last.fm/).

Wikipedia/DBpedia. The widely known online encyclopaedia Wikipedia relies on user contributions
for its contents. DBpedia (Bizer, Lehmann et al., 2009) consists of a partial export of the information
from Wikipedia into the RDF format, accessible using standard query languages such as SPARQL. For
our running example, we are interested in extracting information regarding artists, bands, and albums
and we often use DBpedia URIs as identifiers for entities.

Last.fm. The online Web service Last.fm allows users to submit the songs and artists they listen to.
These songs are aggregated in order to create a user profile containing the top artists, lists of songs from
each user, and provide personalised recommendations of new artists. The data presented in this thesis
was extracted from this author’s Last.fm website.1 The data retrievable via the Last.fm API contains
information such as the five most played bands from a user profile and, for each band, the most played
tracks by the user and the albums they are included in.

Example 2.1 (Use case data). This example presents the data we are using in the examples of this
thesis:a

persons: Marco Hietala, Tarja Turunen

1Last.fm user profile available at http://last.fm/user/jacktrades/, retrieved on 2012/04/10.

11

http://www.wikipedia.org/
http://last.fm/
http://last.fm/user/jacktrades/

2.1. Relational Model 12

bands: Nightwish
albums: Wishmaster
songs: FantasMic, Wishmaster

In this thesis, we are interested in representing this data in four different formats: (i) a relational
database, (ii) XML, (iii) RDF, and (iv) JSON. The representation of this data in each specific syntax
is accompanied by the description of each data model throughout this chapter.
aFor the sake of conciseness of examples, we restrict the presented data to one band, two members and one album of

the band.

In the next sections we describe the relational model, the tree-based XML and JSON models, and the
graph-based RDF data model. We conclude with an high-level comparison of the presented data models
in Section 2.5. In Chapter 3, we will describe the respective query languages associated with each data
model.

2.1. Relational Model

Due to the ever-growing need to store information, database systems were one of the most researched
software systems and have evolved from the use of the filesystem to store the data into the currently
ubiquitous relational database management systems (Abiteboul, Hull et al., 1995). Initially, the simple use
of filesystems to store data did not enforce any structure on the data, where each file could have its own
internal structure. One major turning point in the evolution of database systems was the separation of the
logical definition of the data from its physical representation (known as the data independence principle).
Thus, the task of managing the physical representation is left up to the database management system
and is usually hidden from the database user. This separation also led to the development of several
logical data models that allowed data to be described independently of their physical representation.
The logical data models can be composed primarily of a Data Definition Language (DDL) and a Data
Manipulation Language (DML). The DDL specifies the structure used to represent data while the DML
specifies methods to access and update data. The hierarchical and network data models were the first
logical models to be introduced, where the former used a tree structure for representing its data and the
latter a graph structure. However, according to Abiteboul, Hull et al. (1995), major issues with these
logical models were: (i) they were still closely related to the physical representation model; and (ii) their
DML were limited, focusing mostly on navigating the physical representation.
The introduction of the relational model by Codd (1970), with its strong theoretical foundations,

propelled database management systems forward, allowing for advances in efficient query translation
methods (from the relational logical model into the physical representation model) and query optimisation
techniques. In the relational model, data is represented primarily using named relations, where each
relational tuple (or record) consists of several typed and named attributes. A commonly used alternative
representation for relational data depicts each relation as a table, where the attributes are the columns of
this table, and each relational tuple is represented as a row in the table. Next we present a definition
of the relational model, based on Abiteboul, Hull et al. (1995), that relies on the pairwise disjoint and
countably infinite sets R for relation names, A for attribute names and D for the domain of values
that the attributes can hold. An element d ∈ D is called a constant and for an attribute a ∈ A we
represent the domain of a as dom(a). Furthermore, a total order is assumed between the elements of A:
this is a necessary feature to later allow us to specify relational instances in a similar fashion to logic
programming (Lloyd, 1987).

Definition 2.1 (Relation and database schema). A relation schema is represented as r[U], where r ∈ R

is a relation name and U ⊂ A is a set of attribute names, called the sort of r and denoted by sort(r). The

12

2.1. Relational Model 13

arity of r consists of its number of attributes: |sort(r) |. In turn, a database schema S is a non-empty
and finite set of relation schemas.

Example 2.2 (Relational Schema). A possible schema for a relational database that stores informa-
tion relevant to our use case is S = { person, band , album, song }, where

sort(person) = { personId , personName, bandId }
sort(band) = { bandId , bandName }

sort(album) = { albumId , albumName, bandId }
sort(song) = { songId , songName, albumId }

Other features of the relational model include primary and foreign keys. Intuitively, a primary key
consists of a set of attributes that uniquely identify the tuples of a relation. For example, in our database
schema we assume an artificially generated number that uniquely identifies each person or band (personId

and bandId , respectively). Foreign keys are used to specify dependencies between attributes of two
different relations: the connected attributes must have the same value in both relations. This can be seen
in Example 2.2, where the same attribute names are used in different relations to specify the foreign keys,
e.g. bandId in the relations person and band .
Furthermore, the null value is assumed to belong to all domains and, unless otherwise specified by

means of constraints, can be used in place of any valid value for an attribute of a relation. The intended
meaning of null values is to represent missing or unknown information. However, since null values greatly
complicate the definition of the algebra operations (presented in Section 3.1.2), we will, for the most part,
ignore null values in the presented definitions.

Database Instances

Abiteboul, Hull et al. (1995) present different perspectives for representing relational tuples i.e. instances
of relational schemas, the conventional and logic programming perspectives. The so-called conventional
perspective on relational databases (used later in Section 3.1.2) represents tuples as functions, where a
tuple t over a finite set of attributes U consists of a function u with domain U . The sort of u is U and
the value of u of an attribute a ∈ U is denoted u(a). Extending this notion to a set of attributes V ⊆ U ,
we say that u[V] = u|V denotes the restriction of the function u to V , i.e. u[V] denotes a new tuple v
over V such that v(a) = u(a) for each attribute a ∈ V .
An alternate view focuses on the logic programming perspective, under which a relational tuple can

be viewed as a fact. For a relation name r with arity n, a fact is an expression r(a1, . . . , an), where
each ai ∈ D is a constant. Facts can also be represented as r(u), where u = 〈a1, . . . , an〉. According
to this representation, a relation instance over a relation schema r is a finite set of facts over r and a
database instance over a database schema S is the union of all relation instances over r, for each relation
schema r ∈ S. Since relations are represented as sets, the standard set operations of intersection, union
and difference (∩,∪, and −, respectively) can be applied and relations can be compared using the ⊂,⊆,=,
and 6= operators.2 Example 2.3 represents a database instance following the logic programming perspective.

Example 2.3 (Database Instance). The database instance containing the use case data from
Example 2.1, over the database schema presented in Example 2.2, is as follows:

2We note that although the relational model is formally described using a set based semantics, it is common for database
systems to use multi-sets for representing the data and the results of SQL queries.

13

2.2. Extensible Markup Language (XML) 14

{ person(1, ‘Marco Hietala’, 1) , person(2, ‘Tarja Turunen’, 1) ,

band(1, ‘Nightwish’) ,

album(1, ‘Wishmaster’, 1) ,

song(1, ‘FantasMic’, 1) , song(2, ‘Wishmaster’, 1)}

Both views on relational data are equivalent and are used for different formalisations of the relational
model and query languages (as presented in Section 3.1).

2.2. Extensible Markup Language (XML)

As we have highlighted in Chapter 1, with the growing success of the WWW, where data exposed as
HTML is often extracted from relational databases, the need to query Web Data in a structured way and
thus consider the Web as a global database increased (Silberschatz et al., 2005; Abiteboul, Buneman et al.,
1999). Also powered by several data integration projects, research began to focus on the representation
and querying of semi-structured data following a graph or tree structure. Semi-structured data models
were devised as the required formats for representing data available on the Web and as a representation-
independent way to transfer data between different database management systems (Abiteboul, 1997;
Buneman, 1997).
The Extensible Markup Language (XML) (Bray, Paoli, Sperberg-Mcqueen et al., 2008) is a semi-

structured representation format and, with the support of the W3C, it has become the de facto standard
for data exchange on the Web (Suciu, 1998; Abiteboul, Buneman et al., 1999). XML is a subset of
the Standard Generalized Markup Language (SGML) ISO standard (ISO, 1986) and is designed to be
compatible with SGML and HTML. XML represents data in a tree-like format that, when compared to
the relational format, is a more flexible data representation format and is also considered easier to read
and write for both humans and machines.
XML has also brought forward a new class of databases: XML databases. Although currently most

databases provide easy creation of XML data, for example by exporting the data they contain as an
XML document, XML databases refer to a database management system that manage collections of XML
data (Katz et al., 2003). Even though the data may be internally represented in another format, access
and manipulation is based on XML formats and languages.
Data 2.1 contains the representation of the use case data from Example 2.1 in XML. This document

starts by representing a user and the top bands they listen to, where each band includes information
regarding its members and albums, and for each album, the songs listened to by the user. As per Bray,
Paoli, Sperberg-Mcqueen et al. (2008), the Extensible Markup Language describes what are called XML
documents, which are composed primarily of XML elements. In turn, XML elements consist of a start-tag,
the element content, and an end-tag. Consider the following XML element:

<song>Wishmaster</song>

Start- and end-tags are indicated by “<song>” and “</song>”, respectively, where “song” is called the
element name, and the element content may consist of text (any string of characters), other (nested)
XML elements, CDATA sections, processing instructions or comments. CDATA sections can be used
to include text that contains markup characters (such as the start- and end-delimiters) and processing
instructions contain data that is to be sent to the application consuming the document. Comments can
be present anywhere in the document and, similar to any programming language, can be ignored by the
XML processor. Furthermore, XML elements may contain attributes enclosed in their start-tags, in this
case the “album” element has the “name” attribute with value “Wishmaster”:

<album name="Wishmaster">

14

2.2. Extensible Markup Language (XML) 15

1 <?xml version="1.0"?>
2 <user>
3 <bands>
4 <band name="Nightwish">
5 <members>
6 <member>Marco Hietala</member>
7 <member>Tarja Turunen</member>
8 </members>
9 <albums>

10 <album name="Wishmaster">
11 <song>FantasMic</song>
12 <song>Wishmaster</song>
13 </album>
14 </albums>
15 </band>
16 </bands>
17 </user>

Data 2.1: Bands in XML (bands.xml)

In XML text, elements, CDATA, processing instructions, comments, and attributes are collectively
referred to as XML nodes.

2.2.1. XML Namespaces

XML provides a way to disambiguate entities such as element and attribute names by using XML
namespaces (Bray, Hollander et al., 2009), where each XML namespace is identified by a URI refer-
ence (Berners-Lee, Fielding et al., 2005). XML allows, by means of reserved attributes, to associate partial
URIs with a prefix name and/or to declare a default namespace. Qualified names (or QNames) provide a
convenient form of naming element and attribute names in XML and can be composed of prefixed or
unprefixed names. Prefixed names make use of the previously declared prefixes and are combined with the
local part to specify the URI reference. For unprefixed names, if a default namespace declaration exists it
is taken as the namespace value, otherwise there will be no namespace value. For example, including the
“xmlns” attribute in an XML element declares the default namespace to be used within that element:

<user xmlns="http://example.org/bands/">

while URIs can be associated with a prefix in the following manner:

<members xmlns:foaf="http://xmlns.com/foaf/0.1/">

XML namespaces are scoped to the element in which they are declared, including any child elements.

2.2.2. XML Validation

The XMLW3C specification (Bray, Paoli, Sperberg-Mcqueen et al., 2008) defines two levels of conformance
for XML documents: well-formed documents and valid documents. Well-formedness constraints primarily
ensure that the XML document follows syntactic specifications, such as (to name but a few): (i) they
must contain at least one element; (ii) a distinct element, called the root, is not included in the content of
any other element; (iii) for all non-root elements, its start- and end-tags must be included within the
content of the same element, i.e. opening and closing tags must not overlap; and (iv) attribute names
must be unique within the same element.
On the other hand, valid documents rely on a schema that, similar to relational databases, specifies

the structure of a particular class of XML documents. Such schemas can be specified using two different

15

2.2. Extensible Markup Language (XML) 16

1 <!DOCTYPE user [
2 <!ELEMENT user (bands)>
3 <!ATTLIST user username CDATA #REQUIRED>
4 <!ELEMENT bands (band*)>
5 <!ELEMENT band (members,albums)>
6 <!ATTLIST band name CDATA #REQUIRED>
7 <!ELEMENT members (member*)>
8 <!ELEMENT member (#PCDATA)>
9 <!ELEMENT albums (album*)>

10 <!ELEMENT album (song*)>
11 <!ATTLIST album name CDATA #REQUIRED>
12 <!ELEMENT song (#PCDATA)>
13]>

Figure 2.1.: DTD definition for the bands XML data

formats: Document Type Definition (DTD) or XML Schema, both of which are detailed below.3 In
Chapter 4 we will define XML Schema datatypes for representing RDF concepts and thus incorporating
them into XQuery.

Document Type Definition

DTD specifications are mostly referenced here for historical reasons, since XML Schema is more widely
used (as detailed in the next section). DTD specifications consist of markup declarations, such as element
type, attribute list, entity or notation declarations. Element type declarations are defined using the
‘ELEMENT’ keyword, for instance:

<!ELEMENT album (song*)>

specifies an “album” element that is constituted by any number of “song” elements. The “album” element
is required to have an attribute named “name” by the following attribute list declaration:

<!ATTLIST album name CDATA #REQUIRED>

The complete DTD definition for the use case XML structure is presented in Figure 2.1. An attribute
declared as CDATA indicates that its value must be a sequence of characters and/or XML markup. On the
other hand, PCDATA (meaning “parsed character data”) indicates that only one text element, and no other
nodes are allowed in the content. Adding this DTD definition to the XML document from Data 2.1 would
ensure that any validating XML processor checks the structure of the XML data against the provided
schema definition.

XML Schema

While DTDs are included in the W3C XML specification and therefore are widely available, there are
some drawbacks to their use, most noticeably the lack of namespace support. To overcome such drawbacks,
the W3C has defined the XML Schema specification, composed of two parts: (i) an XML-based syntax
for validating XML documents (Thompson et al., 2004); and (ii) a specification of XML datatypes (Biron
and Malhotra, 2004).

The XML Schema definition of the use case XML data is presented in Figure 2.2, which has the same
effect as the DTD presented in Figure 2.1: validating the XML document from Data 2.1. In XML Schema,
XML elements and attributes are declared using an XML element named “element” and “attribute”,

3There are other schema languages for XML, such as the Relax NG language, but for the scope of this thesis we will focus
on W3C specifications.

16

2.2. Extensible Markup Language (XML) 17

1 <?xml version="1.0" encoding="utf-8"?>
2 <xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
3 <xs:element name="user">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element ref="bands"/>
7 </xs:sequence>
8 <xs:attribute name="username" use="required" type="xs:string"/>
9 </xs:complexType>

10 </xs:element>
11 <xs:element name="bands">
12 <xs:complexType>
13 <xs:sequence>
14 <xs:element ref="band" minOccurs="0" maxOccurs="unbounded"/>
15 </xs:sequence>
16 </xs:complexType>
17 </xs:element>
18 <xs:element name="band">
19 <xs:complexType>
20 <xs:sequence>
21 <xs:element ref="members"/>
22 <xs:element ref="albums"/>
23 </xs:sequence>
24 <xs:attribute name="name" use="required" type="xs:string"/>
25 </xs:complexType>
26 </xs:element>
27 <xs:element name="members">
28 <xs:complexType>
29 <xs:sequence>
30 <xs:element name="member" type="xs:string" minOccurs="0" maxOccurs="unbounded"/

>
31 </xs:sequence>
32 </xs:complexType>
33 </xs:element>
34 <xs:element name="albums">
35 <xs:complexType>
36 <xs:sequence>
37 <xs:element ref="album" minOccurs="0" maxOccurs="unbounded"/>
38 </xs:sequence>
39 </xs:complexType>
40 </xs:element>
41 <xs:element name="album">
42 <xs:complexType>
43 <xs:sequence>
44 <xs:element name="song" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
45 </xs:sequence>
46 <xs:attribute name="name" use="required" type="xs:string"/>
47 </xs:complexType>
48 </xs:element>
49 </xs:schema>

Figure 2.2.: XML Schema definition for Bands XML data (partial)

17

2.2. Extensible Markup Language (XML) 18

respectively, contained in the “http://www.w3.org/2001/XMLSchema” namespace. For example, the “album”,
along with its “name” attribute and “song” elements, are defined in lines 41–48 of Figure 2.2.
The specification of datatypes in XML (Thompson et al., 2004) introduces a datatype system that

is also used by other W3C specifications, such as the RDF specification (Manola and Miller, 2004). A
datatype is defined by (a) the value space: a set of values for a datatype; (b) the lexical space: a set of
valid character strings for the datatype; and (c) a lexical-to-value mapping linking elements of these two
sets. A datatype is identified by a URI and a datatype map associates the URI with the specific datatype.
The defined datatype system allows for the creation of user-defined datatypes, where such datatypes are
derived from existing datatypes (called the base type) by restricting or extending its value space and
lexical space.

The formalisation of XML Schema was proposed by Siméon and Wadler (2003), where the authors also
describe a more human readable notation for both XML elements and XML schema types. This notation
was later adopted by the XQuery semantics specification (Draper, Fankhauser et al., 2010). Following this
notation, the XML element <song>Wishmaster</song> is represented as element song { "Wishmaster" }.
The “song” and “album” elements from the XML Schema in Figure 2.2 can be represented in the shorthand
notation as:

define element song of type xs:string
define element album of type albumType
define type albumType {
element song*,
attribute name of type xs:string }

After performing validation with the presented XML Schema, the XML element is represented as:
element song of type xs:string { "Wishmaster" }. In Chapter 4 we specify the types introduced by the
XSPARQL language following this notation.

2.2.3. XML Abstract Representations

The W3C specifications are defined over abstract representations of XML documents, with the objective
of omitting the concrete syntax of XML documents, namely the XML Information Set (Infoset) and the
XQuery 1.0 and XPath 2.0 Data Model (XDM). The Infoset provides the basic definitions for describing
well-formed XML documents, with the purpose of serving as a reference for other XML specifications.
On the other hand, the more complex XDM is meant to act as a data model for the XPath, XSLT
and XQuery languages: describing their input documents and the values for expressions. These query
languages will be the focus of Section 3.2. The Infoset describes only the basic information contained
in an XML document, while the XQuery and XPath Data Model is used mostly for the XML Query
languages (described in Section 3.2).

XML Infoset

The XML Information Set, described by Cowan and Tobin (2004), provides definitions referring to a
well-formed XML document and as such, any well-formed XML document, although not necessarily a
valid document, will have an Infoset. The Infoset consists of a set of information items, where each
information item describes a part of the XML document by means of properties that refer to other
information items.

An Infoset contains exactly one document information item that, directly or indirectly, refers to all of
the other information items in the set. Other information items are used to represent XML nodes such as
elements, attributes, processing instructions, or comments.

18

http://www.w3.org/2001/XMLSchema

2.3. JavaScript Object Notation (JSON) 19

XQuery 1.0 and XPath 2.0 Data Model (XDM)

The XPath, XSLT, and XQuery languages use the XQuery 1.0 and XPath 2.0 Data Model (XDM) (Fernán-
dez et al., 2010) for describing their input XML documents. XDM is based on the XML Infoset and
extends it with support for: (i) XML Schema types (Thompson et al., 2004; Biron and Malhotra, 2004);
(ii) typed atomic values; (iii) collections of documents and complex values; and (iv) ordered, heterogeneous
sequences.
The basic element of the data model is called an item, which has a type (either an XML node or

an atomic type) and an associated value. Types in the data model are uniquely represented using
(expanded) QNames and the pre-defined atomic types include the built-in types presented in Biron and
Malhotra (2004), extended with the following additional types: (i) xs:anyAtomicType; (ii) xs:untyped;
(iii) xs:untypedAtomic; (iv) xs:dayTimeDuration; and (v) xs:yearMonthDuration.

The data model defines seven types of XML nodes, namely: document, element, text, attribute,
namespace, processing instruction, and comment. Each item that represents an XML node is associated
with the corresponding type and for every type of node, it is possible to compute a string value. In the
data model, each XML node has a unique identity, which is equal only to itself. On the other hand, all
instances of the same atomic values are considered equal, i.e. they do not have a unique identity. XDM
defines a total order among all available nodes, called document order, which consists of the order that
nodes appear in the original document.
In comparison to the Infoset, another addition of the XDM is the support for sequences. A sequence

consists of any number of items (XML nodes and/or atomic values) and are represented as a comma-
separated ‘,’ list of items, delimited by the ‘(’ and ‘)’ characters. Each item is considered equal to
a singleton sequence containing that item and furthermore sequences are not allowed to include any
other sequences and are thus always considered as a flattened sequence. For example, the sequence
“(1,(<a/>), "3")” is translated to “(1,<a/>, "3")”.

2.3. JavaScript Object Notation (JSON)

JSON is defined as a “lightweight data-interchange format” is another tree-based model designed as an
alternative to XML for data transmission between different applications. Although it originates from the
JavaScript language, its format is language independent and thus can be used by several programming
languages.
The main structure of JSON is called an object, enclosed between ‘{’ and ‘}’, and consists of an

unordered sequence of name-value pairs, separated by ‘:’. In such structures, the name is restricted to
be a string while value may be one of (a) string; (b) number; (c) object; (d) array; (e) boolean (true
or false); or (f) null. Arrays consist of an ordered list of values and are enclosed between ‘[’ and ‘]’.
The JSON representation of our use case data is presented in Data 2.2. This simple and unambiguous
structure, coupled with the fact that JSON is natively recognised and imported by JavaScript, made
JSON extremely popular on the Web. A comparative study of the uptake of XML and JSON was
presented by Musser (2011).4

Although JSON and XML serve very similar purposes, commonly presented advantages for using JSON
over XML are: (i) JSON documents are (usually) smaller; and (ii) an external schema is not required to
unambiguously represent the content. On the other hand, one of the biggest disadvantages of JSON is
its lack of support for namespaces: whereas in XML it is possible to distinguish attribute and element
names by giving them different namespace prefixes, this is not possible in JSON.

4The presentation is available at http://www.slideshare.net/jmusser/j-musser-semtechjun2011/, retrieved on
2012/04/10.

19

http://www.slideshare.net/jmusser/j-musser-semtechjun2011/

2.4. Resource Description Framework (RDF) 20

1 {
2 "bands": {
3 "Nightwish": {
4 "members": [
5 "Tuomas Holopainen",
6 "Tarja Turunen"
7],
8 "albums": {
9 "Wishmaster": [

10 "Wishmaster",
11 "FantasMic"
12]
13 }
14 }
15 }
16 }

Data 2.2: Bands in JSON (bands.json)

Due to the similarities between the JSON and XML formats, the question of translating between
them has arisen. Since XML is arguably the more expressive language, being more flexible in its format,
converting from XML to JSON poses some problems:

Namespaces. Since JSON does not natively support namespaces, a non-trivial issue is how to represent
XML namespaces in such a fashion that can be translated back into XML;

Attributes. Similar to namespaces, JSON has no equivalent for XML element attributes and similar
representational questions arise for XML attributes;

Mixed Content. Since the contents of XML elements can consist of text values arbitrarily mixed with
other elements, an accurate representation of this mixed content in JSON, although possible, would
yield a very verbose representation.

On the other hand, converting from JSON to XML is a straightforward task, relying solely on using
predefined element names to represent JSON objects and arrays. This straightforward conversion will be
used in Chapter 4 for the inclusion of JSON data into our proposed transformation language.

2.4. Resource Description Framework (RDF)

In the attempts to transform the Web into a global database, another model, the Resource Description
Framework, was proposed as the data model for representing machine readable data, also known as
Semantic Web data. The RDF model allows for the specification of statements about Web Resources (Man-
ola and Miller, 2004). However, this general notion of resource may refer not only to virtual entities (that
can only be found on the Web) but also any physical entity that can be identified on the Web. Such
resources are identified by a URI, generally indicating where the resource is located, or a blank node,
which plays the role of an anonymous resource and allows for the modelling of incomplete or unknown
data. In the following, we identify blank nodes by using the prefix ‘_:’ followed by a string, called the
blank node label. Blank nodes are scoped to the document they appear in, i.e. two blank nodes from
different documents, even if they have the same label, must be considered different. Furthermore, RDF
literals can be used to specify string- or datatype-based values for properties. The atomic statements of
the RDF data model are called RDF triples consisting of subject, predicate and object, and intuitively
state that the subject is connected to the object by the predicate relation. Since triples can also be viewed

20

2.4. Resource Description Framework (RDF) 21

as part of a labelled directed graph, where subjects and objects correspond to nodes and predicates to
edges of the graph, we refer to a set of such RDF triples as an RDF graph.
For the definitions of the RDF syntax, we rely on the the pairwise disjoint alphabets U, B, and L

denoting URI references, blank nodes and literals, respectively.5 We call the elements in UBL terms.

Definition 2.2 (RDF Triple). An RDF triple is τ = (s, p, o) ∈ UBL×U×UBL, where s is called the
subject, p the predicate, and o the object.

Strictly speaking, according to the RDF specification (P. Hayes, 2004) literals are not allowed to be the
subject of RDF triples however, as commonly adopted in other works (Muñoz et al., 2007; Prud’hommeaux
and Seaborne, 2008; Carroll, Bizer et al., 2005), this definition considers a generalised RDF Triple, that
allows literals for the subject positions.

Definition 2.3 (RDF Graph). Following the definition of an RDF triple, an RDF graph G consists of a
set of triples. The universe of G, universe(G), is the set of elements in UBL that occur in the triples
of G and the vocabulary of G, voc(G), is universe(G) ∩UL. Furthermore, we say that G is ground if
and only if universe(G) = voc(G), i.e. G does not contain blank nodes.

When combining different RDF graphs some care must be taken to ensure the local scope of blank
nodes:

Definition 2.4 (RDF merge). Let S be a set of RDF graphs. The RDF merge of S consists of the
set-theoretical union of all the graphs in S after blank nodes have been standardised apart: if any two
graphs contain the same blank node label, all occurrences of these labels within the same graph are replaced
by a new blank node label that is not present in any of the other graphs.

This disambiguation of blank node labels is meant to keep any blank nodes between different graphs
distinct, thus maintaining the scope of blank nodes to the graph they occur in.
Similar to XML namespaces, URIs can be abbreviated by using a namespace prefix. For example,

the URI “foaf:Person” from the widely used Friend Of A Friend (FOAF) ontology, consists of the prefix
“foaf”, which is associated with the URI “http://xmlns.com/foaf/0.1/”, and the local part “Person”.
The complete URI represented by “foaf:Person” is thus “http://xmlns.com/foaf/0.1/Person”. rdf:type

predicates can be used to specify that an RDF resource is an instance of a class; for example the triple:

(dbpedia:Marco Hietala, rdf:type, foaf:Person) (2.1)

intuitively specifies that the resource dbpedia:Marco Hietala is used to identify a person.
RDF literals can be further classified as plain, in which case they can optionally contain a language

tag, or typed literals. Typed literals include a URI that refers to their datatype, usually one of the XML
Schema built-in datatypes or the newly defined RDF datatype rdf:XMLLiteral (used to indicate the literal
contains XML data). The specific syntax of literals is presented in the next section.
Another RDF feature, although not so commonly used, is reification, can be used to represent meta-

information about an RDF triple, e.g. provenance information. Any RDF statement can be reified by
representing it as four distinct RDF triples with a common subject. Although it is possible to use a URI
for the subject of reified triples, as presented in Example 2.4, it is common to use a blank node. Reification
is later used in Chapter 6 as one possible serialisation for Annotated RDFS graphs.

Example 2.4 (Reified RDF statement). The RDF statement (2.1) can be reified as the following
triples:

5We assume U,B, and L fixed, and for presentation purposes we will denote unions of these sets by concatenating their
names.

21

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person

2.4. Resource Description Framework (RDF) 22

(:r1, rdf:type, rdf:Statement)

(:r1, rdf:subject, dbpedia:Marco Hietala)

(:r1, rdf:predicate, rdf:type)

(:r1, rdf:object, foaf:Person)

Yet another feature of RDF are collections, which allow to state that a group of resources are members
of the collection. This is represented in RDF using a list structure following a predefined vocabulary:
rdf:List states the type of the resource and the rdf:first and rdf:rest properties are used to represent
the list. This list must be terminated by rdf:nil. Collections are used in Section 4.2.2.

Next, Section 2.4.1 presents how RDF can be serialised in order to be stored or exchanged, focusing on
the RDF/XML and Turtle syntaxes and Section 2.4.2 presents the semantics of RDF. Finally, Section 2.4.3
focuses on the inferencing capabilities of RDF by describing RDF Schema.

2.4.1. Representation Syntaxes

Although the RDF specification states that the normative syntax for writing RDF graphs is RD-
F/XML (Beckett, 2004), this syntax is not favoured among practitioners and there have been proposals
to support other serialisation formats and move away from XML based representations (Beckett, 2010).
Other well known syntaxes for RDF are Turtle (Beckett and Berners-Lee, 2011) and RDFa (Adida and
Birbeck, 2008), where Turtle consists of a specialised syntax for RDF and RDFa defines a mechanism
to incorporate RDF statements into (X)HTML webpages. In the following, we briefly highlight the
constructs of the RDF/XML and Turtle syntaxes.

RDF/XML

Although RDF/XML is the normative syntax for RDF, this serialisation is very flexible, and the same
RDF graph can be serialised in numerous different ways. As we will point out in Chapter 4, this lack of a
canonical RDF/XML serialisation is one of the major roadblocks to process RDF data using XML tools.
The RDF/XML syntax uses XML elements to represent RDF subjects, predicates and objects:

“rdf:Description” elements are used to represent nodes (subjects and objects) of the RDF graph, where
the “rdf:about” attribute specifies the URI of the node. In turn, predicates are represented as XML
elements where the name of the element corresponds to the URI (represented as an XML QName) of the
predicate. A possible RDF/XML serialisation of the RDF graph from our running example is presented
in Data 2.3.

The RDF/XML serialisation allows the use of several abbreviations and an abbreviated serialisation of
the RDF graph in Data 2.3 is presented in Data 2.4. One of the possible abbreviations is, if an object
node does not contain any other predicates, to omit the “rdf:Description” element and specify the URI
reference of the object in the “rdf:resource” attribute of the predicate element node (for example in
lines 13 and 14). Another abbreviation is, in case the subject contains an “rdf:type” predicate, to replace
the “rdf:Description” element name with the type of the subject (for example lines 9, 12, and 16). Also,
several predicates about the same subject can be nested in the same XML element (as presented in
lines 19–24 of Data 2.4).
Blank nodes (anonymous resources) can be given a label using the “rdf:nodeID” attribute and can

later be referred to (from within the same document). Literals can be specified as the text content of a
property XML element (e.g. line 17 of Data 2.4) or alternatively as the value of an attribute where the
attribute name is the corresponding property URI (as in line 12 of Data 2.4). Language tags are specified
as the value of the “xml:lang” attribute, while typed literals use the “xml:datatype” attribute.

22

2.4. Resource Description Framework (RDF) 23

1 <?xml version="1.0" encoding="utf-8"?>
2 <rdf:RDF xmlns:dbpedia="http://dbpedia.org/resource/"
3 xmlns:dc="http://purl.org/dc/elements/1.1/"
4 xmlns:ex="http://example.org/bands#"
5 xmlns:foaf="http://xmlns.com/foaf/0.1/"
6 xmlns:mo="http://purl.org/ontology/mo/"
7 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
8 <rdf:Description rdf:about="http://dbpedia.org/resource/Nightwish">
9 <rdf:type rdf:resource="http://purl.org/ontology/mo/Band"/>

10 </rdf:Description>
11 <rdf:Description rdf:about="http://dbpedia.org/resource/Nightwish">
12 <foaf:name>Nightwish</foaf:name>
13 </rdf:Description>
14 <rdf:Description rdf:about="http://dbpedia.org/resource/Nightwish">
15 <foaf:member rdf:resource="http://dbpedia.org/resource/Marco_Hietala"/>
16 </rdf:Description>
17 <rdf:Description rdf:about="http://dbpedia.org/resource/Nightwish">
18 <foaf:member rdf:resource="http://dbpedia.org/resource/Tarja_Turunen"/>
19 </rdf:Description>
20 <rdf:Description rdf:about="http://dbpedia.org/resource/Marco_Hietala">
21 <foaf:name xml:lang="en">Marco Hietala</foaf:name>
22 </rdf:Description>
23 <rdf:Description rdf:about="http://dbpedia.org/resource/Marco_Hietala">
24 <rdf:type rdf:resource="http://purl.org/ontology/mo/MusicArtist"/>
25 </rdf:Description>
26 <rdf:Description rdf:about="http://dbpedia.org/resource/Tarja_Turunen">
27 <foaf:name xml:lang="en">Tarja Turunen</foaf:name>
28 </rdf:Description>
29 <rdf:Description rdf:about="http://dbpedia.org/resource/Tarja_Turunen">
30 <rdf:type rdf:resource="http://purl.org/ontology/mo/MusicArtist"/>
31 </rdf:Description>
32 <rdf:Description rdf:about="http://example.org/bands#album208">
33 <rdf:type rdf:resource="http://purl.org/ontology/mo/Record"/>
34 </rdf:Description>
35 <rdf:Description rdf:about="http://example.org/bands#album208">
36 <mo:title>Wishmaster</mo:title>
37 </rdf:Description>
38 <rdf:Description rdf:about="http://example.org/bands#album208">
39 <foaf:maker rdf:resource="http://dbpedia.org/resource/Nightwish"/>
40 </rdf:Description>
41 <rdf:Description rdf:about="http://example.org/bands#album208">
42 <mo:track rdf:nodeID="song566"/>
43 </rdf:Description>
44 <rdf:Description rdf:about="http://example.org/bands#album208">
45 <mo:track rdf:nodeID="song506"/>
46 </rdf:Description>
47 <rdf:Description rdf:nodeID="song566">
48 <rdf:type rdf:resource="http://purl.org/ontology/mo/Track"/>
49 </rdf:Description>
50 <rdf:Description rdf:nodeID="song566"><dc:title>Wishmaster</dc:title></

rdf:Description>
51 <rdf:Description rdf:nodeID="song506">
52 <rdf:type rdf:resource="http://purl.org/ontology/mo/Track"/>
53 </rdf:Description>
54 <rdf:Description rdf:nodeID="song506"><dc:title>FantasMic</dc:title></

rdf:Description>
55 </rdf:RDF>

Data 2.3: Bands in RDF/XML

23

2.4. Resource Description Framework (RDF) 24

1 <?xml version="1.0" encoding="utf-8"?>
2 <rdf:RDF
3 xmlns:dbpedia="http://dbpedia.org/resource/"
4 xmlns:dc="http://purl.org/dc/elements/1.1/"
5 xmlns:ex="http://example.org/bands#"
6 xmlns:foaf="http://xmlns.com/foaf/0.1/"
7 xmlns:mo="http://purl.org/ontology/mo/"
8 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
9 <mo:MusicArtist rdf:about="http://dbpedia.org/resource/Marco_Hietala">

10 <foaf:name xml:lang="en">Marco Hietala</foaf:name>
11 </mo:MusicArtist>
12 <mo:MusicGroup rdf:about="http://dbpedia.org/resource/Nightwish" foaf:name="

Nightwish">
13 <foaf:member rdf:resource="http://dbpedia.org/resource/Marco_Hietala"/>
14 <foaf:member rdf:resource="http://dbpedia.org/resource/Tarja_Turunen"/>
15 </mo:MusicGroup>
16 <mo:MusicArtist rdf:about="http://dbpedia.org/resource/Tarja_Turunen">
17 <foaf:name xml:lang="en">Tarja Turunen</foaf:name>
18 </mo:MusicArtist>
19 <mo:Record rdf:about="http://example.org/bands#album208">
20 <mo:title>Wishmaster</mo:title>
21 <mo:track rdf:nodeID="song506"/>
22 <mo:track rdf:nodeID="song566"/>
23 <foaf:maker rdf:resource="http://dbpedia.org/resource/Nightwish"/>
24 </mo:Record>
25 <mo:Track rdf:nodeID="song506">
26 <dc:title>FantasMic</dc:title>
27 </mo:Track>
28 <mo:Track rdf:nodeID="song566">
29 <dc:title>Wishmaster</dc:title>
30 </mo:Track>
31 </rdf:RDF>

Data 2.4: Bands in abbreviated RDF/XML

Turtle

Stemming from its XML roots and, even with all the proposed abbreviations, the RDF/XML syntax
is still very verbose and neither easy to read nor write for humans. To overcome these problems, the
Turtle syntax (Beckett and Berners-Lee, 2011) aims to be a compact representation for RDF graphs that
is easier to read and write for users and includes abbreviations for common RDF patterns. Turtle is
based on N-Triples, a simple syntax introduced for the RDF test cases (Grant and Beckett, 2004) that
represents one triple per line. Furthermore, Turtle incorporates features from Notation 3 (Berners-Lee,
2005), most notably: (i) namespace declarations, (ii) shortcuts for commonly used RDF patterns, and
(iii) a syntax for anonymous blank nodes.

The Turtle RDF representation of the use case data from Example 2.1 is presented in Data 2.5. In the
Turtle syntax, @prefix declarations can be used to abbreviate common URIs (similar to XML namespaces
and QNames) and URIs must be enclosed between the ‘<’ and ‘>’ characters.
Literals are surrounded by double-quotes, as in "Nightwish", and may include a suffix to specify the

language tag following the ‘@’ separator character, for example "Marco Hietala"@en, or a datatype URI after
the ‘ˆˆ’ separator as in "5"ˆˆ<http://www.w3.org/2001/XMLSchema#integer>. Blank nodes are prefixed
with ‘_:’ e.g. :song506 where the blank node label is song506. A shortcut for unnamed blank nodes is
provided by using the ‘[]’ notation. Another useful shortcut is the ‘a’ keyword (line 7 of Data 2.5), which
represents the URI <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, also commonly abbreviated as

24

http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2.4. Resource Description Framework (RDF) 25

1 @prefix ex: <http://example.org/bands#> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
3 @prefix dbpedia: <http://dbpedia.org/resource/> .
4 @prefix mo: <http://purl.org/ontology/mo/> .
5 @prefix dc: <http://purl.org/dc/elements/1.1/> .
6

7 dbpedia:Nightwish a mo:MusicGroup .
8 dbpedia:Nightwish foaf:name "Nightwish" .
9 dbpedia:Nightwish foaf:member dbpedia:Marco_Hietala .

10 dbpedia:Nightwish foaf:member dbpedia:Tarja_Turunen .
11 dbpedia:Marco_Hietala foaf:name "Marco Hietala"@en .
12 dbpedia:Marco_Hietala a mo:MusicArtist .
13 dbpedia:Tarja_Turunen foaf:name "Tarja Turunen"@en .
14 dbpedia:Tarja_Turunen a mo:MusicArtist .
15 ex:album208 a mo:Record .
16 ex:album208 mo:title "Wishmaster" .
17 ex:album208 foaf:maker dbpedia:Nightwish .
18 ex:album208 mo:track _:song566 .
19 ex:album208 mo:track _:song506 .
20 _:song566 a mo:Track .
21 _:song566 dc:title "Wishmaster" .
22 _:song506 a mo:Track .
23 _:song506 dc:title "FantasMic" .

Data 2.5: Bands in Turtle (bands.ttl)

rdf:type.
Furthermore the ‘;’ and ‘,’ symbols can be used to create new triples without repeating the subject or

subject and predicate, respectively. For example, the triples from lines 7–10 of Data 2.5 can be written as:

dbpedia:Nightwish a mo:MusicGroup ;
foaf:name "Nightwish" ;
foaf:member dbpedia:Marco_Hietala, dbpedia:Tarja_Turunen .

Commonly used datatypes can also be abbreviated: for instance 5 is equivalent to "5"ˆˆ<http://www.
w3.org/2001/XMLSchema#integer>, while 5.0 corresponds to "5.0"ˆˆ<http://www.w3.org/2001/XMLSchema#
decimal>. Turtle also provides abbreviations for RDF collections by listing a space-separated sequence of
RDF terms enclosed by ‘(’ and ‘)’.

2.4.2. Semantics

The semantics of RDF is specified using a model theory as per P. Hayes (2004), which is a common form
of specifying semantics, for example for first-order logic. Model theoretic semantics of formal languages
assign any expression in the language to an element of a possible “world” – called an interpretation – and
also specify the necessary conditions for an interpretation to be considered valid – called a model. The
notion of entailment between two expressions, A entails B, can then be defined as any interpretation that
is a model of A must also be a model of B. Based on this semantics, it is possible to define what are the
entailed consequences of the interpretation and what are valid inference rules.

In the case of RDF, language expressions are considered as being the terms in the universe of the graph
and also the individual triples, i.e. each term in the vocabulary is assigned to an interpretation element,
where plain literals are interpreted as themselves and blank nodes are interpreted as existential variables
(scoped to the RDF graph in which they occur).

The RDF semantics (P. Hayes, 2004) specifies different types of interpretation, and hence of entailment,
ranging from the so-called simple interpretation to the more complex RDFS and datatype interpretations.

25

http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#decimal

2.4. Resource Description Framework (RDF) 26

Simple interpretations consider only the vocabulary of the triples present in the graph while other types
of interpretations, namely RDF and RDFS-interpretations, consider predefined vocabularies and a set of
RDF triples that any interpretation must satisfy by default: the so-called axiomatic triples.
RDF interpretations consider the terms defined in the http://www.w3.org/1999/02/22-rdf-syntax-ns#

namespace (commonly abbreviated with the prefix rdf). For instance, RDF interpretations impose
conditions that identify a subset of the interpretation resources as being properties (interpretation
resources of type rdf:Property) and introduce the new datatype rdf:XMLLiteral to represent well-formed
XML literals.

RDFS-interpretations consider further vocabulary in the rdfs namespace (http://www.w3.org/2000/01/
rdf-schema#) that define further conditions on top of RDF interpretations and introduce the notion of a
class. A class is itself a resource that denotes a common set of resources, which are called instances of
the class and all have the class as the value for their rdf:type property. Informally, the RDFS vocabulary
states the following: (i) (p, rdfs:subPropertyOf, q) means that any resources related by property p are also
related by property q; (ii) (c, rdfs:subClassOf, d) means that any instance of class c is also an instance
of class d; (iii) (a, rdf:type, c) means that a is an instance of c; (iv) (p, rdfs:domain, c) means that the
domain of property p is c, i.e. any resource that is the subject of a triple with predicate p is an instance
of c; and (v) (p, rdfs:range, c) means that the range of property p is c, i.e. any resource that is an object
of a triple with predicate p is an instance of c.

Further extending RDFS-interpretations, a D-interpretation provides an (admittedly minimal) support
for XML Schema (XSD) datatypes (Biron and Malhotra, 2004) extended with the rdf:XMLLiteral datatype.
Another W3C specification that provides a more expressive inference system than RDFS is the Web
Ontology Language (OWL), now in its second version (Hitzler et al., 2009). The OWL language introduces
new concepts such as the distinction between object and datatype properties, class disjointness assertions,
and assertions of equality between individuals, among others. It is noteworthy that D-interpretations,
OWL, and the rdf:XMLLiteral datatype may introduce inconsistencies in RDF. However, in this thesis,
we are mostly interested in RDFS inferences and we do not consider D-interpretations, OWL constructs,
nor the typing of rdf:XMLLiteral and thus we avoid any inconsistencies in RDF.
Although in the RDF Semantics specification (P. Hayes, 2004) the semantic conditions for each

interpretation are detailed separately, in this thesis we follow the formalism defined by Muñoz et al.
(2007); Muñoz et al. (2009) and provide a single notion of interpretation that covers Simple, RDF, and
RDFS-interpretations. Intuitively, the interpretation of an RDF triple (s, p, o) is true if s, p and o belong
to the interpretation vocabulary, p is a property and the pair (s, o) belongs to the extension of the
property p. An interpretation assigns the value true to an RDF graph if it assigns the value true to all of
its triples.
Additionally, in order to assign a truth value for a graph containing blank nodes, an interpretation

must rely on a mapping from the set of blank nodes present in the graph to terms in the graph. This
mapping of blank nodes ensures that all occurrences of the same blank node are mapped to the same
interpretation element and, since this mapping is not an integral part of the interpretation, it also ensures
that blank nodes have no visibility outside the graph. Based on Muñoz et al. (2007), we define the notion
of map:

Definition 2.5 (Map). A map is a function θ : UBL→ UBL preserving URIs and literals, i.e. θ(t) = t,
for all t ∈ UL. Given a graph G, we define θ(G) = { (θ(s), θ(p), θ(o)) | (s, p, o) ∈ G }. We speak of a
map θ from G1 to G2, and write θ : G1 → G2, if θ is such that θ(G1) ⊆ G2. Furthermore, we say that a
map θ is a grounding of a graph G, iff θ(G) is a ground graph.

We next present the definition of interpretation according to Muñoz et al. (2007):

26

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#

2.4. Resource Description Framework (RDF) 27

Definition 2.6 (Interpretation, Muñoz et al. (2007)). An interpretation I over a vocabulary V is a
tuple I = 〈∆R,∆P ,∆C ,∆L, P [[·]], C[[·]], ·I〉, where ∆R,∆P , ∆C ,∆L are the interpretation domains of I,
which are finite non-empty sets, and P [[·]], C[[·]], ·I are the interpretation functions of I. They have to
satisfy:

1. ∆R are the resources (the domain or universe of I);
2. ∆P are property names (not necessarily disjoint from ∆R);
3. ∆C ⊆ ∆R are the classes;
4. ∆L ⊆ ∆R are the literal values (containing L ∩ V);
5. P [[·]] is a function P [[·]] : ∆P → 2∆R×∆R ;
6. C[[·]] is a function C[[·]] : ∆C → 2∆R ;
7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P such that ·I is the identity for plain literals

and assigns an element in ∆R to each element in L.

2.4.3. RDF Schema

As briefly presented in the previous section, RDFS is a vocabulary that allows for the description of
relations between RDF resources. For this thesis, we will rely on a fragment of RDFS, called ρdf, presented
by Muñoz et al. (2007), that covers essential features of RDFS. ρdf consists of the following subset of
the RDFS vocabulary: { rdfs:subPropertyOf, rdfs:subClassOf, rdf:type, rdfs:domain, rdfs:range }. In the
following, for readability purposes, we are using the following abbreviations: sp for rdfs:subPropertyOf, sc

for rdfs:subClassOf, type for rdf:type, dom for rdfs:domain, and range for rdfs:range.
Based on the definition of interpretation (Definition 2.6), we can define the concept of model of an

RDF graph:

Definition 2.7 (Model (Muñoz et al., 2007)). An interpretation I is a model of a ground graph G,
denoted I |= G, if and only if I is an interpretation over the vocabulary ρdf ∪ universe(G) that satisfies
the following conditions:

Simple:

1. for each (s, p, o) ∈ G, pIA ∈ ∆P and (sIA , oIA) ∈ P [[pIA]];

Subproperty:

1. P [[spIA]] is transitive over ∆P ;

2. if (p, q) ∈ P [[spIA]] then p, q ∈ ∆P and P [[p]] ⊆ P [[q]];

Subclass:

1. P [[scIA]] is transitive over ∆C ;

2. if (c, d) ∈ P [[scIA]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d]];

Typing I:

1. x ∈ C[[c]] if and only if (x, c) ∈ P [[typeIA]];

2. if (p, c) ∈ P [[domIA]] and (x, y) ∈ P [[p]] then x ∈ C[[c]];

3. if (p, c) ∈ P [[rangeIA]] and (x, y) ∈ P [[p]] then y ∈ C[[c]];

Typing II:

1. For each e ∈ ρdf, eIA ∈ ∆P

2. if (p, c) ∈ P [[domIA]] then p ∈ ∆P and c ∈ ∆C

27

2.5. Comparison of the Data Models 28

3. if (p, c) ∈ P [[rangeIA]] then p ∈ ∆P and c ∈ ∆C

4. if (x, c) ∈ P [[typeIA]] then c ∈ ∆C

Entailment among ground graphs G and H behaves as per the model-theoretic semantics: any inter-
pretation that is a model of G is also a model of H. In the case where G and H may contain blank
nodes, G |= H if and only if for any grounding G′ of G there is a grounding H ′ of H such that G′ |= H ′.
In Muñoz et al. (2007), the authors define two variants of the semantics: the default one includes

reflexivity of P [[spI]] and C[[scI]] over ∆P and ∆C , respectively, but herein we are only considering the
alternative semantics presented in Muñoz et al. (2007, Definition 4), which omits this requirement. As
a consequence, inferences such as G |= (a, sc, a) are not supported. However, the drawback of this is
minimal since such inferences do not add expressive power and are thus of marginal interest.

Deductive System

In what follows, we present the sound and complete deductive system from Muñoz et al. (2007). The system
is arranged in groups of rules that capture the semantic conditions of models. In every rule, A,B,C,X,
and Y are meta-variables representing elements in UBL and D,E represent elements in UL. The rules
are as follows:

1. Simple:

(a) G
G′ for a map θ : G′ → G (b) G

G′ for G
′ ⊆ G

2. Subproperty:

(a) (A,sp,B),(B,sp,C)
(A,sp,C) (b) (D,sp,E),(X,D,Y)

(X,E,Y)

3. Subclass:

(a) (A,sc,B),(B,sc,C)
(A,sc,C) (b) (A,sc,B),(X,type,A)

(X,type,B)

4. Typing:

(a) (D,dom,B),(X,D,Y)
(X,type,B) (b) (D,range,B),(X,D,Y)

(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B),(D,sp,A),(X,D,Y)
(X,type,B) (b) (A,range,B),(D,sp,A),(X,D,Y)

(Y,type,B)

The deductive system presented by Muñoz et al. (2007) includes 7 rules, where the missing rules (rules
6-7) handle reflexivity. Furthermore, as noted in Muñoz et al. (2007), the “Implicit Typing” rules are
a necessary addition to the rules presented in P. Hayes (2004) for complete RDFS entailment. These
represent the case when variable A in (D, sp, A) and (A, dom, B) or (A, range, B), is a property implicitly
represented by a blank node.
We denote with { τ1, . . . , τn } `RDFS τ that the consequence τ is obtained from the premise τ1, . . . , τn

by applying one of the inference rules 2–5 above.

2.5. Comparison of the Data Models

We present a brief comparison of the data models in Table 2.1, focusing on features of the data model
and existing query languages.6 The features of the data model we considered were the logical structure
it uses to represent data, whether the model is an intrinsically ordered data model, and if it provides

6In this table we are using the term RDB as a shorthand for the relational model.

28

2.5. Comparison of the Data Models 29

Table 2.1.: Feature overview of data models

RDB XML JSON RDF

Model:
logical structure relations tree tree graph

ordered ×
√ √

/× ×
schema validation

√ √
× ×

inference × × ×
√

Languages:
query

√ √
×

√

data manipulation
√ √

× ×
schema manipulation

√
× × ×

means, possibly external, of performing schema validation. Inference capabilities allow to deduce new data
based on existing one by specifying structural and representational properties. Regarding the languages,
we represent the existence of languages for querying data contained in the respective model, as well as
manipulation languages for both data and schema. Such languages can be used, for example, for inserting
and updating data or changing the representation structure of data.

The Relational Model. As we have discussed in Chapter 1, the relational model is used to store
information for many software applications. A relational database consists of a set of relations (also
commonly known as tables), and data for each table is called a record. As the data model overview
presented in Table 2.1 shows, the relational model is the most mature, having stable query and manipulation
languages.

XML. With the uptake of the WWW, more flexible data models were introduced, such as XML. Also
Web pages are described using the HTML language, a syntax that although similar to XML is mostly
focused on rendering the contents in a web browser. XML is more concerned with describing the data
it contains while rendering is instead left to the external XSLT transformation language. XML is a
tree-based, ordered data representation format that imposes no restrictions on its element and attribute
names, nor on the nesting structure. The XML query and transformation languages were presented in
Section 3.2, mostly focusing on the XQuery language. A recommendation for an XQuery Update language
was also presented by Robie et al. (2011).

JSON. Section 2.3 presented another tree-based representation format, JSON, that has recently gained
traction and uptake on the Web due to its easy integration with the JavaScript language, which is
supported by all modern web browsers. JSON is mostly regarded as an interchange format, notably
lacking the specifications of any type of query language and schema validation. The JSON data model
is also tree-based and it distinguishes different structures (objects and arrays), where objects consist of
unordered sets, while arrays represent an ordered sequence of elements.

RDF. The advance of the traditional, human-readable Web into a machine-readable Semantic
Web (Berners-Lee, Hendler et al., 2001) introduces a new data model: RDF. RDF is a graph-based data
model and, as discussed in Section 1.2, is suitable for representing integrated data. One main difference
between RDF and the other data models relates to its capabilities for deducing new data, based on a
specialised vocabulary called RDF Schema. RDFS, as opposed to XML Schema, does not behave as
a form of data validation but rather as a form of deducing new data. Although the new SPARQL 1.1

29

2.6. Conclusion 30

query language includes the specification of an update language (Gearon et al., 2012), this is still not a
finalised W3C standard so we chose to omit it from Table 2.1. Possible forms of validating RDF data,
even though no recommendation exists, may involve (i) using the SPARQL query language (presented
in Section 3.3) for determining if any triples do not match the constraints; (ii) SPIN (Knublauch et al.,
2011) is a vocabulary that also allows to specify constraints for RDF data; or (iii) by using extensions
of OWL towards integrity constraints, e.g. Tao et al. (2010). In this thesis we focus primarily on the
RDF data model; however, several other graph-based database models exist and a survey is presented
by Angles and Gutiérrez (2008a).

2.6. Conclusion

This chapter introduced the basis for the different data models we are considering in this thesis. As
such we described the relational, XML, and RDF data models and included a description of the JSON
interchange format. As we have discussed in Section 1.2, from a data integration perspective, a flexible
format for representing data is desirable, hence the XML or RDF formats are preferred over the relational
model. The major differences between these data models are (i) the structure (table vs. tree vs. graph)
that is used to represent data; and (ii) the ordering of the data model (XML is an intrinsically ordered
data model, JSON included the ordered array structure, while relational databases and RDF consist of
an unordered set of statements).

The specific query language for each of these data models are presented in Chapter 3. These different data
models are bridged in our novel transformation language, described in detail in Chapter 4. Furthermore,
Chapter 6 presents a proposed extension to the RDF model to represent context information, such as
temporal or provenance information, a much needed feature when considering integrated data.

30

3. Query Languages

Query languages allow users to select and transform data from large sources. The ability to select only
relevant data is an essential feature to minimise serialisation and communication overheads, especially
when we consider the transmission of data over the Web.

Due to the specific characteristics of each data model, query languages are usually tailored to work
with a single data model. For the data models presented in the previous section, the respective query
languages are SQL, XQuery and SPARQL, for which we will give an overview next. We also present the
closely related XSLT transformation language for XML data.
In Table 2.1 we presented a high-level overview of the available languages for each data model. Data

and schema manipulation languages are widely available for relational data, for XML an update language
has been recently standardised (Robie et al., 2011) while for RDF data this feature is only included in
the upcoming version of SPARQL 1.1 (Gearon et al., 2012).
In the following sections we start by presenting a short overview of the possible forms of querying

relational databases, including the SQL query language, before turning to the different query languages
for XML in Section 3.2. In this section we again present a short overview of the XPath and XSL
Transformations (XSLT) languages and then focus in more detail on the XQuery language, which will be
the basis for the XSPARQL language in Chapter 4. Finally, Section 3.3 provides a detailed description of
the SPARQL query language for RDF (which we will extend in Chapter 6).

3.1. Querying Relational Databases

In this section we give an overview of conjunctive queries which, according to Abiteboul, Hull et al. (1995),
represent the vast majority of relational database queries that are relevant in practice. Later we present
the SQL query language, which is the most used query language for relational databases.

3.1.1. Conjunctive queries

In line with the different views on relational data (presented in Section 2.1), conjunctive queries can
be formalised under different, although equivalent, perspectives: logic programming and the relational
algebra. The logic programming approach follows the corresponding view on relational data presented in
Section 2.1, while the relational algebra approach relies on the conventional view. We then present the
SQL query language and provide an overview of its mapping into relational algebra.

Under the logic programming approach, in addition to the sets of relations R, attributes A, and values
D, we rely on the set of variables V that range over elements of D. We can now extend the notion of
fact to atom: an atom over a relation r ∈ R is an expression r(e1, . . . , en) where n is the arity of r and
each ei ∈ DV is called a term. A fact can also be referred to as a ground atom. The notion of query can
then be defined as:

Definition 3.1 (Rule-based conjunctive query (Abiteboul, Hull et al., 1995)). Given a database schema S,
a rule-based conjunctive query q over S is an expression of the form:

q(u)← r1 (u1) , . . . , rn(un) (3.1)

31

3.1. Querying Relational Databases 32

where each ri, i ∈ [1, n] is a relation name from S and each ri(ui), is an atom over ri. Any variable
occurring in u must be safe, i.e. it must also occur at least once in any u1, . . . , un. Furthermore, we
denote the set of variables present in q as vars(q).

A rule-based conjunctive query can be referred to simply as a rule where the lefthand side of ‘←’ is
called the head and the righthand side is called the body of the rule. For example, in Rule (3.1), the head
is q(u) and the body corresponds to r1 (u1) , . . . , rn(un). A rule can be interpreted as: the head atom
can be deduced if there are values for the variables in the rule that make the body hold. Given a set
of variables V ⊂ V, a mapping (or valuation) over V is a function v : V → D. This function can be
extended to represent the identity over any element of D and thus can map any atom with variables to
a fact by applying it to all elements of the atom. For any atom t, the mapping of v is denoted as v(t).
Based on this notion of mapping, the answers to a query can be defined as:

Definition 3.2 (Answers of a query). Let q = q(u)← r1, . . . , rn be a rule-based conjunctive query and I
be a database instance. An answer of I under q is:

q(I) = { v(r) | v is a mapping over vars(q) and v(ri) ∈ I for each i ∈ [1, n] }

As we will see in the next section, since duplicate removal is a computational expensive operation,
SQL maintains duplicates in the answers of a query (thus represented as a multiset) unless otherwise
instructed.
Another paradigm for relational queries is the algebraic paradigm, which is defined by specifying

operations on relation instances, called the relational algebra. The three primitive algebra operators
are the selection (σ), projection (π) and the cartesian product (×) operators. The full set of operators
that form the relational algebra also include the join (./), union (∪) and difference (−) operators. The
selection operator consists of restricting the tuples present in a relation according to a specified condition.
The projection operator is used to discard attributes of a relation while the cartesian product combines
any two relations and produces a new relation that includes all the attributes of both relations. The join
operator consists of combining the projection and cartesian product operators: the result of this operator
consists of all the tuples from both relations that have a common value on any common attributes. The
union (∪) and difference (−) algebra operators are defined as the standard set-theoretical operators.

Considering two relational instances I and J (with sorts U andW , respectively), the relation attributes A
and B, and a constant c ∈ D, the relational algebra operators are defined as:

selection: The two forms of the selection operator, σA=c and σA=B select tuples that match a constant
or where the value of two attributes is the same, respectively:

σA=c(I) = { t ∈ I | t(A) = c }
σA=B(I) = { t ∈ I | t(A) = t(B) }

projection: This operator consists of restricting the attributes present in a relation. Given a set of
attributes X ⊆ U , the projection operator returns:

πX(I) = { t[X] | t ∈ I }

join: The join operator between I and J produces a relation with sort U ∪W , such that:

I ./ J = { t | sort(t) = U ∪W and t[U] = u and t[W] = w for some u ∈ I and w ∈ J }

3.1.2. SQL

The SQL is the most widely available query language for relational data, supported by most commercial
relational database management systems (Abiteboul, Hull et al., 1995) and is an American National

32

3.1. Querying Relational Databases 33

Standards Institute (ANSI) standard. The core of SQL queries consist of the commonly known select-
from-where queries, which are equivalent in expressivity to conjunctive queries. An example of a SQL
query is shown in Example 3.1.

Example 3.1 (SQL query). The following SQL query, when executed against a database instance
following the schema presented in Example 2.2, extracts the names of the artists that are in the
“Nightwish” band:

SELECT persons.personName
FROM persons, bands
WHERE persons.bandId = bands.bandId

AND bands.bandName = ’Nightwish’

The select keyword specifies the attributes that should be present in the query results, while from specifies
the relations names over which the query will be evaluated. It is possible to write ‘*’ in place of attribute
names in a select clause if all the attributes in the relations specified in the from clause are to be returned.
In SQL, relation names are considered as variables that range over tuples occurring in the corresponding
relation and, as shown in Example 3.1, can be used in the where clause to specify the relations and
attributes. If a query requires more than one variable ranging over the same relation, they can be
specified in the from clause and assigned different aliases for the relation, e.g. FROM person p1, person p2.
Furthermore, if the attributes are distinct, it is possible to omit the relation name from the select query.
Finally, the where keyword specifies the conditions that any result of the query must satisfy in order to be
included in the result set and can express conjunction, disjunction, negation, and nesting. It is possible
to completely omit the where clause and, in this case, all tuples of the cartesian product of the relations
specified in the query are returned.
It is also possible to represent nested queries by using the keywords in and not in. These keywords

behave as operators over sets, testing the inclusion (or not) of an element in the set resulting from the
nested query.

The result of a SQL select-from-where query evaluation consists of a multiset of tuples, i.e. there may
be repeated answers in the results. The explicit use of the distinct keyword after the select keyword
removes any duplicate answers from the resulting set. SQL also includes several aggregate functions, such
as count, sum, and average, which perform the specified function over the resulting multisets, such as
counting number of elements in the collection, or adding the elements of a multiset composed of numeric
elements. Furthermore grouping of tuples, by means of the group by operator, also allows to create
collections of tuples over which aggregates can be applied.

Included in the SQL specification is also the definition of a DML. This part of the SQL language allows
the schema of a relational database to be manipulated, for instance creating new relations, altering the
structure of existing ones, or removing existing relations.

Translation to Relational Algebra

A translation from a subset of SQL into relational algebra was presented by Ceri and Gottlob (1985),
while the semantics catering for the full syntax of SQL and the three-valued logic inherent with nulls, was
presented by Negri et al. (1991). In this thesis, we follow the translation of SQL select-from-where queries
into relational algebra as presented by Abiteboul, Hull et al. (1995): (i) the select keyword behaves
as the projection operator π; (ii) the from keyword corresponds to the cartesian product operator ×;
and (iii) the where keyword specifies a selection operation σ. In the rest of the thesis, we denote this
translation of a SQL query S into relational algebra as RAsql(S).

33

3.2. Querying XML 34

Table 3.1.: Mapping from SQL to XML datatypes
SQL datatype XML datatype

character string xs:string
numeric, decimal xs:decimal
boolean xs:boolean
smallint, integer, bigint xsd:integer
float, real, double precision xsd:double
date xsd:date
time xsd:time
timestamp xsd:dateTime

Example 3.2 (SQL translation into Relational Algebra). The translation into relational algebra of
the query in Example 3.1 is:

πpersons.personName(σpersons.bandId=bands.bandId∧bands.bandId=′Nightwish′(persons × bands))

Mapping SQL Results to XML

The mapping from SQL datatypes into XML Schema datatypes is defined in the SQL specification and
was presented in Eisenberg and Melton (2001). An overview of this mapping is presented in Table 3.1.
Since XML datatypes generically allow a wider range of valid values, it is common for concrete mappings
to impose further restrictions on XML datatypes, however, for this thesis we will omit these restrictions on
the XML datatypes. Later, in Section 4.2, we will rely on this mapping of datatypes for the translation of
SQL to XML and we refer to the XML representation of SQL values as sql2xml(SQLValue) and vice-versa
as xml2sql(XMLValue).

3.2. Querying XML

As for querying XML data, there are different alternatives, most notably XSLT and XQuery. Although
these languages are very similar and both tackle similar problems, their fundamental difference is that
XSLT was designed to perform transformations between different XML formats, mostly considered
for styling and display of information on the Web, while XQuery is focused on querying parts of an
XML document or tree (Katz et al., 2003). Notably, XSLT uses an XML syntax for specifying the
transformations while XQuery provides a non-XML syntax that aims to be familiar for SQL users. Both
of these languages rely on a common core, the XML Path Language (XPath), that allows nodes of an
XML document to be selected. Although XPath was being designed at the same time as the XSLT
language, it was published as a separate standard by the W3C, who envisioned its use in other languages
or even as a single standalone language.
In this section, we start by explaining the XPath language, followed by an high-level overview of the

XSLT language. Finally we present the XQuery language, that is used as a basis for the syntax and
semantics of XSPARQL.

3.2.1. XPath

XPath (Bray, Paoli and Sperberg-McQueen, 2010) consists of a common core language that is reused by
both XSLT and XQuery. The main purpose of XPath is to access specific nodes of an XML document,
which it does by providing a non-XML syntax for navigating though the structure of an XML document
and selecting the relevant nodes. In XPath, an expression is the basic construct of the language and may
consist, among other elements, of variable references, function calls, or location paths. Such expressions
are evaluated with respect to an expression context, which contains the necessary information to determine

34

3.2. Querying XML 35

the output of an expression, most notably the context node: the XML element over which the expression
will be evaluated. The evaluation of an XPath expression results in an object that can consist of a
node-set, boolean, number, or a string.

Location paths. Location paths are an especially important form of XPath expressions since they specify
how to navigate through the XML document. A location path consists of a sequence of location steps
that are separated by the ‘/’ character. The result of the evaluation of each location step is the set of
nodes and each step in the location path is applied to the set of nodes resulting from the previous step.
A location step can be composed of three parts: an axis, a node test, and any number of predicates, which
are described next.

Axis: The axis is used to select nodes by specifying the relation that the selected nodes should have
from the context node. Some of the available axes allow the child, parent, following-sibling,
or preceding-sibling of the context node to be selected. These axes correspond to selecting,
relative to the context node, all the nodes that are one level below (child), one level up (parent),
at the same level after (following-sibling) or before (preceding-sibling) the context node.
Furthermore, the attribute axis can be used to select all the attributes of the context node, “self”
refers to the context node and “descendant-or-self” to the context node and its descendants.

Node Tests: Node tests can be combined with axes to further restrict the selected set of nodes. For
example “child::band” will select all the children of the context node with “band” name. Similarly,
‘*’ can be used to select all elements: “attribute::*” selects all the attributes of the context node.

Predicates: Predicates can be used to further filter a node-set and produce a new node-set: given a
node-set, the predicate expression is evaluated by using each node in the node set as the new context
node. If the evaluation of the predicate yields true, then the node is included in the newly created
node set.

The XPath specification also defines an abbreviated syntax for representing location steps, where the
expression can be specified by either assuming a default axis or by specifying shortcuts. For example,
the “child” axis is the default and can thus be omitted. The ‘@’ abbreviation can be used for selecting
the attribute axis, thus, “@name="Nightwish"” is short for “attribute::name="Nightwish"”. Other
available abbreviations are ‘//’ for “/descendant-or-self::node()/”, ‘.’ for “self::node()” and ‘..’
for “parent::node()”.

Example 3.3 (XPath expression). The following XPath expression:
//band[@name="Nightwish"]/members

which is an abbreviated form of the expression:
/descendant-or-self::node()/child::band[attribute::name="Nightwish"]/child::members

when executed over the XML document presented in Data 2.1, returns the “band” XML element
whose value of the “name” attribute is “Nightwish”.

Further expressions available in the XPath language include for expressions that, in a somewhat similar
fashion to imperative programming languages,1 allow to repeat an expression (called return expression)
for different values of the range variable (detailed in Section 3.2.3), conditional expressions and quantified
expressions. Conditional expressions allow to execute different expressions (then expression or else
expression) depending on the result of the if expression and quantified expressions can be used to test
whether an expression is true for all (every) or at least one (some) members of a sequence.

1We say somewhat similar since the evaluation order of the return expression is not imposed by XPath.

35

3.2. Querying XML 36

3.2.2. XSLT

XSL Transformations (XSLT) (Kay, 2007) is a transformation language for XML that allows to manipulate
XML documents by matching subsets of the XML structure and specifying transformation rules for
the matched elements. The syntax of XSLT is XML-based and defines a set of XML elements that are
interpreted as XSLT instructions, distinguished by using the namespace “http://www.w3.org/1999/XSL/
Transform”, commonly abbreviated by the xsl: prefix. As previously noted, XSLT relies on the XPath
language to navigate and access the elements in the XML document.
XSLT transformations are called stylesheets, referring to the origins of the language, mostly used for

defining the style of an XML or XHTML document for presentation in a web browser. XSLT follows the
functional programming paradigm, where the stylesheet defines a set of rules that produce the output tree
as a function of the input tree. Such rules, called template rules, are applied to the source or input tree
in order to produce the result (or output) tree. The part of the rule that is matched against the XML
elements in the source is called the pattern, while the sequence constructor part is instantiated by elements
matched from the source tree in order to produce the result tree. Recalling the logic programming
approach for querying relational databases (Section 3.1), the pattern can be considered the body of the
query, while the sequence constructor can be considered the head.
Template rules are defined using XML elements named xsl:template (as presented in Example 3.4).

The “match” attribute is used to specify the XML elements to which the template will be applied, while
the body of the template defines the output. The recursive application of template rules is selected
by the “xsl:apply-templates” element, possibly specifying which XML elements from the input should
be matched by providing an XPath expression as the value of the “select” attribute. Whenever this
attribute is omitted, the default is to select all children of the context node.

Example 3.4 (XSLT template rules). The following template rule selects the band element whose
value for the name attribute is “Nightwish”:

<xsl:template match="bands">
<xsl:apply-templates select="//band[@name=’Nightwish’]/members"/>

</xsl:template>

While the next template rule simply outputs all members of the selected bands:

<xsl:template match="member">
<xsl:apply-templates/>

</xsl:template>

Combining these two template rules in an XSLT stylesheet will make the stylesheet output the names
of members of the “Nightwish” band, when applied to Data 2.1.

Similar to XPath, an XSLT stylesheet is evaluated with regards to an expression context and relies on the
XPath specification for defining the contents of each expression context. Each template rule is evaluated
by specifying the matched input XML element as the context node.

The XSLT specification further defines instructions for specifying repetition (xsl:for-each), conditional
processing (xsl:if and xsl:choose), variable declaration (xsl:variable), and function declaration
(xsl:function).

3.2.3. XQuery

XQuery (Chamberlin et al., 2010) has been the W3C recommended query language for XML since early
2007. There are several similarities between XQuery and XSLT and both query languages can address

36

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

3.2. Querying XML 37

the same use cases. Some of the most evident similarities include: (i) declarative semantics supporting
single-assignment variables; (ii) the use of XPath for selecting input XML elements; (iii) the construction
of new XML elements explicitly and at runtime; and (iv) support for user-defined functions.
As we have seen, XSLT was designed as a transformation language for XML documents, focusing on

transformations that facilitate displaying data for the user. On the other hand, XQuery behaves more
like a query language, aiming at extracting data from collections or large individual XML documents.
These design choices are apparent even in the syntax of the languages, where XQuery follows a non-XML
syntax. However, XQuery reuses other XML-based specifications such as the XDM data model and XSD.
Any input document for an XQuery query, commonly specified using the fn:doc function, is translated
into an XDM instance and the respective query is executed over this abstract structure.
As in XPath and XSLT, also in XQuery the basic construct of a query is called an expression. In

XQuery, expressions are mostly composed of FLWOR expressions. This name stems from the available
expressions: for, let, where, order by, and return.

Definition 3.3 (Tuple Stream). In a FLWOR expression, the result of the evaluation of “for $v” and
“let $v” clauses consists of an ordered sequence of elements that $v is bound to. Following the XQuery
specification, we refer to this sequence as tuple stream.

Optionally, this produced sequence can be filtered using the where clause or ordered with the order by

clause. Finally, the return clause is evaluated for every element of the resulting sequence and each result
is included in the sequence produced by the FLWOR expression. Any XQuery variable is represented by
using an expanded QName also making it possible to disambiguate variables based on declared prefixes.
Further details are available in Draper, Fankhauser et al. (2010, Section 3.1.1.1). Another important
feature is that for clauses may optionally include a positional variable in the form of “for $Var at

$PosVar ”. In this case, for each evaluation of the return expression, $PosVar is assigned an integer
corresponding to the position of $Var in the tuple stream.

Definition 3.4 (Expression Context). Similar to XPath and XSLT, any XQuery expression E is evaluated
with regards to an Expression Context that holds the static environment (statEnv) and the dynamic
environment (dynEnv) up until the evaluation of E.

Environments include different components that hold the necessary information for the evaluation of
any XQuery expression: statEnv holds the information available during static analysis, for example the
varType component holds variable type information. The dynEnv environment contains information
available during expression evaluation, like the value for variables, stored in the varValue component.
Given an expression context C, we refer to the static environment of C as statEnv(C) and to the dynamic
environment as dynEnv(C). Different components can be accessed via their name: statEnv(C) .varType
and the specific value of the environment element var can be accessed using statEnv(C) .varType(var).
If the expression context C is not explicitly presented, statEnv and dynEnv can be used in place of
statEnv(C) and dynEnv(C).

Example 3.5 (XQuery query). The slightly verbose XQuery equivalent to the XSLT presented in
Example 3.4 is the following query:

for $member in //band[@name=’Nightwish’]//member
let $memberName := $member/text()
return $memberName

Executing this query over the XML document presented in Data 2.1, again returns the members of
the “band” XML element whose value of the “name” attribute is “Nightwish”.

37

3.2. Querying XML 38

XQuery allows to write arbitrary queries, it is actually a Turing complete language (Kepser, 2004), for
instance the return part of a FLWOR expression may contain other (nested) FLWOR expressions. In such
cases we commonly refer to the first FLWOR expression as the outer query, while the FLWOR expression
that is containted inside the return is refered to as the inner query.

Semantics

The semantics of XQuery (Draper, Fankhauser et al., 2010) is defined in terms of (i) normalisation
rules, (ii) static typing rules, and (iii) dynamic evaluation rules. Normalisation rules reduce the syntax
of XQuery to an abstract syntax denoted XQuery Core: a subset of XQuery that, while semantically
equivalent, aims to be easier to define, implement and optimise (Katz et al., 2003). Static typing rules are
applied over the XQuery Core language and are used to assign a type to each XQuery expression. The
dynamic evaluation rules are responsible for producing the results of each expression while guaranteeing
that its input is consistent with the previously determined typing information.

In this thesis we will use the term bound variable to refer to a variable that has been previously declared
in an query, for example, $v is considered bound if it has been previously declared by a “for $v ” or “let
$v ” expression.

The complete semantics of XQuery is defined by specifying normalisation, static and dynamic evaluation
rules for each expression of the language and, as an example, we next present the rules of the XQuery for

expression.

Normalisation Rules. Normalisation rules are represented using mapping rules, where J·KExpr represents
the XQuery expression to be matched, while the resulting XQuery Core expression is included after
the == separator. Furthermore, fixed-width font (like for and in) refer to specific keywords, and italic
font refers to productions in the XQuery Core grammar (Draper, Fankhauser et al., 2010, Appendix A).
The following example shows the application of the normalisation rules over consecutive ForClauses –
considered a shorthand syntax – into nested ForClauses in XQuery Core:

u

www
v

for $VarName1 OptTypeDeclaration1 OptPositionalVar1 in Expr1

, · · · ,
$VarNamen OptTypeDeclarationn OptPositionalVarn in Exprn

ReturnClause

}

���
~

Expr

==

for $VarName1 OptTypeDeclaration1 OptPositionalVar1 in JExpr1 KExpr return
· · ·
for $VarNamen OptTypeDeclarationn OptPositionalVarn in JExprnKExpr

JReturnClauseKExpr

(N1)

The normalisation process consists of the recursive application of the defined rules over each expression
in the language.

Static and Dynamic Evaluation Rules. On the other hand, static type rules and dynamic evaluation
rules are represented using inference rules of the form:

premise1 · · · premisen
conclusion

Rule premises are composed of the so-called judgements and such judgements are said to hold if they are
considered true. Some judgments used in this thesis are:

Type. The judgment:
statEnv ` Expr : Type

38

3.2. Querying XML 39

holds if, in the static environment statEnv, the expression Expr has the type Type . Also related to
typing, the prime and quantifier are functions that extract all the item types of its parameter and
try to estimate the number of items in a type (?, +, or *), respectively.

Variable Expansion. Similarly,
statEnv ` VarName of var expands to Variable

holds if Variable corresponds to the expanded QName of VarName .

Context Extension. Contexts can be extended by using the ‘+’ notation, for example:
statEnv + varType(Variablepos ⇒ xs:integer)

creates a new context based on statEnv by adding the information that Variablepos is of type
xs:integer to the varType component of statEnv.

Expression Evaluation. A commonly used judgment in dynamic evaluation rules is
dynEnv ` Expr ⇒ Value

which holds if, in the environment dynEnv, the expression Expr evaluates to the value Value .

As an example of the use of these judgments, the following static type rule handles the typing of a for

clause with a positional variable:

statEnv ` Expr1 : Type1

statEnv ` VarName of var expands to Variable
statEnv ` VarNamepos of var expands to Variablepos

statEnv + varType

(
Variable ⇒ prime(Type1) ;

Variablepos ⇒ xs:integer

)
` Expr2 : Type2

statEnv ` for $VarName at VarNamepos in Expr1
return Expr2 : Type2 · quantifier(Type1)

(S1)

The dynamic evaluation of for expressions consists of first evaluating the expression specified by the in

clause and, for each element of the resulting sequence, assign it to the for variable and then evaluating the
return expression. Hence, the semantics separates the dynamic evaluation rules of for expressions into
two cases, depending on whether the in expression returns any elements. If the in expression evaluates to
an empty sequence, the for expression also evaluates to an empty sequence:

dynEnv ` Expr1 ⇒ ()

dynEnv ` for $VarName OptPositionalVar in Expr1 return Expr2 ⇒ ()
(D1)

Otherwise, the dynamic evaluation rule of a for clause with a positional variable is presented next:

dynEnv ` Expr1 ⇒ Item1 , · · · , Itemn

statEnv ` VarName of var expands to Variable
statEnv ` VarNamepos of var expands to Variablepos

dynEnv + varValue

(
Variable ⇒ Item1 ;

Variablepos ⇒ 1

)
` Expr2 ⇒ Value1

...

dynEnv + varValue

(
Variable ⇒ Itemn ;

Variablepos ⇒ n

)
` Expr2 ⇒ Valuen

dynEnv ` for $VarName at VarNamepos in Expr1
return Expr2 ⇒ Value1 , · · · ,Valuen

(D2)

Another judgement used for matching element values to types is “statEnv ` Value matches Type ”, which
holds when, in the static environment statEnv, the type of Value is Type or can be derived from Type

(as presented in Section 2.2.2).

39

3.3. Querying RDF with SPARQL 40

3.3. Querying RDF with SPARQL

This section provides an overview of the SPARQL query language, which is the W3C recommended query
language for RDF. We present the syntax and semantics of SPARQL and wrap-up with an overview of
the new features introduced by the forthcoming update to the SPARQL language, dubbed SPARQL 1.1.
The W3C SPARQL specification consists of the following documents:

(i) a query language for RDF (Prud’hommeaux and Seaborne, 2008);
(ii) a protocol describing the interactions between a query engine and query clients (Clark et al., 2008);

and
(iii) the XML serialisation of the results of a select and ask query (Beckett and Broekstra, 2008).

We will focus on the description of the SPARQL query language for RDF by following the W3C specification
and the semantics presented by Pérez et al. (2009).

Syntax

A SPARQL query is defined by a triple Q = (P,G, V), where P is a graph pattern, G is an RDF dataset
and V is the result form. Considering a setting similar to rule-based query answering for relational
databases, a SPARQL query can also be viewed as: V ← P , where V can be assumed as the head of the
query, while P is the body (Pérez et al., 2009). The next sections describe each component of SPARQL
queries, namely RDF datasets, the result form, and graph patterns.

RDF Dataset. An RDF dataset forms the input data provided to a SPARQL query and is composed of:
(i) exactly one (unnamed) graph considered to be the default graph; and (ii) a set of named graphs of the
form 〈ni, gi〉, where ni is a URI corresponding to the name of the graph and gi is an RDF graph. In a
SPARQL query, the default graph is specified using from clauses, while the named graphs are indicated
using from named clauses. Since a SPARQL query may contain several from clauses, the default graph is
taken as the RDF merge of graphs specified in all from clauses (cf. Definition 2.4).

The notion of active graph is introduced in the evaluation semantics of SPARQL to distinguish which
RDF graph the basic graph pattern is matched against. At the start of a SPARQL query evaluation, the
active graph is the default graph and it is changed when a graph keyword is encountered in the graph
pattern (as further explained below).

Result Form. The result form specifies the output of a SPARQL query and may be one of the following
four types:

select: returns the matched values (substitutions) for variables present in the query;
construct: returns an RDF graph that is created based on the specified template and the substitutions

obtained by executing the query;
ask: returns a boolean indicating if the graph pattern matches any of the data; and
describe: returns an RDF graph that contains information regarding the resources contained in the

query.

For this thesis we focus primarily on select and construct queries.2 In the case of select queries, the
result form is a set of variables and the result of the query consists of sequences of variable bindings for
these variables, determined according to the specified graph pattern. In a construct query, as presented
in Prud’hommeaux and Seaborne (2008, Section 10.2), the solutions of the graph pattern are used to
instantiate the template provided. The result of a construct query is an RDF graph obtained from the
2In Chapter 4 we will refer to these result forms as SparqlForClause and ConstructClause, respectively.

40

3.3. Querying RDF with SPARQL 41

union of all instantiations of variables in the template that result in valid RDF triples. When a construct

template contains blank nodes, a different blank node label will be generated for each instantiation of the
template, i.e. blank nodes are only shared within the same solution.

Graph Patterns. SPARQL is a graph-matching query language and its syntax directly reflects this.
The body (graph pattern) of a SPARQL query consists primarily of triple patterns that are matched
against the RDF data. Triple patterns are RDF triples, possibly containing variables appearing in subject,
predicate or object positions. In the SPARQL syntax, a graph pattern follows the where keyword.
A simple form of graph pattern is a set of triple patterns, also called a Basic Graph Pattern (BGP).

Here, we present the syntax of SPARQL based on the definitions provided by Pérez et al. (2009), which
describes a normalised syntax based on 3-tuples:

Definition 3.5 (Graph Patterns). Let U, B, L be defined as before. Furthermore, let V denote a set of
variables disjoint from UBL, graph patterns are inductively defined as follows:

• a tuple (s, p, o) ∈ ULV ×UV ×ULV, called a triple pattern, is a graph pattern;
• a set of triple patterns, called a Basic Graph Pattern (BGP), is a graph pattern;
• if P and P ′ are graph patterns, then (P and P ′), (P optional P ′), and (P union P ′) are graph
patterns;
• if P is a graph pattern and i ∈ UV, then (graph i P) is a graph pattern; and
• if P is a graph pattern and R is a filter expression, then (P filter R) is a graph pattern.

For any pattern P , we write vars(P) for the set of all variables occurring in P . A filter expression R
can be composed from constants, elements of ULV, comparison operators (‘=’, ‘<’, ‘>’, ‘6’, ‘>’), logical
connectives (‘¬’, ‘∧’, ‘∨’) and built-in functions. Some of the available built-in functions include the
unary functions: BOUND, isIRI, isURI, isBLANK, isLITERAL, STR, LANG, and DATATYPE. A complete list of
built-in functions is included in Prud’hommeaux and Seaborne (2008, Section 11).

As is common practice in the definition of SPARQL queries, we do not consider blank nodes in graph
patterns, and thus do not include them in our definitions. However, this restriction does not affect
the expressivity of SPARQL, since blank nodes in query patterns can always be replaced equivalently
with variables (Pérez et al., 2009). Although in definitions we rely on an algebraic formalism for the
syntax of SPARQL, as per Pérez et al. (2009), in the examples we follow the W3C specification, which
can be naturally mapped to the algebraic form, where the and operator is represented by a dot (‘.’).
The mapping between the W3C SPARQL syntax and the algebraic form we use is presented by Arenas,
Gutiérrez et al. (2009). Thus, Example 3.6 presents a SPARQL query where the prefix keyword declares
a URI prefix that is used later in the query.

Example 3.6 (SPARQL query). The following SPARQL query retrieves the names of persons that
are members of the “Nightwish” band:

prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix mo: <http://purl.org/ontology/mo/>

SELECT $personName
WHERE { $band a mo:MusicGroup;

foaf:name "Nightwish";
foaf:member $person .

$person foaf:name $personName }

41

3.3. Querying RDF with SPARQL 42

Solution Modifiers. The evaluation of graph patterns generates a sequence of results initially with no
specific order (further detailed in the following section). Solution modifiers, such as order by, limit,
offset, and distinct can be applied to this solution sequence. The order by modifier is used to specify
an ordering for the sequence, specified as a list of variables present in the solution sequence and the
direction of the ordering (ASC or DESC). Furthermore, the distinct modifier eliminates any duplicate
solutions, while limit and offset are used to restrict the number of solutions that are returned and to
discard solutions from the beginning of the sequence, respectively.

Semantics

The semantics of SPARQL is defined based on the evaluation of BGPs, namely the matching of the BGPs
against the supplied RDF graph and the algebra that is built on top of this BGP matching. We start by
presenting the notion of solution mappings, which will be the results of the evaluation of BGPs and then
present how compatible solution mappings can be combined in order to define the evaluation semantics
of SPARQL. This evaluation algebra was presented by Cyganiak (2005); Pérez et al. (2006) and later
adapted to the W3C specification (Prud’hommeaux and Seaborne, 2008, Section 12.5).
The matching of BGPs is performed against the previously mentioned active graph, a specific RDF

graph contained in the dataset of the query. The active graph is initially set to the default graph of
the dataset and is changed whenever a graph keyword is processed. This matching is represented by a
function that maps query variables to RDF terms present in the active graph and is called a solution
mapping :

Definition 3.6 (Solution Mapping (Prud’hommeaux and Seaborne, 2008)). A solution mapping is a
partial function mapping SPARQL variables to RDF terms. The domain of a solution mapping µ, dom(µ),
is the set of variables for which µ is defined. We denote the value of variable v ∈ V according to solution µ
as µ(v).

The replacement of variables included in a graph pattern according to a solution mapping is defined next.

Definition 3.7 (Variable Substitution). Let P be a graph pattern and µ be a solution mapping. The
variable substitution of P by µ, denoted µ(P), is the graph pattern P with all variables v ∈ vars(P)∩dom(µ)

substituted by µ(v).

It is worthy to note that if a solution mapping µ contains bindings for all variables in a graph pattern P ,
i.e. dom(µ) = vars(P), and all triples in µ(P) are valid RDF triples, then µ(P) can be considered an
RDF graph. If µ provides bindings only for a subset of the variables present in the graph pattern P , µ(P)

yields another (more restrictive) graph pattern. For the specification of the SPARQL algebra below, we
introduce the notion of compatible solution mappings.

Definition 3.8 (Compatible Mappings). Let µ1 and µ2 be solution mappings, µ1 and µ2 are compatible
if and only if for any v ∈ dom(µ1) ∩ dom(µ2) it holds that µ1(v) = µ2(v). The union of two compatible
mappings µ1 and µ2 consists of the standard set-theoretical union µ1 ∪ µ2.

The SPARQL relational algebra (see Cyganiak (2005); Prud’hommeaux and Seaborne (2008); Pérez et al.
(2009)) defines how to combine solution mappings. Our semantics of SPARQL is based on the semantics
presented by Arenas, Gutiérrez et al. (2009), where the SPARQL algebra operators are extended to the
multiset case by preserving the cardinality of solutions:3

Definition 3.9 (SPARQL Relational Algebra). Let Ω1 and Ω2 be multisets of solution mappings:
3Following the notation of the operators presented by Arenas, Gutiérrez et al. (2009) we use the standard set operators.

42

3.3. Querying RDF with SPARQL 43

Ω1 ./ Ω2 = { µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 and µ2 compatible }
Ω1 ∪ Ω2 = { µ | µ ∈ Ω1 or µ ∈ Ω2 }
Ω1 − Ω2 = { µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 not compatible }
Ω1 ./ Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 − Ω2)

The definition of BGP matching from Prud’hommeaux and Seaborne (2008, Section 12.3) specifies the
solutions to a query. We denote the evaluation of a BGP P over a graph G as [[P]]G:

Definition 3.10 (Basic Graph Pattern Matching (Prud’hommeaux and Seaborne, 2008, Section 12.3.1)).
Given a graph G and a BGP P , a solution µ for P over G is a mapping over V ⊆ vars(P) such
that G |= µ(P). Following the definitions presented in Section 2.4, G |= µ(P), means that any triple
in µ(P) is entailed by G.

This definition of BGP matching relies on the underlying entailment notion, which according to the
SPARQL specification corresponds to simple graph entailment (P. Hayes, 2004). Furthermore, in order to
ensure the local scope of blank nodes, query solutions are taken from the scoping graph, a graph that is
equivalent to the active graph but does not share any blank nodes with it or any graph pattern within
the query.
The evaluation semantics of more complex patterns including filters, optional patterns, and pat-

terns, union patterns is built on top of this basic graph pattern matching, where each SPARQL operator
is mapped to an algebra expression:

Definition 3.11 (Evaluation (Pérez et al., 2009, Definition 2.2)). Let τ = (s, p, o) be a triple pat-
tern, P, P1, P2 graph patterns and G an RDF graph, then the evaluation [[·]]G is recursively defined as
follows:

[[τ]]G = { µ | dom(µ) = var(P) and G |= µ(τ) }
[[P1 and P2]]G = [[P1]]G ./ [[P2]]G
[[P1 union P2]]G = [[P1]]G ∪ [[P2]]G
[[P1 optional P2]]G = [[P1]]G ./ [[P2]]G
[[P filter R]]G = { µ ∈ [[P]]G | Rµ is true }

where R is a filter4 expression, u, v ∈ UBLV. The valuation of R on a substitution µ, written Rµ, is
true if:

(1) R = BOUND(v) with v ∈ dom(µ);
(2) R = isBLANK(v) with v ∈ dom(µ) and µ(v) ∈ B;
(3) R = isIRI(v) with v ∈ dom(µ) and µ(v) ∈ U;
(4) R = isLITERAL(v) with v ∈ dom(µ) and µ(v) ∈ L;
(5) R = (u = v) with u, v ∈ dom(µ) ∪UBL ∧ µ(u) = µ(v);
(6) R = (¬R1) with R1µ is false;
(7) R = (R1 ∨R2) with R1µ is true or R2µ is true;
(8) R = (R1 ∧R2) with R1µ is true and R2µ is true.

Rµ yields an error (denoted ε), if:

(1) R = isBLANK(v), R = isIRI(v), or R = isLITERAL(v) and v 6∈ dom(µ);
(2) R = (u = v) with u 6∈ dom(µ) ∪ T or v 6∈ dom(µ);
(3) R = (¬R1) and R1µ = ε;
(4) R = (R1 ∨R2) and (R1µ 6= true and R2µ 6= true) and (R1µ = ε or R2µ = ε);
4For simplicity, we will omit from the presentation filters such as comparison operators (‘<’, ‘>’, ‘6’, ‘>’), data type
conversion and string functions. Further details are presented in Prud’hommeaux and Seaborne (2008, Section 11.3).

43

3.3. Querying RDF with SPARQL 44

(5) R = (R1 ∧R2) and R1µ = ε or R2µ = ε.

Otherwise Rµ is false.

The presented definition considers only safe filters where, for a pattern “P filter R”, the filter R is said
to be safe if vars(R) ⊆ vars(P). However, the SPARQL specification defines that in optionals, any filter
is scoped to the Group Graph Pattern that contains the optional. As such, we include the definition that
caters for unsafe filters, introduced by Angles and Gutiérrez (2008b):

Definition 3.12 (optional with filter evaluation). Let P1, P2 be graph patterns and R a filter expres-
sion. A mapping µ is in [[P1 optional (P2 filter R)]]G if and only if:
• µ = µ1 ∪ µ2, s.t. µ1 ∈ [[P1]]G, µ2 ∈ [[P2]]G are compatible and Rµ is true, or
• µ ∈ [[P1]]G and ∀µ2 ∈ [[P2]]G, µ and µ2 are not compatible, or
• µ ∈ [[P1]]G and ∀µ2 ∈ [[P2]]G s.t. µ and µ2 are compatible, and Rµ3 is false for µ3 = µ ∪ µ2.

Finally, the evaluation semantics of SPARQL consists of computing a sequence of solution mappings,
where any existing solution modifiers are applied to the multiset of results. If no solution modifiers are
specified a default ordering is assumed.

Definition 3.13 (Solution sequences). Sequences of solution mappings are simply referred to as solution
sequences, often denoted by Ω .

These conditions of SPARQL construct queries, informally specified in Section 3.3, are reflected in the
following definition. Later, we will rely on this definition to show the equivalence of the newly introduced
XSPARQL construct expressions and SPARQL construct expressions.

Definition 3.14 (SPARQL construct semantics). Let C be a ConstructTemplate and Ω a solution
sequence. The SPARQL construct returns an RDF graph generated by the set-theoretical union of the
triples obtained from substituting variables in C with their bindings from Ω and satisfying the following
conditions:

(1) any invalid RDF triples that may be produced by the instantiation of the ConstructTemplate are
ignored; and

(2) blank node labels within the ConstructTemplate are considered scoped to the template for each
solution, i.e. if the same label occurs twice in a template, then there will be one blank node created
for each solution in Ω, but there will be different blank nodes for triples generated by different query
solutions. Blank nodes in the graph template be shared only within the same query solution µi ∈ Ω.

Query Answering

The SPARQL query language presented in the previous section can be viewed in a similar setting to the
rule based conjunctive queries presented for relational databases in Section 3.1. Also inspired by Gutiérrez,
Hurtado and Mendelzon (2004), we assume that an RDF graph G is ground, where all blank nodes have
been skolemised, i.e. consistently replaced with terms in UL. A query is of the rule-like form:

q(x̄)← ∃ȳ.ϕ(x̄, ȳ)

where q(x̄) is the head and ∃ȳ.ϕ(x̄, ȳ) is the body of the query. The body of the query is a conjunction
of triples τi (1 6 i 6 n) and, similar to Section 3.1, we use the symbol ‘,’ to denote conjunction in the
rule body. The vectors x̄ and ȳ are vectors of variables occurring in the body of the rule called the
distinguished variables and non-distinguished variables, respectively. The variables in x̄ and ȳ are disjoint
and each variable occurring in τi must be either distinguished or non-distinguished.

44

3.3. Querying RDF with SPARQL 45

In a query, we allow built-in triples of the form (s, p, o), where p is a built-in predicate taken from a
reserved vocabulary and having a fixed interpretation. We generalise the built-ins to any n-ary predicate p,
where p’s arguments may be variables from V and values from UL. We will assume that the evaluation
of the predicate can be decided in finite time. For convenience, we write functional predicates5 as
assignments of the form x :=f(z̄) and assume that the function f(z̄) is safe (according to Definition 3.1).
We also assume that a non functional built-in predicate p(z̄) should be safe as well.

Example 3.7 (RDF conjunctive query). An example query is:

q(n)← (x, ex:memberOf, y), (x, foaf:name, n), (y, type, mo:Band), (y, foaf:Name, “Nightwish”)

which intends to retrieve all persons names n that are members of a band y with the name “Nightwish”.

In order to define an answer to a query we introduce the following:

Definition 3.15 (Query instantiation). Given a vector x̄ = 〈x1, . . . , xk〉 of variables, a substitution over x̄

is a vector of terms t̄ replacing variables in x̄ with terms of UBL. Then, given a query q(x̄)← ∃ȳ.ϕ(x̄, ȳ),
and two substitutions t̄, t̄′ over x̄ and ȳ, respectively, the query instantiation ϕ(t̄, t̄′) is derived from ϕ(x̄, ȳ)

by replacing x̄ and ȳ with t̄ and t̄′, respectively.

Note that, similar to the variable substitution of a solution mapping in SPARQL (cf. Definition 3.7), if
all tripes in a query instantiation are valid RDF triples, the query instantiation can be considered an
RDF graph.

Definition 3.16 (Entailment). Given a graph G, a query q(x̄)← ∃ȳ.ϕ(x̄, ȳ), and a vector t̄ of terms
in universe(G), we say that q(t̄) is entailed by G, denoted G |= q(t̄), if and only if in any model I of G,
there is a vector t̄′ of terms in universe(G) such that I is a model of the query instantiation ϕ(t̄, t̄′).

Definition 3.17 (Query Answers). If G |= q(t̄) then t̄ is called an answer to q. The answer set of q
w.r.t. G is defined as ans(G, q) = { t̄ | G |= q(t̄) }.

The notion of a solution for BGPs in SPARQL is the same as the notion of answers for conjunctive
queries:

Proposition 3.1. Given a graph G and a BGP P , the solutions of P are the same as the answers of
the query q(var(P))← P , i.e. ans(G, q) = [[P]]G.

SPARQL 1.1

A new version of SPARQL, called SPARQL 1.1 (Harris and Seaborne, 2012), is in the process of being
proposed as a W3C recommendation. This new version is composed of several documents specifying
the updated query language and introduces new features that were already used in practice by several
SPARQL engines, such as: (i) aggregates; (ii) subqueries; (iii) negation; (iv) assignment; and (v) property
paths. Other documents included in this new version, but not detailed in this section, specify an Update
language (Gearon et al., 2012) and extensions for federated querying (Prud’hommeaux and Buil-Aranda,
2011).

Aggregates allow expressions to be applied over groups of solutions to obtain a single value, for
example determining the minimum (min) value of the group. Other aggregator functions included in the
standard are count, sum, max, avg, and group concat. Although the use of aggregate functions was already
available in several SPARQL engines, it will only be introduced into the official W3C specification with
SPARQL 1.1.
5A predicate p(x̄, y) is functional if for any t̄ there is a unique t′ for which p(t̄, t′) is true.

45

3.4. Conclusion 46

In SPARQL 1.1, nested select queries are allowed to be used in graph patterns and the projected
variables of the subquery are then joined with the results of the outer query. These nested select

queries are however not allowed to specify a dataset and are restricted to be executed over the same
dataset as the outer query. SPARQL follows a bottom-up query evaluation and thus the inner queries are
evaluated first and its results made available to the outer query. A proposal for subqueries in SPARQL
was previously presented by Angles and Gutiérrez (2010) and later the same authors compared different
forms of subqueries to the W3C semantics (Angles and Gutiérrez, 2011).

Although negation was already permitted in SPARQL by using a combination of the filter and bound

operators, this is made explicit in SPARQL 1.1 by allowing two forms of negation: the exists and minus.
The exists (and not exists) filter expression allows to test if a graph pattern matches (or does not
match) the dataset and consequently remove such solutions from the results. The other form of negation
uses the minus operator that, when applied to two graph patterns, removes solutions from the left-hand
side compatible with any solution from the right-hand side. Since the minus operator relies on the notion
of compatible solutions, it will only remove solutions if there are shared variables between the solution
sequences it is applied to. This causes different results between the two forms of negation when the
provided graph patterns do not share variables:6 since no two solutions are compatible, the minus operator
does not remove any solutions from the resulting sequence. However, the exists operator will remove the
respective solutions from the final sequence.

SPARQL 1.1 includes a basic query federation by means of the SERVICE keyword, which specifies that
the following subquery will be executed in a remote SPARQL endpoint.
Other features include assignment of variables in the graph pattern (using the bind operator), in the

select clause, and in the group by clause. All assignments are of the form “(expression AS $var)”, where
expression is the expression to be evaluated and $var is the variable name the result of the expression is
assigned to. Another form of assignment is using the bindings clause,7 which allows to specify a solution
sequence that is to be joined with the results of the graph pattern. The values for variables in the
provided solution sequence must be RDF terms, i.e. no variables can be specified. The bindings clause is
envisioned to be used with the service keyword to specify values for federated querying.

Property paths are used to specify a connection between two RDF nodes. An extended graph pattern
syntax is defined that allows for a concise pattern matching, for example specifying alternative routes for
connecting the nodes, or to match paths of arbitrary or specific lengths.

3.4. Conclusion

This chapter introduced the SQL, XQuery, and SPARQL query languages that allow to access data in
the formats presented in Chapter 2. Each query language focuses on a specific data model, namely SQL
for relational data, XQuery for XML data, and SPARQL for RDF data. For XML, we briefly presented
the XPath and XSLT languages, which are closely related to XQuery.
We briefly introduced the syntax and semantics of each language, with special focus on XQuery and

SPARQL, which will be used in the next chapters to define the novel transformation language, called
XSPARQL, and the extension of SPARQL towards querying meta-information. XSPARQL integrates the
SQL, XQuery, and SPARQL query languages presented in this chapter, thus allowing to combine data
from the different data models.

6A special case of graph patterns that do not share any variables is when the pattern to be removed contains no variables,
i.e. is a fixed pattern.

7Note that the SPARQL 1.1 syntax is still under development and the bindings clause may be changed to values.

46

Part II.

Contributions

47

4. The XSPARQL Language

This chapter introduces a language that is capable of querying, transforming, and exposing data from
heterogeneous sources, namely sources adhering to the data models presented in Chapter 2: the relational
model, the tree-based XML and JSON formats, and the graph-based RDF model. This language, called
XSPARQL, is based on the existing standard query languages described in Chapter 3: SQL, XQuery,
and SPARQL, that are used to query the heterogeneous input sources. Since JSON does not specify
a query language XSPARQL, automatically converts JSON into a predefined XML representation over
which it is possible to use XQuery and XPath (this approach is detailed in Section 4.4). XSPARQL
consists of an extension of the XQuery language with syntactical constructs from both SQL and SPARQL
and as such XSPARQL is an XQuery-flavoured language, whose semantics is defined as an extension
of the XQuery semantics. As a first example we can use this language to expose data in relational
databases as RDF or XML data, in a similar approach to current proposals for translating relational data
to RDF (RDB2RDF). But furthermore a common language including SQL, XQuery and SPARQL can
support more involved transformations between different formats, for instance, enabling the integration of
enterprise legacy data into LOD as described in Chapter 1. The importance of converting data between
these data models has been acknowledged within the W3C in several standardisation efforts: Gleaning
Resource Descriptions from Dialects of Languages (GRDDL) (Connolly, 2007), Semantic Annotations
for Web Services Description Language (SAWSDL) (Farrell and Lausen, 2007), and more recently
RDB2RDF (Arenas, Prud’hommeaux et al., 2012; Das, Sundara et al., 2012).

In data integration scenarios, such as the one described in Chapter 1, we often call the transformations
from the different formats into RDF lifting and the transformations in the opposite direction lowering.
The names derive from the fact that RDF is classified as having a higher abstraction level when compared
to relational data or even semi-structured XML data.

Lifting: Transforming Heterogeneous Sources into RDF

Within the W3C, the GRDDL working group addressed the lifting task by allowing RDF data to be
extracted from existing XML and (X)HTML Web pages. The XML or HTML document can link (by
means of a specialised vocabulary) to XSLT transformations that, when applied to the original document,
produce the RDF data. In the Web Services community, the Web Services Description Language
(WSDL) (Chinnici et al., 2007) is an XML-based language for describing the messages that a web service
accepts (sends and receives). The SAWSDL working group focused on defining mechanisms to add
annotations to WSDL documents that allow the XML messages of a web service to be transformed into
RDF (adhering to a specified schema) and, vice versa, enable the lowering of data stored in RDF and
the creation of target XML messages. The ongoing RDB2RDF Working Group focuses on transforming
data between the relational model and RDF, enabling the vast amounts of data contained in relational
databases to be exposed as RDF, for example most enterprise data (as discussed in Chapter 1). The
RDB2RDF Working Group has defined a mapping vocabulary that specifies how existing relational data
can be converted into RDF. In Section 4.5 we will look at how the XSPARQL language implements this
specification.

As described in Section 2.4.1, RDF/XML (Beckett, 2004) is the recommended syntax for RDF, using
XML as the underlying representation model and, based on this format, it is conceivable to use XML-based

48

49

1 declare namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#" ;
2 declare namespace foaf = "http://xmlns.com/foaf/0.1/" ;
3 declare namespace mo = "http://purl.org/ontology/mo/" ;
4 declare namespace dc = "http://purl.org/dc/elements/1.1/" ;
5

6 let $bandPos := distinct-values(//band/@name)
7 let $memberPos := distinct-values(//member)
8 let $albumPos := distinct-values(//album/@name)
9 let $songPos := distinct-values(//song)

10

11 return
12 <rdf:RDF> {
13 for $band in //band
14 let $bandName := data($band/@name)
15 let $bandID := fn:index-of($bandPos, $bandName)
16 return
17 <mo:MusicGroup rdf:nodeID="b{$bandID}" foaf:name="{$bandName}">{
18 for $member in $band//member
19 let $memberID := fn:index-of($memberPos, $member)
20 return <foaf:member rdf:nodeID="m{$memberID}"/>
21 }</mo:MusicGroup>,
22

23 for $memberName at $memberID in $memberPos
24 return <mo:MusicArtist rdf:nodeID="m{$memberID}">
25 <foaf:name>{$memberName}</foaf:name>
26 </mo:MusicArtist>,
27

28 for $album in //album
29 let $albumName := data($album//@name)
30 let $albumID := fn:index-of($albumPos, $albumName)
31 let $bandID := fn:index-of($bandPos, data($album/../../@name))
32 return <mo:Record rdf:nodeID="a{$albumID}">
33 <mo:title>{$albumName}</mo:title>
34 <foaf:maker rdf:nodeID="b{$bandID}"/>{
35 for $song in $album//song
36 let $songID := fn:index-of($songPos, $song)
37 return <mo:track rdf:nodeID="s{$songID}"/>
38 }</mo:Record>,
39

40 for $songName at $songID in $songPos
41 return <mo:Track rdf:nodeID="s{$songID}">
42 <dc:title>{$songName}</dc:title>
43 </mo:Track>
44 } </rdf:RDF>

Query 4.1: Lifting using XQuery

tools, such as XSLT or XQuery, to produce RDF data. Both the GRDDL and SAWSDL specifications
use XSLT to perform lifting and lowering, however, as we will show, approaches that rely on RDF/XML
for transformations between RDF and XML have several disadvantages. In the following examples we
are using XQuery to perform the different transformations, similar transformations can also be achieved
using XSLT but this does not invalidate any of the drawbacks we present.

Example 4.1 (Lifting in XQuery). As an example of the lifting transformation, Query 4.1 presents
the XQuery that converts the XML data from Data 2.1 into RDF. This query produces an RDF
graph similar to the one presented in Data 2.4 with the exception that it uses blank nodes as idenfiers

49

50

for all entities, while the graph from Data 2.4 uses DBpedia URIs as identifiers. The blank node labels
assigned to each entity are generated by using a prefix for each type of entity: (b)ands, (m)usic
artists, (a)lbums, and (s)ongs, followed by a sequencial identifier (cf. rdf:nodeID in line 17). Having
determined all the identifiers (in lines 6–9), the query produces the required RDF/XML structure:
the triples refering to bands, their name and its members are generated in lines 13–21. A similar
process is then repeated for artists (lines 23–26), albums (lines 28–38), and songs (lines 40–43).

While this example presents a valid solution for lifting, we can observe the following drawbacks:

• we have to build RDF/XML manually and cannot use the more readable and concise Turtle syntax;
and
• the resulting RDF data is not guaranteed to be valid (according to Definition 2.2).

The task of lifting data from relational databases can be performed in a similar fashion by relying on
SQL/XML (Eisenberg and Melton, 2001) however this would introduce an indirection step by first having
to transform data into XML and then into RDF. Combining SQL, XQuery, and SPARQL in XSPARQL
simplifies the lifting process, allowing to use SPARQL ConstructClauses to generate RDF in Turtle format
(directly from relational data or XML) and performing automatic validation of the generated RDF.

Lowering: Transforming from RDF into the Legacy Formats

As we have seen the lifting task can be accomplished (with some drawbacks) by using XSLT or XQuery.
On the other hand, converting from RDF data back into the legacy data models using XML tools poses
obstacles that are even harder to overcome, namely:

• the flexibility of the RDF/XML format (and the lack of a canonical format) makes writing trans-
formations difficult;
• merging different RDF graphs may involve complex processing (e.g. renaming of blank nodes); and
• possibly handling the interplay with inference mechanisms e.g. RDFS would require custom-built

code.

As we have presented in Section 2.4.1, the RDF/XML serialisation format is very flexible, as it includes
several shortcuts and allows for different representations of the same RDF graph. For example, we
have shown two equivalent serialisations for the same RDF graph in Data 2.3 and 2.4, however both
serialisations are very different when we focus on their XML structure. Since using XML tools requires
handling RDF/XML as XML data, all the possible different serialisations for an RDF graph would need
to be taken into account.

Example 4.2 (Lowering in XQuery). Query 4.2 performs the lowering task directly from RDF/XML
using XQuery. This query first retrieves all the mo:Band XML elements (lines 8–23) and, for each band,
retrives the names of the artists (lines 11–14) and albums (lines 17–21) of the band. Furthermore, all
the song names of each album are collected in lines 19–20. This process creates the desired nested
structure of the XML file presented in Data 2.1.

One issue is that Query 4.2 is tailiored specifically to the RDF/XML serialisation from Data 2.4 and
will not produce the desired results if the serialisation changes. Although creating a query capable of
handling any RDF/XML serialisation would be possible, this would be a cumbersome and error-prone
task. Futhermore, if the RDF data is stored in the Turtle serialisation it is not possible to use XML tools.
On the other hand, SPARQL is agnostic to the actual XML representation of the underlying source

graphs, which alleviates the pain of having to deal with different RDF/XML representations of the graphs.
Also merging several RDF source graphs specified in consecutive from clauses (as described in Section 3.3),

50

51

1 declare namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#" ;
2 declare namespace foaf = "http://xmlns.com/foaf/0.1/" ;
3 declare namespace mo = "http://purl.org/ontology/mo/" ;
4 declare namespace dc = "http://purl.org/dc/elements/1.1/" ;
5

6 <user>
7 <bands>{
8 for $band in //mo:MusicGroup
9 return <band name="{$band/@foaf:name}">

10 <members>{
11 for $member in $band/foaf:member
12 return <member>{
13 //mo:MusicArtist[@rdf:about = $member/@rdf:resource]/foaf:name/text()
14 }</member>
15 }</members>
16 <albums>{
17 for $album in //mo:Record[./foaf:maker/@rdf:resource = $band/@rdf:about]
18 return <album name="{$album//mo:title}">{
19 for $song in $album/mo:track/@rdf:nodeID
20 return <song>{//mo:Track[@rdf:nodeID = $song]/dc:title/text()}</song>
21 }</album>
22 }</albums>
23 </band>
24 }</bands></user>

Query 4.2: Lowering using XQuery

which could involve renaming of blank nodes at the pure XML level, comes for free in SPARQL. However,
we cannot use SPARQL alone for the lowering transformations since SPARQL does not provide the
possibility of handling XML data.
Apart from its syntactic ambiguities, processing RDF/XML via XQuery also loses another feature of

RDF, namely its interplay with ontological information, e.g. RDFS. Since XML tools do not support
ontological inference, we would need to implement an RDFS inference engine within XSLT or XQuery,
to cater for a lowering mechanism that also works for this kind of RDF data. Given the availability of
RDF tools and engines that readily offer RDFS support via materialising inferences, this is a dispensable
exercise. Furthermore, in Chapter 6 we present an extension of the RDFS inference rules (called Annotated
RDFS) and of the SPARQL query language towards meta-information and in Chapter 7 we present
the combination of XSPARQL and Annotated RDFS, which also introduces inferencing capabilities in
XSPARQL.

Benefits of an Integrated Language

In recognition of the above problems the SAWSDL specification contains a non-normative example, which
performs a lowering transformation by applying an XSLT transformation to the XML representation
of the results of a SPARQL query (Clark et al., 2008). Such a two-step approach alleviates the issues
described: first, since SPARQL works on the RDF data model the different RDF/XML serialisations
are considered to be equivalent, and second, RDFS inferences can also be catered for in the SPARQL
engine. Although the approach proposed by the SAWSDL Working Group provides a good starting point,
it can still be improved on several points: firstly, the detour through SPARQL’s XML query results
format is an unnecessary burden. Secondly, a more tightly-coupled integration of the different query
languages can provide a more expressive language, beyond the capabilities of using different languages
sequentially, and directly amenable to query optimisations. The proposed language, XSPARQL, aims
to provide exactly this: use cases that otherwise would require interleaved calls to SPARQL (typically

51

4.1. Syntax 52

Prolog: declare namespace prefix="namespace-URI" or
prefix prefix : <namespace-URI>

Body: for var in XSPARQLExpr expression

ForClauselet var := XSPARQLExpr expression
where XSPARQLExpr expression
order by XSPARQLExpr expression or
for SelectSpec

SQLForClausefrom RelationList
where WhereSpecList or
for varlist

SparqlForClause

from /from named DatasetClause
where { pattern }
order by expression
limit integer > 0

offset integer > 0

Head: construct { ConstructTemplate (with nested XSPARQLExpr expressions) } or
ConstructClause

return XML+ nested XSPARQLExpr expressions ReturnClause

Figure 4.1.: Schematic view of XSPARQL

requiring an implementation using an external programming framework) can be solved in XSPARQL
directly, cf. the lowering example in Query 4.3.
In fact, the current version of SPARQL (Prud’hommeaux and Seaborne, 2008) is still preliminary in

terms of expressivity when compared to SQL or XQuery. As a side effect of this integration, XSPARQL
also extends SPARQL’s expressiveness for pure RDF transformations by allowing, for instance, nested
XSPARQL queries in the graph construction step. The SPARQL 1.1 query language (cf. Section 3.3),
currently under development by the W3C SPARQL Working Group, gives a leap forward in terms of
expressivity, however, providing mechanisms to convert data back into the native legacy data models of
XML or SQL databases is beyond the scope of the Working Group.

We next present the syntax and semantics of the XSPARQL language in Sections 4.1 and 4.2, respect-
ively. We continue by presenting properties relating the novel language with its constituent languages
(Section 4.3), introduce our handling of JSON data in Section 4.4, and presenting the processing of
RDB2RDF mappings within XSPARQL (Section 4.5). Finally, we introduce a discussion on related works
in Section 4.6.

4.1. Syntax

Conceptually, XSPARQL is a merge of XQuery, SPARQL construct and select queries, and SQL select

queries, as presented schematically in Figure 4.1. This re-use of different query languages allows us
to benefit from their facilities for retrieving data in the different models, while also allowing us to use
Turtle-like syntax for constructing RDF graphs (inherited from the SPARQL language). Since XSPARQL
is based on XQuery, we allow any native XQuery expression and further extend XQuery’s syntax with
the following expressions:

(i) XQuery and SPARQL namespace declarations in the Prolog may be used interchangeably;
(ii) in the Body, we allow the existing XQuery ForClauses and also SPARQL select queries (SparqlFor-

Clause) and SQL select queries (SQLForClause); and
(iii) in addition to XQuery’s native ReturnClause, in the head we allow RDF graphs to be created

directly using construct templates (ConstructClause).

In XSPARQL we also allow different forms of nesting: (i) let assignments can contain the result of
subqueries that construct RDF graphs, and the assigned variable can later be used in SPARQL-style from

52

4.1. Syntax 53

XSPARQLExpr ::= (FLWOExpr | SQLForClause | SparqlForClause)
(ReturnClause | ConstructClause)

FLWOExpr ::= (ForClause | LetClause)+ XQWhereClause? OrderByClause?

ReturnClause ::= ‘return’ ExprSingle

SQLForClause ::= ‘for’ SelectSpec RelationList SQLWhereClause?

SparqlForClause ::= ‘for’ (VarName+ | ‘*’) DatasetClause? WhereClause? SolutionModifier

ConstructClause ::= ‘construct’ ConstructTemplate’

Figure 4.2.: XSPARQLExpr syntax overview

clauses, or (ii) nesting can also be used for value construction within SPARQL-style construct templates.
Since the new SQLForClause and SparqlForClause expressions stand at the same level as XQuery’s for

and let expressions, such clauses are allowed to start new XSPARQLExpr expressions and may also
occur inside deeply nested XSPARQL queries. The main difference between these new expressions and
SQL and SPARQL select expressions is that while the latter expressions return bindings for variables
(as described in Sections 3.1.2 and 3.3), the new expressions follow an approach similar to XQuery’s
ForClause by adding new variables to the scope of query and as such we choose a syntax also inspired by
the XQuery ForClause.

An overview of the grammar productions for these newly introduced expressions (SQLForClause, Sparql-
ForClause, and ConstructClause) is presented in Figure 4.2. Notably, when compared to the XQuery
grammar, we introduced a new production (XSPARQLExpr) that changes the XQuery FLWORExpr to
include the new expressions.

We next look at the syntax of each newly introduced expression in more detail while presenting some
XSPARQL query examples that allow us to perform the lifting and lowering tasks in a straightforward
fashion.

4.1.1. SparqlForClause
SparqlForClause ::= ‘for’ (VarRef+ | ‘*’) DatasetClause? WhereClause? SolutionModifier

The newly introduced SparqlForClause is similar to an XQuery for expression that returns a sequence of
SPARQL results. In this grammar production, the WhereClause and SolutionModifier correspond to
rules [13] and [14] from the SPARQL grammar, respectively cf. Prud’hommeaux and Seaborne (2008,
Appendix A.8). Similar to SPARQL’s and SQL’s ‘select *’ shortcut, we allow to write ‘for *’ in place of
‘for [list of all unbound variables appearing in the WhereClause]’ in SparqlForClauses, which effectively
avoids listing the distinguished variables of the query.
We also extended the rules for the SPARQL SourceSelector grammar expression (rule [12] of the

SPARQL grammar) in order to allow graphs in a dataset to be specified by a variable:

SourceSelector ::= IRIref | VarRef

The variables used here must contain an RDF graph, resulting from a ConstructClause (as described
in the next section and further detailed in Section 4.2).

Regarding the syntax for variables in XQuery and SPARQL, we restrict the use of SPARQL ‘?’-prefixed
variables and allow only ‘$’-prefixed variables that are compatible with XQuery’s variable specifications.
On the other hand, as mentioned in Section 3.2.3, XQuery also allows to specify variables as QNames,
allowing the disambiguation of variables based on their namespace. However, since such variable names
are not allowed in SPARQL we further assume that only unprefixed variables are shared between the
XQuery and SPARQL expressions of XSPARQL.

53

4.1. Syntax 54

1 declare namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#" ;
2 declare namespace foaf = "http://xmlns.com/foaf/0.1/" ;
3 declare namespace mo = "http://purl.org/ontology/mo/" ;
4 declare namespace dc = "http://purl.org/dc/elements/1.1/" ;
5

6 <user><bands>{
7 for * from <bands.ttl>
8 where { $band a mo:MusicGroup ; foaf:name $bandName . }
9 return <band name="{$bandName}">

10 <members>{
11 for $memberName from <bands.ttl>
12 where { $band foaf:member $bandMember .
13 $bandMember foaf:name $memberName . }
14 return <member>{$memberName}</member>
15 }</members>
16 <albums>{
17 for * from <bands.ttl>
18 where { $album foaf:maker $band .
19 $album mo:title $albumName . }
20 return <album name="{$albumName}">{
21 for * from <bands.ttl>
22 where { $album mo:track $song .
23 $song dc:title $songName . }
24 return <song>{$songName}</song>
25 }</album>
26 }</albums>
27 </band>
28 }</bands></user>

Query 4.3: Lowering using XSPARQL

The lowering transformation can also be rewritten using XSPARQL. These are the kind of trans-
formations that present extra problems for the XSLT and XQuery languages and where we can see the
advantages of using XSPARQL. By using the introduced SparqlForClauses for accessing the RDF graph,
XSPARQL avoids handling RDF as XML data, along with all the encapsulated issues.

Example 4.3 (Lowering RDF data with XSPARQL). The lowering XSPARQL query for our running
example is shown in Query 4.3. Here we can note the inclusion of SparqlForClauses, for instance in
line 7, to retrieve all the bands (mo:Band) contained in the RDF data. Furthermore, nested Sparql-
ForClauses can be used for further processing of the input data: the SparqlForClause in lines 11–13
is responsible for retrieving all the members of the respective band, where the ‘$band’ variable is
instantiated with the band identifier currently being processed. A similar structure is repeated for
converting the corresponding albums of the band (lines 17–26) and songs of each album (lines 21–24).

4.1.2. ConstructClause
ConstructClause ::= ‘construct’ ConstructTemplate

The ConstructClause allows XSPARQL to produce RDF graphs and, by following SPARQL’s restrictions
on the generated RDF triples (cf. Section 3.3), we also ensure that the resulting graph is valid RDF. The
XSPARQL ConstructTemplate expression is defined in the same way as the production ConstructTemplate
in SPARQL (Prud’hommeaux and Seaborne, 2008), but we additionally allow nested XSPARQLExpr
expressions in subject, predicate, and object positions. We allow three types of nested expressions,
identified by the shortcuts ‘{’ XSPARQLExpr ‘}’, ‘<{’ XSPARQLExpr ‘}>’, and ‘_:{’ XSPARQLExpr ‘}’

54

4.1. Syntax 55

1 declare namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#" ;
2 declare namespace foaf = "http://xmlns.com/foaf/0.1/" ;
3 declare namespace mo = "http://purl.org/ontology/mo/" ;
4 declare namespace dc = "http://purl.org/dc/elements/1.1/" ;
5

6 let $bandPos := distinct-values(//band/@name)
7 let $memberPos := distinct-values(//member)
8 let $albumPos := distinct-values(//album/@name)
9 let $songPos := distinct-values(//song)

10

11 return (
12 for $band in //band
13 let $bandName := data($band/@name)
14 let $bandID := fn:index-of($bandPos, $bandName)
15 construct { _:b{$bandID} a mo:MusicGroup ; foaf:name {$bandName} .
16 { for $member in $band//member
17 let $memberID := fn:index-of($memberPos, $member)
18 construct { _:b{$bandID} foaf:member _:m{$memberID} }
19 } },
20

21 for $memberName at $memberID in $memberPos
22 construct { _:m{$memberID} a mo:MusicArtist; foaf:name {$memberName} },
23

24 for $album in //album
25 let $albumName := data($album//@name)
26 let $albumID := fn:index-of($albumPos, $albumName)
27 let $bandID := fn:index-of($bandPos, data($album/../../@name))
28 construct { _:a{$albumID} a mo:Record; mo:title {$albumName};
29 foaf:maker _:b{$bandID} .
30 { for $song in $album//song
31 let $songID := fn:index-of($songPos, $song)
32 construct { _:a{$albumID} mo:track _:s{$songID} } }
33 },
34

35 for $songName at $songID in $songPos
36 construct { _:s{$songID} a mo:Track; dc:title {$songName} }
37)

Query 4.4: Lifting in XSPARQL

that construct literals, URIs, and blank nodes, respectively. This syntax is used during static analysis to
correctly determine the type of each element: literal, uri, and bnode (cf. Section 4.2.1 below).

Additionally, we also allow SPARQL-style ConstructClauses to appear before the body part of queries,
and as such XSPARQL becomes a syntactic superset of native SPARQL construct queries (with the
minor exception being the restriction on ‘?’-prefixed variables).
The following lifting query shows the use of the ConstructClause expression.

Example 4.4 (Lifting XML data with XSPARQL). Query 4.1 can be reformulated into its slightly
more concise XSPARQL version in Query 4.4. This query behaves in a similar way to Query 4.1,
creating the RDF triples for each entity in the input XML data. The difference is that we are using
nested SPARQL-like construct clauses for creating the RDF triples (cf. lines 15–19). In line 36 we
use the different XSPARQL shortcuts, in this case to create URIs and literals. The result of this
query is also guaranteed to be valid RDF as explained in Section 4.2.4.

55

4.1. Syntax 56

4.1.3. SQLForClause
SQLForClause ::= ‘for’ SelectSpec RelationList SQLWhereClause?

The SQLForClause element represents an SQL select query that can be evaluated against the underlying
database. Similar to XQuery’s for clause, the SQLForClause expression represents the results of the
execution of a SQL query and exposes the result values to other subsequent expressions in the query. The
additional SQLForClause syntax rules are presented next, where VarRef corresponds to an XSPARQL
variable (‘$’-prefixed), TableAlias represents a string used as an alternative name for the relation, and
Constant represents an integer or string:

SelectSpec ::= AttrSpecList | ‘*’ | ‘row’ VarRef

AttrSpecList ::= AttrSpec AttrNameSpec? (‘,’ AttrSpec AttrNameSpec?)*

AttrSpec ::= attrName
| relationName ‘.’ attrName
| VarRef

AttrNameSpec ::= ‘as’ VarRef

RelationList ::= ‘from’ RelationSelector (‘,’ RelationSelector)*

RelationSelector ::= RelationName (‘as’ RelationAlias)?
| VarRef (‘as’ RelationAlias)?

SQLWhereClause ::= ‘where’ WhereSpecList

WhereSpecList ::= ‘(’ WhereSpecList BooleanOp WhereSpecList ‘)’
| WhereSpec

WhereSpec ::= WhereAttrSpec ComparisonOp WhereAttrSpec
| WhereAttrSpec ComparisonOp Constant
| Constant ComparisonOp WhereAttrSpec

WhereAttrSpec ::= AttrSpec
| ‘{’ VarRef ‘}’

BooleanOp ::= ‘and’ | ‘or’

ComparisonOp ::= ‘=’ | ‘!=’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘=>’

When comparing the XQuery and SQL languages we find a syntactical mismatch between the repres-
entation of variables: while SQL considers the relation names specified in RelationSelector as variables
(as described in Section 3.1.2), XQuery assumes ‘$’-prefixed variable names. XSPARQL provides ways of
overcoming this mismatch, allowing to specify variable names for the results of an SQLForClause, by:

(i) explicitly specifying a variable name for each attribute – represented by the syntax rule
AttrNameSpec, where VarRef is the variable name to which the attribute value is assigned:
e.g. ‘for bands.bandId as $bandId’;

(ii) implicitly by omitting the variable name or using ‘for *’; and
(iii) using the ‘row’ keyword instantiates the specified variable with each result row the query produces.

For (ii), each attribute in the result set is assigned a variable name automatically with the same name as
the attribute name, of the format: ‘$relationName.attributeName’.

Example 4.5 (Variable Name Generation). Consider the relational schema presented in Example 2.2.
If we specify a SQLForClause in the form of ‘for * from person’, the variable names that will be
available for the query will be ‘$person.personId’, ‘$person.personName’, and ‘$person.bandId’.

56

4.1. Syntax 57

1 declare namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#" ;
2 declare namespace foaf = "http://xmlns.com/foaf/0.1/" ;
3 declare namespace mo = "http://purl.org/ontology/mo/" ;
4 declare namespace dc = "http://purl.org/dc/elements/1.1/" ;
5

6 (
7 for band.bandId as $bandID, band.bandName as $bandName
8 from band
9 construct { _:b{$bandID} a mo:MusicGroup ; foaf:name {$bandName} },

10

11 for person.personId as $memberID, person.personName as $memberName, person.bandId as
$bandID

12 from person
13 construct { _:m{$memberID} a mo:MusicArtist; foaf:name {$memberName} .
14 _:b{$bandID} foaf:member _:m{$memberID}
15 },
16

17 for album.albumId as $albumID, album.albumName as $albumName, album.bandId as
$bandID

18 from album
19 construct { _:a{$albumID} a mo:Record; mo:title {$albumName};
20 foaf:maker _:b{$bandID} .
21 },
22

23 for song.songId as $songID, song.songName as $songName, song.albumId as $albumID
24 from song
25 construct { _:s{$songID} a mo:Track; dc:title {$songName} .
26 _:a{$albumID} mo:track _:s{$songID}
27 }
28)

Query 4.5: Lifting from relational database

If the relation attributes are not known beforehand, e.g. if the relation is specified as a variable, it
is not possible to generate the variable names as described in (ii). In this case, we can use ‘row $r’ in
place of the variable names specification, and at execution time, ‘$r’ will be instantiated with an XML
representation containing all the attributes in the queried relations. It is then possible to access all the
attributes or to retrieve (if known) a specific attribute. This form of selecting attributes is necessary for
processing RDB2RDF mappings (presented in Section 4.5.3) since the queried relations and attributes
are read from a user-specified RDF graph and thus the attributes of the relation cannot be determined
during syntactical analysis of the query.
In SQL, where clauses indicate specific values of an attribute to be matched or that the value of two

attributes must be the same. When we introduce the extended XSPARQL syntax (which allows to use
$-prefixed variables) we need a way to specify if the variable represents an attribute name or an attribute
value. We make this distinction in the syntax of XSPARQL: a $-prefixed variable represents an attribute
value, in case we want a variable to represent an attribute name of a relation we use the ‘{’ VarRef ‘}’
syntax. Further details on how XSPARQL handles this distinction are presented in Section 4.2.
In a similar fashion to the lifting query from XML data (Query 4.4), we can use SQLForClauses to

access relational data and convert it to RDF, as presented in the following example.

Example 4.6 (Lifting Relational data with XSPARQL). Query 4.5 shows an XSPARQL query that
performs the lifting task over the relational schema described in Example 2.2. In this query we are
using the primary key (generated identifier) of each relation for generating the blank node label of

57

4.2. Semantics 58

each entity (cf. line 9). The rest of the query consists of creating the respective RDF triples for the
other relations: person (lines 11–15), album (lines 17–21), and song (lines 23–27).

4.2. Semantics

Next we define the semantics of XSPARQL by reusing the semantics of SQL and SPARQL. We start by
defining how we ensure that the semantics of SQL and SPARQL queries respects any existing XSPARQL
variable bindings. In Section 4.2.3, we present the extensions to the W3C XQuery’s semantics (Draper,
Fankhauser et al., 2010), namely the new types we use, an extension to the normalisation rules of XQuery
ForClauses, and necessary additional environment components. Section 4.2.4 presents the semantics
of the newly introduced expressions: SparqlForClause, ConstructClause, and SQLForClause, based on
XQuery’s formal semantics (Draper, Fankhauser et al., 2010), by defining normalisation, static type and
dynamic evaluation rules for each of the new expressions.

4.2.1. XSPARQL Types

We extend the XQuery 1.0 and XPath 2.0 Data Model (described in Section 2.2.3) with the following
new types to accommodate for SQL and SPARQL specific parts of XSPARQL:

(1) the SQLTerm is an extension of xs:anyAtomicType (as presented in Section 3.1.2);
(2) the RDFTerm type further consists of the subtypes uri, bnode and literal and is used as the type of

SPARQL variables;
(3) the PatternSolution type consists of a sequence of pairs (variableName, RDFTerm), representing SQL

or SPARQL variable bindings;
(4) the RDFGraph is the type resulting from the evaluation of construct expressions; and
(5) the RDFDataset is the type used for representing RDF datasets, which is further constituted by one

default RDFGraph and a sequence of named graphs (RDFNamedGraph).

Figure 4.3 presents the formal definition of (1)–(5) following the notation for XML Schema datatypes
(presented in Section 2.2.2). The RDFTerm type is used to represent RDF terms (composed of URIs, blank
nodes or literals). The type of SPARQL variables is represented by the Binding type, that consists of the
variable name and the RDF term that is assigned to it. Finally, sequences of SPARQL variable bindings
are represented by the type PatternSolution.
Similarly for SQL results, sequences of SQL variable bindings are also represented by the type

PatternSolution. Analogously, we define the types SQLResult and SQLBinding for representing SQL results.
The SQLBinding type is defined as an extension of xs:anyAtomicType, and we follow the mapping from SQL
types into XML types presented in Table 3.1.

The RDFGraph type corresponds to a sequence of RDFTriples, which are in turn a complex type composed
of subject, predicate and object. The RDFDataset type is defined as an RDFGraph that is considered
the default graph and a sequence of RDFNamedGraphs represented by the name of the graph and the
corresponding RDFGraph.

Translating SQL and SPARQL Solutions into the PatternSolution Type

The next definition presents the translation between a SPARQL solution sequence and a sequence of
SPARQLResult type elements that we implement in XSPARQL. This serialisation of SPARQL results
mimics the SPARQL Query Results XML Format (Beckett and Broekstra, 2008), defined by the XML
Schema available at http://www.w3.org/2007/SPARQL/result.xsd.

58

http://www.w3.org/2007/SPARQL/result.xsd

4.2. Semantics 59

define type URI-reference restricts xs:anyURI;

define type Literal extends xs:string {
attribute datatype of type URI-reference?,
attribute lang of type xml:lang? };

define type RDFTerm {
element uri of type URI-reference |
element bnode of type xs:string |
element literal of type Literal };

define type SPARQLBinding extends RDFTerm {
attribute name of type xs:string };

define type SPARQLResult {
element binding of type SPARQLBinding* };

define type SQLTerm extends xs:anyAtomicType ;

define type SQLBinding extends SQLTerm {
attribute name of type xs:string };

define type SQLResult {
element binding of type SQLBinding* };

define type SQLAttribute extends xs:string ;

define type PatternSolution {
element result of type SPARQLResult |
element result of type SQLResult };

define type RDFGraph {
element triple of type RDFTriple* };

define type RDFTriple {
element subject of type RDFTerm,
element predicate of type RDFTerm,
element object of type RDFTerm };

define type RDFDataset {
element defaultGraph of type RDFGraph,
element namedGraphs of type RDFNamedGraphs };

define type RDFNamedGraphs {
element namedGraph of type RDFNamedGraph* };

define type RDFNamedGraph {
attribute name of type xs:string,
element graph of type RDFGraph };

Figure 4.3.: XSPARQL Type Definitions

Definition 4.1 (Serialisation of Solution Sequences). Given a SPARQL solution sequence Ω = (µ1, . . . , µn)

a serialisation of Ω into a sequence of PatternSolution is defined as follows:

• serialise(Ω)⇒ serialise(µ1) , . . . , serialise(µn)

• serialise(µ)⇒ <result>{∀x ∈ dom(µ) , serialise(µ, x)}</result>
• serialise(µ, x)⇒ <binding name="x">{term(µ(x))}</binding>, where term(µ(x)) is

– <uri>{µ(x)}</uri> if µ(x) ∈ U

– <bnode>{µ(x)}</bnode> if µ(x) ∈ B

– <literal>{µ(x)}</literal> if µ(x) ∈ L

Following the definition of the serialise function, in evaluation rules, we will refer to sequences of elements
of type PatternSolution as Ω and to elements of type SPARQLResult as µ.
For the representation of SQL results we follow a similar approach:

Definition 4.2 (Serialisation of SQL Relation Instances). The serialisation of a relation instance I =

(I1, . . . , In) of relation R with sort(R) = U , into PatternSolution is:

• serialise(I)⇒ serialise(I1) , . . . , serialise(In)

• serialise(Ii)⇒ <result>{∀x ∈ U, serialise(Ii, x)}</result>
• serialise(Ii, x)⇒ <binding name="x">{sql2xml(Ii(x))}</binding>.

Serialisation into SQL and SPARQL Representations

The following definitions present the SQLTerm and RDFTerm functions that, when applied to an XSD
datatype, return their representation in SQL or SPARQL syntax, respectively. We first present the
serialisation into SQL:

Definition 4.3 (SQL representation). Let C be an expression context with static environment TC =

statEnv(C) and dynamic environment DC = dynEnv(C), and x ∈ dom(TC .varType) an XSPARQL
variable name. The SQL representation of x according to C, denoted SQLTermC (x) is:

• data(DC .varValue(x)) if TC .varType(x) = (SQLTerm or SQLAttribute or RDFTerm or node()); and

59

4.2. Semantics 60

• xml2sql(DC .varValue(x)) otherwise,

where xml2sql is the value conversion function presented in Section 3.1.2.

Similarly, we next present the serialisation of SPARQL terms:

Definition 4.4 (RDFTerm). Let C be an expression context with static environment TC = statEnv(C)

and dynamic environment DC = dynEnv(C), and x ∈ dom(TC .varType) an XSPARQL variable name.
The RDF representation of x according to C, denoted RDFTermC (x) is:

• DC .varValue(x) if TC .varType(x) = RDFTerm,
• "DC .varValue(x) " if TC .varType(x) = xsd:string,
• "DC .varValue(x) "ˆˆrdf:XMLLiteral if TC .varType(x) = element(),
• "data(DC .varValue(x))" if TC .varType(x) = (attribute() or SQLTerm or SQLAttribute), and
• "DC .varValue(x) "ˆˆTC .varType(x) otherwise.

4.2.2. XSPARQL Semantics for Querying Relational and RDF data

We now define the semantics of SQLForClauses and SparqlForClauses by relying on the evaluation
semantics of their original query languages, namely SQL (presented in Section 3.1.2) and SPARQL
(presented in Section 3.3). The approach we take is to rely on the translation of each language into their
respective algebra expressions and further combine these algebra expressions with any existing XSPARQL
variable bindings. Since XSPARQL is based on the semantics of XQuery, variable bindings are stored in
the varValue environment component of the dynamic environment (cf. Section 3.2.3), that maps variable
names to their value. Next we present how we interpret these variable mappings as a relation and as a
solution sequence, thus allowing to combine the results of SQL and SPARQL queries with the existing
variable bindings.

Querying Relational Data

In order to reuse the semantics of SQL for defining the semantics of XSPARQL SQLForClauses we
transform the varValue component of the dynamic environment in which the SQLForClause is executed
into a relation (which we call the XSPARQL instance relation). The following definition presents this
translation:

Definition 4.5 (XSPARQL instance relation). Let the set of relation names (R) be defined as in
Section 2.1, and let C be an expression context. The XSPARQL instance relation of C is a relation
instance named ‘xirC ’, where xirC is a reserved relation name, i.e. xirC 6∈ R, and sort(xirC) =

dom(dynEnv(C) .varValue). For each mapping vi → xi ∈ dynEnv(C) .varValue, the value of xirC for
attribute vi, denoted xirC (vi), is defined as:

• if xi = () is an empty sequence then xirC (xi) = null;
• if xi = (e1, . . . , en) is a sequence, then xirC (xi) = fn:concat(SQLTermC (e1) , · · · ,SQLTermC (en)).1

For a SQLWhereClause S, we call the XSPARQL instance relation of the expression context in which S
is executed the XSPARQL instance relation of S.

Another necessary step to enable the reuse of SQL evaluation semantics is to convert our extended
syntax (that allows for $-prefixed variable names) into valid SQL syntax: each WhereSpec in a SQLFor-
Clause that contains an XSPARQL variable is removed from the normalised SQL query (by replacing it
with ‘true’) and is stored for a later evaluation by the XSPARQL semantics. For this we rely on the
following normalisation function:
1Since the values of any relation attribute must be atomic, in the case of a variable being assigned to an XQuery sequence
we assume the concatenation of each element of the sequence.

60

4.2. Semantics 61

Definition 4.6 (SQL Representation of SQLWhereClauses). Let S = ‘where’ WhereSpecList be a
SQLWhereClause. The normalisation of S, normaliseSQL(S) = ‘where’ normaliseSQL(WhereSpecList),
where normaliseSQL(WhereSpecList) is defined as:

• if WhereSpecList is of form ‘(’ WhereSpecList1 Op WhereSpecList2 ‘)’ then

‘(’ normaliseSQL(WhereSpecList1) Op normaliseSQL(WhereSpecList2) ‘)’

• if WhereSpecList is of form Attr1 Op Attr2 then normaliseSQL(Attr1 Op Attr2) is:{
‘true’ if Attr1 or Attr2 is an XSPARQL variable

Attr1 Op Attr2 otherwise.

Furthermore we denote the set of WhereSpec of S in which an attribute is an XSPARQL variable as
whereSpecVars(S).

The normalisation of complete SQLForClauses consists also of the normalisation of the syntactical
elements AttrSpecList and TableSelector presented in Section 4.1.3. In the normalisation of AttrSpecList
we remove any existing AttrNameSpec component, since they reflect only the name of the corresponding
XSPARQL variable. However, the normalisation of the TableSelector can only be performed during
the dynamic evaluation of the XSPARQL query since any variables present in the TableSelector must
be evaluated to determine the corresponding relation name. With the restriction of performing the
substitution at evaluation time, we can reuse the standard translation of a SQL query into relational
algebra as presented in Section 3.1.2.
Next we present how XSPARQL combines the results of a SQL query with an XSPARQL instance

mapping. For this we rely on the standard relational selection (σ) and cross-product (×) algebra operators
presented in Section 3.1 and on the xirC relation instance from Definition 4.5. Firstly, we present the
construction of the relational algebra select expression that, based on the provided SQLForClause S and
the XSPARQL instance mapping of S, makes the connection between the results of the SQL query and
the existing XSPARQL variable bindings:

Definition 4.7 (XSPARQL σ expression). Let S be a SQLForClause with expression context C and V =

whereSpecVars(S) the attribute specifications that contain XSPARQL variables in S. The XSPARQL
σ expression of S, denoted σxs(S), is a relational algebra σ expression that, for each Att1 Op Att2 ∈ V
is trans(Att1) Op trans(Att2), where trans(Att) is defined as:

• Attr if Attr is not an XSPARQL variable;
• if Attr = ‘$’AttrName is an XSPARQL variable then

trans(Attr) =

{
dynEnv.varValue(AttrName) if statEnv.varType(Attr) = SQLAttribute

‘xirC .AttrName’ otherwise.

This definition creates a relational algebra expression from the extended XSPARQL SQLForClause syntax,
which can then be used to further restrict the results of the normalised SQL expression. Based on these
definitions we can introduce the translation of SQLForClauses into relational algebra.

Definition 4.8 (XSPARQL relational algebra expression). Let Q be a SQLForClause, Q′ =

normaliseSQL(Q) the SQL rewriting of Q, E = σxs(S) the XSPARQL σ expression of S, and RAsql(Q
′)

the relational algebra expression obtained from the standard SQL translation into relational algebra.
The XSPARQL relational algebra expression of Q, denoted RAxsp(Q), combines the relational algebra
expression of the SQL query and restricts its results to the existing bindings for XSPARQL variables as
follows:

σE (RAsql(Q
′)× xirC) .

61

4.2. Semantics 62

1 let $x := 1
2 for bandName from band
3 where bandId = $x
4 and bandName = ’Nightwish’
5 return $bandName

(a) Value Matching

1 let $x := "bandName"
2 for bandName from band
3 where bandId = 1
4 and {$x} = ’Nightwish’
5 return $bandName

(b) Attribute Matching

Figure 4.4.: XSPARQL SQLForClause examples

The following example illustrates the translation of XSPARQL SQLForClauses into XSPARQL relational
algebra expressions.

Example 4.7 (Translation of SQLForClauses into Relational Algebra). Figure 4.4 presents two
XSPARQL queries including SQLForClauses. The query in Figure 4.4a illustrates the syntax for
querying values of a relation. First the normalisation function drops the restriction in line 3, which
is incorporated into the relational algebra σ expression:

σband.bandId=xirC .x (σband.bandName=′Nightwish′(band)× xirC) ,

where sort(xirC) = { x } and xirC (x) = 1.

On the other hand, the query in Figure 4.4b shows how to match attribute names. The query in
this figure is converted into the following relational algebra expression:

σband.bandName=′Nightwish′(σband.bandId=1 (band)× xirC) ,

where sort(xirC) = { x } and xirC (x) = ‘bandName’.

Querying RDF Data

For querying RDF data, we extend the notion of SPARQL BGP (Definition 3.10) in order to provide
SPARQL with the variable bindings from XQuery. For this we interpret the XQuery varValue dynamic
environment component as a set of bindings in the spirit of SPARQL solution mappings (as presented in
Definition 3.6). Along these lines, we will regard the varValue component of the dynamic environment in
which a SPARQL graph pattern P is executed as the basis for the XSPARQL instance mapping of P .
The transformation from the dynEnv.varValue into the XSPARQL instance mapping is defined next:

Definition 4.9 (XSPARQL instance mapping). Let C be an expression context, and furthermore
let DC = dynEnv(C) .varValue and TC = statEnv(C) .varType the varValue component of the dynamic
environment of C and be the varType component of the static environment of C, respectively. The
XSPARQL instance mapping µC is a solution mapping where, for each mapping vi → xi ∈ DC , xi is
converted into an instance of type RDFTerm or an RDF Collection according to the following conditions:

• if DC (vi) = () and TC (vi) = RDFTerm or TC (vi) = SQLTerm then µC (DC (vi)) is undefined;
• if DC (vi) = () and TC (vi) 6= RDFTerm and TC (vi) 6= SQLTerm then µC (DC (vi)) = () is an empty
RDF Collection;
• if DC (vi) is a singleton sequence then µC (DC (vi)) = RDFTerm(DC (vi));
• if DC (vi) = (e1, . . . , en), n > 1, is a sequence then µC (DC (vi)) = (RDFTerm(e1) · · ·RDFTerm(en))

to be read as an RDF Collection in Turtle notation (cf. Section 2.4.1).

For a graph pattern P , we call the XSPARQL instance mapping of the expression context in which P is
executed the XSPARQL instance mapping of P .

62

4.2. Semantics 63

1 declare namespace mo = "http://purl.org/ontology/mo/" ;
2 declare namespace dc = "http://purl.org/dc/elements/1.1/" ;
3

4 for $song from <bands.ttl>
5 where { $song a mo:Track }
6 return
7 for $songName from <bands.ttl>
8 where { $song dc:title $songName }
9 return <songName>{$songName}</songName>

Query 4.6: Nested XSPARQL query

Next we define the notion of XSPARQL BGP matching based on the semantics of SPARQL BGP
matching presented in Section 3.3.

Definition 4.10 (Extended solution mapping). Let C be an expression context. An extended solution
mapping of a graph pattern P in C is a solution mapping compatible with the XSPARQL instance
mapping of C.

Accordingly, XSPARQL BGP matching is defined analogously to the SPARQL BGP matching with the
exception that we consider only extended solution mappings:

Definition 4.11 (XSPARQL BGP matching). Let P be a BGP with expression context C, and G be an
RDF graph. We say that µ is a solution for P with respect to active graph G, if there exists an extended
solution mapping µ′ of C such that µ′(P) is a subgraph of G and µ is the restriction of µ′ to the variables
in vars(P).

This definition quasi injects the variable bindings inherited from XQuery into SPARQL patterns occurring
within XSPARQL. By considering extended solution mappings the bindings returned for a BGP P will
not only match the input graph G but also respect any bindings for variables in the dynamic environment.
We can extend the XSPARQL BGP matching to generic graph patterns by following the SPARQL
evaluation semantics (presented in Section 3.3). Considering a graph pattern P with XSPARQL instance
mapping µC , we denote by evalxs(D,P, µC) the evaluation of P over dataset D following XSPARQL
BGP matching.

Matching Blank Nodes in Nested Queries

Although in XSPARQL, similar to SPARQL, we are not considering blank nodes in the semantics
definitions of graph patterns, in the case of nested SparqlForClauses XSPARQL instance mappings may
in fact contain assignments of variables to blank nodes, injected from the outer SparqlForClause into the
inner SparqlForClause.

Example 4.8 (Blank node injection in XSPARQL nested queries). For example, in Query 4.6, blank
nodes bound in the outer SparqlForClause (lines 4–5) to the variable $song will be injected into the
inner SparqlForClause expression (lines 7–8). If we would consider both SparqlForClauses as distinct
SPARQL queries, the blank nodes in the inner SparqlForClause would be matched as variables.

However in XSPARQL, we want to enable coreference within nested queries over the same dataset and
thus such injected blank nodes should be matched like constants against the blank nodes present in the
input RDF data (rather than being treated as variables). To ensure this behaviour, we introduce the
notion of active dataset (similar to the concept of active graph in SPARQL), where nested queries over
the same active dataset keep the same the scoping graphs (cf. Section 3.3). Any SparqlForClause with

63

4.2. Semantics 64

an explicit DatasetClause causes the active dataset to change, i.e. new scoping graphs (with fresh blank
nodes) for each graph within it are created. On the other hand, if no DatasetClause is present in a nested
SparqlForClause (implicit dataset), the active dataset remains unchanged. To ensure this behaviour in the
dynamic evaluation we have to introduce a new dynamic environment component called activeDataset,
that will be used to evaluate WhereClauses. Initially, this component is empty (or set to a system default)
and is changed by a DatasetClause appearing in a SparqlForClause, as defined in the next section.

4.2.3. Extensions to the XQuery Semantics

In order to define the XSPARQL semantics according to XQuery’s semantics we need to introduce new
environment components and extend the dynamic evaluation rules of XQuery ForClauses to populate
these new components. We also introduce the functions that we will use in the dynamic evaluation rules
presented in the next section.

New Environment Components

For the definition of the XSPARQL semantics we add the following components to the dynamic environ-
ment:

(i) activeDataset; and
(i) globalPosition.

The dynEnv.activeDataset is used to store the dataset over which SparqlForClauses are evaluated in
order to be accessible when a nested SparqlForClause without a DatasetClause is specified.
The other introduced environment component, dynEnv.globalPosition, stores all the positions in the

tuple streams. The standard XQuery dynamic evaluation rules can only access the position of the current
tuple stream, however, in order to generate distinct blank node labels for each ConstructClause, we need
to guarantee that the labels are also distinct in case of nested queries. To ensure this, we store not only
the position in the current tuple stream but also the positions of all previous ones.

Both environment components are populated in the dynamic evaluation rules introduced in Section 4.2.4.
For the dynEnv.globalPosition we also need to adapt the evaluation rules of XQuery ForClauses to
correctly populate this component. These updated rules are presented next.

XQuery for Dynamic Evaluation

In order to correctly generate blank node identifiers in ConstructClauses, XSPARQL relies on the
dynEnv.globalPosition environment component to store the positions. As such, we adapt the XQuery for

dynamic evaluation rules, presented in Section 3.2.3, to populate the dynEnv.globalPosition component
and also make sure that the newly introduced XSPARQL SQLForClauses and SparqlForClauses populate
this component. The case of these newly XSPARQL expressions is detailed later in Section 4.2.4.

We show here only the adapted rule for ForClauses with position variables and without type declaration.
The rules that handle for expressions without position variables and possibly containing type declarations
are adapted analogously, adding the dynEnv.globalPosition premisses to the rules presented in Draper,

64

4.2. Semantics 65

Fankhauser et al. (2010, Section 4.8.2).

dynEnv.globalPosition = (Pos1 , · · · ,Posm)

dynEnv ` Expr1 ⇒ Item1 , · · · , Itemn

statEnv ` VarName of var expands to Variable
statEnv ` VarNamepos of var expands to Variablepos

dynEnv + globalPosition((Pos1 , · · · ,Posm , 1))

+ varValue

(
Variable ⇒ Item1 ;

Variablepos ⇒ 1

)
` Expr2 ⇒ Value1

...
dynEnv + globalPosition((Pos1 , · · · ,Posm , n))

+ varValue

(
Variable ⇒ Itemn ;

Variablepos ⇒ n

)
` Expr2 ⇒ Valuen

dynEnv ` for $VarName at $VarNamepos in Expr1
return Expr2

⇒ Value1 , · · · ,Valuen

(D3)

New Formal Semantics Functions

Next we will introduce the new XQuery formal semantics functions that we use in the static and dynamic
evaluation rules presented in the next section. These functions are specified in an informal style, in a
similar fashion to formal semantics functions presented in Draper, Fankhauser et al. (2010, Section 7.1)
and the XQuery 1.0 and XPath 2.0 Functions and Operators specifications (Malhotra et al., 2010). For
each function, we present its signature, consisting of the function name, the function parameters, and the
return type, and include a textual description of the semantics of the function.

The first introduced functions, fs:sql and fs:sparql , represent the extended SQL and SPARQL querying
facilities implemented in XSPARQL (described in Section 4.2.2). We further introduce two auxiliary
functions fs:value, fs:dataset , and fs:evalCT . These functions are used to access the value of a variable in
a PatternSolution, to determine the dataset over which a SparqlForClause is evaluated, and to evaluate a
construct query, i.e. a ConstructTemplate, respectively.

fs:sql This function is responsible for executing the extended XSPARQL SQL querying presented in
Section 4.2.2. In our semantics this function also implements the normalisation of SQLWhereClauses
(presented in Definition 4.6) by receiving two parameters: RelationList and SQLWhereClause representing
the list of relations involved in the query and the SQL pattern to be executed, respectively. The static
type signature of this function is defined as:

fs:sql($SparqlWhere as xs:string)
as PatternSolution*

The replacement of variables in SQLWhereClauses represented by Definition 4.6 (that this function
implements), produces a valid SQL query, that can be evaluated directly by the relational engine. The
results of this query are then translated into an instance of PatternSolution (according to Definition 4.2).

fs:sparql. The fs:sparql function corresponds to the implementation of the evalxs function, that evaluates
SPARQL graph patterns and implements the extended notion of BGPMatching presented in Definition 4.11.
The static type signature of this function is defined as:

fs:sparql($dataset as RDFDataset, $SparqlWhere as xs:string, $solutionModifiers as xs:string)
as PatternSolution*

The result of this function consists of a solution sequence, which can be translated directly into an XQuery
sequence of elements of type PatternSolution by applying the serialise function (cf. Definition 4.1).

65

4.2. Semantics 66

fs:value. The fs:value(PS, var) function returns the value of the specified variable var in a Pattern-
Solution specified by PS. If var is not present in PS, the empty sequence is returned. The static type
signature of this function is:

fs:value($ps as PatternSolution, $variable as xs:string)
as (RDFTerm | SQLTerm)?

This function returns the respective Binding for the variable, which is an element of type SQLTerm or RDFTerm,
depending on whether the pattern solution was the result of a SQLForClause or a SparqlForClause.

fs:dataset. The fs:dataset(DatasetClause) auxiliary function returns an element of type RDFDataset

based on the evaluation of its argument. This conversion is performed according to the SPARQL semantics
presented in Section 3.3. The result of this function is stored (by dynamic evaluation rules) in the newly
introduced activeDataset dynamic environment component and can be retrieved when a SparqlForClause
without an explicit DatasetClause is found. The static type signature of this function is:

fs:dataset($datasetClause as xs:string)
as RDFDataset

fs:evalCT. The fs:evalCT function ensures the created RDF graph is valid and rewrites any blank
nodes inside of ConstructTemplates to comply with the SPARQL semantics (as described in Section 4.2.2).
The auxiliary fs:validTriple function checks if each triple is valid according to the RDF semantics and
is defined by rules (D10) and (D11) presented in the next section. The fs:evalCT function is further
detailed in the following section by presenting specific rules that ensure the generated RDF graph is valid
and to guarantee the generation of new blank node labels for each pattern solution. The static type
signatures of these functions are defined as:

fs:evalCT($template as RDFTerm*)
as RDFGraph

fs:validTriple($subject as RDFTerm, $predicate as RDFTerm, $object as RDFTerm)
as RDFTriple?

The fs:evalCT function, and hence construct expressions, return elements of type RDFGraph, thus allowing
the result of construct expressions to be used in a DatasetClause of a subsequent SparqlForClause.

4.2.4. Semantics Rules for XSPARQL Expressions

We are now ready to present the normalisation, static, and dynamic evaluation rules for the newly defined
XSPARQL expressions. As presented in Section 4.1, XQuery and SPARQL namespace declarations can be
used interchangeably in the prolog of an XSPARQL query and thus we start by presenting the translation
of the query prolog into XQuery namespace declarations via normalisations rules. We then present the
necessary normalisation, static, and dynamic evaluation rules for SQLForClauses, SparqlForClauses, and
ConstructClauses. Please note that, since the variables included in SQLForClauses and SparqlForClauses
are not allowed to contain a namespace prefix, we omit the rules handling the namespace expansion for
the respective variables.

Query Prolog Normalisation

In order to follow the XQuery semantics, we convert any SPARQL syntax prefix declaration into XQuery
namespace declarations by the following normalisation rules:

Jprefix NCName: <IRI>KExpr

==
Jdeclare namespace NCName = "IRI" ;KExpr

(N2)

66

4.2. Semantics 67

The empty prefix declaration is converted into the default namespace for XML elements:

Jprefix : <IRI>KExpr

==
Jdeclare default element namespace = "IRI" ;KExpr

(N3)

Furthermore the SPARQL base declaration is considered equivalent to the XQuery base-uri declaration:

Jbase <IRI>KExpr

==
Jdeclare base-uri "IRI" ;KExpr

(N4)

SQLForClause

In this section we define the semantics of the newly introduced SQLForClause by means of the normalisation
rules, static type analysis rules, and dynamic evaluation rules.

Normalisation rules. Let us start by presenting the normalisation rule that handles the syntactic
shortcut ‘for *’.

Jfor ∗ RelationList SQLWhereClause ReturnClauseKExpr
==t

for JRelationList SQLWhereClause Kattrs RelationList

SQLWhereClause ReturnClause

|

Expr

(N5)

The normalisation rule J·Kattrs returns a comma separated list of variables representing all the attributes
from each relation from RelationList . As described in Section 4.1.3, these generated variables are of
the form: $relationName.attributeName. Furthermore, the next normalisation rule guarantees that each
variable in a SQLForClause contains a variable alias:

u

w
v

for AttrSpec1 , · · · ,AttrSpecn

RelationList SQLWhereClause
ReturnClause

}

�
~

Expr
==

for JAttrSpec1 KAlias , · · · , JAttrSpecnKAlias

RelationList SQLWhereClause
JReturnClauseKExpr

(N6)

A new normalisation rule J·KAlias takes care of introducing the variable alias when necessary, where the
variable alias will be the same as the attribute specification.

JAttrSpecKAlias == AttrSpec as $AttrSpec .

In case a variable alias is already present it is reused:

JAttrSpec as $VarRef KAlias == AttrSpec as $VarRef .

Static type analysis. The following static type rule defines the type of each variable in an SQL-
ForClause as SQLTerm and infers the static type of whole expression. This rule, based on the static
environment statEnv, creates a new environment with the added information that each of the variables in
the SQLForClause ($Var1 . . . $Varn) is of type xs:anySimpleType. Given this new extended environment
the type of ReturnExpr can be inferred to be Type , making the type of the overall SQLForClause a

67

4.2. Semantics 68

sequence of elements of inferred type Type .

statEnv + varType

 Var1 ⇒ SQLTerm;
. . . ;

Varn ⇒ SQLTerm

 ` ReturnExpr : Type

statEnv ` for AttrSpec1 as $Var1 , · · · ,AttrSpecn as $Varn

RelationList SQLWhereClause return ReturnExpr
: Type∗

(S2)

Dynamic Evaluation. The dynamic evaluation rules for SQLForClauses ensures that the return expres-
sion (ReturnExpr) is executed for each SQLResult that is returned by the evaluation of the SQL expression.
If the evaluation of the SQL expression does not yield any solutions, i.e. evaluates to an empty sequence,
then the overall result will also be the empty sequence:

dynEnv ` fs:sql(RelationList ,SQLWhereClause)⇒ ()

dynEnv ` for $Var1 OptVarAlias1 , . . . , $Varn OptVarAliasn

RelationList SQLWhereClause return ReturnExpr
⇒ ()

(D4)

Otherwise, for each solution, the respective value in the pattern solution is accessed and assigned to
the respective variable name in the dynEnv.varValue component. The results of evaluating ReturnExpr
in this extended environment are then collected into the final sequence. Please note that this rule also
populates the dynEnv.globalPosition environment.

dynEnv.globalPosition = (Pos1 , · · · ,Pos j)

dynEnv ` fs:sql(RelationList ,SQLWhereClause)⇒ SR1 , . . . ,SRm

dynEnv + globalPosition((Pos1 , · · · ,Pos j , 1))

+ varValue

 Var1 ⇒ fs:value(SR1 ,Var1) ;

. . . ;

Varn ⇒ fs:value(SR1 ,Varn)

 ` ReturnExpr⇒ Value1

...
dynEnv + globalPosition((Pos1 , · · · ,Pos j ,m))

+ varValue

 Var1 ⇒ fs:value(SRm ,Var1) ;

. . . ;

Varn ⇒ fs:value(SRm ,Varn)

 ` ReturnExpr⇒ Valuem

dynEnv ` for AttrSpec1 as $Var1 . . .AttrSpecn as $Varn

RelationList SQLWhereClause return ReturnExpr
⇒ Value1 , . . . ,Valuem

(D5)

SparqlForClause

The semantics of the SparqlForClause expression (Figure 4.2) is defined by the following normalisation rules,
static type analysis rules and dynamic evaluation rules. Again, we start by presenting the normalisation
rules for SparqlForClauses with implicit variable selection (by means of “for *”), which are translated
into explicitly stated variables:

t
for * OptDatasetClause WhereClause
SolutionModifier return ExprSingle

|

Expr
==u

w
v

for JWhereClauseKvars
OptDatasetClause WhereClause
SolutionModifier return ExprSingle

}

�
~

Expr

(N7)

The normalisation rule JWhereClauseKvars determines all statically unbound variables present in the
WhereClause, i.e. returns a whitespace separated list of all variables in the WhereClause that are not

68

4.2. Semantics 69

present in the statEnv.varType environment component.

Static type analysis. The following static rule takes care of defining the types of variables present in a
for expression as RDFTerm and infers the static type of the SparqlForClause expression:2

statEnv + varType

 Var1 ⇒ RDFTerm;
· · · ;
Varn ⇒ RDFTerm

 ` ExprSingle : Type

statEnv ` for $Var1 · · · $Varn OptDatasetClause
WhereClause SolutionModifier return ExprSingle : Type∗

(S3)

Dynamic Evaluation. We can now define the dynamic evaluation rules for the SparqlForClause expression.
Intuitively these rules state that the return expression ExprSingle will be executed for each Pattern-

Solution that is returned from the evaluation of the fs:sparql function. The following two dynamic
rules specify the evaluation of the SparqlForClause with an explicit DatasetClause. These rules use the
fs:dataset function to parse the DatasetClause into an element of type RDFDataset, which will be stored
in the dynEnv.activeDataset component: If the evaluation of the fs:sparql function does not yield any
solutions, i.e. evaluates to an empty sequence, the overall result will also be the empty sequence:

dynEnv ` fs:dataset(DatasetClause)⇒ Dataset

dynEnv ` fs:sparql

(
Dataset ,WhereClause,
SolutionModifier

)
⇒ ()

dynEnv `
for $Var1 · · · $Varn DatasetClause
WhereClause SolutionModifier
return ExprSingle

⇒ ()

(D6)

Otherwise, ExprSingle is evaluated for each solution in the results of the SPARQL query:

dynEnv.globalPosition = (Pos1 , · · · ,Pos j)

dynEnv ` fs:dataset(DatasetClause)⇒ Dataset

dynEnv ` fs:sparql

(
Dataset ,WhereClause,
SolutionModifier

)
⇒ µ1 , . . . , µm

dynEnv + globalPosition((Pos1 , · · · ,Pos j , 1)) + activeDataset(Dataset)

+ varValue

 Var1 ⇒ fs:value(µ1 ,Var1) ;

. . . ;

Varn ⇒ fs:value(µ1 ,Varn)

 ` ExprSingle⇒ Value1

...
dynEnv + globalPosition((Pos1 , · · · ,Pos j ,m)) + activeDataset(Dataset)

+ varValue

 Var1 ⇒ fs:value(µm ,Var1) ;

. . . ;

Varn ⇒ fs:value(µm ,Varn)

 ` ExprSingle⇒ Valuem

dynEnv `
for $Var1 · · · $Varn DatasetClause
WhereClause SolutionModifier
return ExprSingle

⇒ Value1 , . . . ,Valuem

(D7)

This rule ensures that the activeDataset component of the dynamic environment is updated to reflect the
explicit DatasetClause of the SparqlForClause and that the globalPosition environment contains all the
positions in the previous tuple streams.

2Similar to the XQuery Core OptPositionalVar , the OptDatasetClause covers both cases when a SparqlForClause contains
(or does not contain) a DatasetClause.

69

4.2. Semantics 70

The rule that handles the SparqlForClause without an explicit DatasetClause is presented next. These
rules are very similar, with the exception that in following rules, the dataset over which the SparqlForClause
is evaluated is read from the dynEnv.activeDataset component.

dynEnv.globalPosition = (Pos1 , · · · ,Pos j)

dynEnv.activeDataset⇒ Dataset

dynEnv ` fs:sparql

(
Dataset ,WhereClause,
SolutionModifier

)
⇒ µ1 , . . . , µm

dynEnv + globalPosition((Pos1 , · · · ,Pos j , 1))

+ varValue

 Var1 ⇒ fs:value(µ1 ,Var1) ;

. . . ;

Varn ⇒ fs:value(µ1 ,Varn)

 ` ExprSingle⇒ Value1

...
dynEnv + globalPosition((Pos1 , · · · ,Pos j ,m))

+ varValue

 Var1 ⇒ fs:value(µm ,Var1) ;

. . . ;

Varn ⇒ fs:value(µm ,Varn)

 ` ExprSingle⇒ Valuem

dynEnv `
for $Var1 · · · $Varn

WhereClause SolutionModifier
return ExprSingle

⇒ Value1 , . . . ,Valuem

(D8)

Analogously to the SparqlForClause with an explicit dataset (Rule D6), whenever the fs:sparql function
evaluates to an empty sequence, the result will also be an empty sequence.

ConstructClause

XSPARQL normalises ConstructClauses into standard XQuery return expressions with the necessary
mechanisms for validation of the returned RDF graph and as such, we define the semantics of Construct-
Clauses (Figure 4.2) by means of normalisation rules. One valid syntax for XSPARQL is a SPARQL
stand-alone construct query (as described in Section 4.1). These queries are normalised into construct

queries with a surrounding SparqlForClause by the following rule:
u

w
v

construct ConstructTemplate
DatasetClause WhereClause
SolutionModifier

}

�
~

Expr

==u

w
v

for ∗ DatasetClause
WhereClause SolutionModifier
construct ConstructTemplate

}

�
~

Expr

(N8)

The recursive call to J·KExpr ensures that the resulting query will be further rewritten according to
normalisation Rule (N7) presented above, in order to explicitly state the variables present in the Where-
Clause.

Similar to the normalisation rule for stand-alone ReturnClauses presented in Draper, Fankhauser
et al. (2010, Section 4.8.1), the following normalisation rule transforms construct clauses into XQuery
ReturnClauses.

Jconstruct ConstructTemplateKExpr

==
return fs:evalCT

(
JConstructTemplateKnormCT

) (N9)

In the following we assume that ConstructTemplate is a simple ‘.’ separated list of Subject , Predicate
and Object . The J·KnormCT rule transforms any Turtle shortcut notation used in ConstructTemplate to

70

4.2. Semantics 71

these simple lists. As an example of this rule, we present the rule for normalising Turtle ‘;’ abbreviations
(previously described in Section 2.4.1):

JSubject Pred1 Obj 1 ; · · · ; Predn Obj n .KnormCT
==

Subject Pred1 Obj 1 . · · · Subject Predn Obj n .
(N10)

The normalisation rules for the other Turtle shortcuts that are allowed in the SPARQL ConstructTemplate
syntax are similar to this one and are not presented here.

Since anonymous blank nodes can be written in numerous ways in Turtle, the J·KnormCT normalisation
rule also transforms each anonymous blank node into a labelled blank node where the identifier/label
is distinct from any other blank node labels present in the ConstructTemplate. This label will then be
used by the skolemisation function to generate the distinct blank node label for each position in the tuple
stream.

In more detail, the fs:evalCT function checks the constructed RDF graph for validity (according to the
conditions described in Section 3.3), filtering out any non-valid RDF triples where subjects are literals or
predicates are literals or blank nodes. This is illustrated by the following dynamic evaluation rules.

dynEnv ` fs:validTriple(Subj1 ,Pred1 ,Obj1)⇒ Triple1

...
dynEnv ` fs:validTriple(Subj n ,Predn ,Obj n)⇒ Triplen

dynEnv ` fs:evalCT

 Subj1 Pred1 Obj1

. . .

Subjn Predn Objn

 ⇒ Triple1 , · · · , Triplen

(D9)

The following dynamic evaluation rule for the fs:validTriple function checks, relying on the fs:bnode

function defined below, if a triple is valid according to the RDF semantics.

dynEnv ` fs:bnode(Subject)⇒ ValS

statEnv ` ValS matches (uri | bnode)
dynEnv ` Predicate⇒ ValP
statEnv ` ValP matches uri

dynEnv ` fs:bnode(Object)⇒ ValO

dynEnv ` ValO matches (uri | bnode | literal)

dynEnv ` fs:validTriple

 Subject,
Predicate,
Object

 ⇒

element triple of type RDFTriple {
element subject of type RDFTerm {ValS }
element predicate of type RDFTerm {ValP }
element object of type RDFTerm {ValO}

}

(D10)

In case any of the subject, predicate or object do not match an allowed type, the empty sequence is
returned. Effectively this suppresses any invalid RDF triples from the output graph.

dynEnv ` fs:bnode(Subject)⇒ ValueS

dynEnv ` Predicate⇒ ValueP

dynEnv ` fs:bnode(Object)⇒ ValueO

dynEnv ` not

ValueS matches (uri | bnode) and
ValueP matches uri and
ValueO matches

(
uri | bnode | literal

)

dynEnv ` fs:validTriple(Subject,Predicate,Object)⇒ ()

(D11)

Blank Node Skolemisation. In order to comply with the SPARQL construct semantics, all blank nodes
inside a ConstructTemplate need to be skolemised, i.e. for each solution a new distinct blank node
identifier needs to be generated. Since we keep all the positions in the tuple streams, we can rely on

71

4.3. Semantic Correspondence between XSPARQL, SQL, XQuery, and SPARQL 72

the blank node label and these position values to generate a unique blank node label (represented by
the fs:skolemConstant function). This skolemisation of blank nodes is performed by the fs:bnode function.
If the argument of this function is of type bnode the skolemised label is calculated.

dynEnv ` ValueR matches bnode
dynEnv.globalPosition = (PosValue1 , · · · ,PosValuen)

dynEnv ` fs:skolemConstant

V alueR,

PosValue1 ,

. . . ,

PosValuen

 ⇒ ValueRS

dynEnv ` fs:bnode(ValueR) ⇒ element bnode of type xs:string {ValueRS }

(D12)

Otherwise, fs:bnode returns its argument unchanged:

dynEnv ` Value matches (uri | literal)
dynEnv ` fs:bnode(Value)⇒ Value

(D13)

4.3. Semantic Correspondence between XSPARQL, SQL,
XQuery, and SPARQL

Since XSPARQL syntactically extends XQuery, and also any SPARQL construct query is syntactically
valid in XSPARQL, these queries are considered semantically equivalent to the semantics in their base
languages. Regarding SQL and SPARQL select expressions, we can show that their results remain
the same under XSPARQL extended semantics. The next propositions formally establish this intuitive
correspondence.

Proposition 4.1. XSPARQL is a conservative extension of XQuery.

Proof: The additional rules introduced in Section 4.2 do not modify the semantics of any native XQuery:
the XSPARQL semantics – expressed in terms of normalisation rules, static typing rules and dynamic
evaluation rules – strictly extends the native semantics of XQuery. In the semantics definition we also
define new environment components, namely statEnv.globalPosition and dynEnv.activeDataset, which
are not used in the XQuery semantics and thus do not interfere with query evaluation. The only rules that
use these newly created environments are the evaluation rules of SparqlForClauses (dynEnv.activeDataset)
and the dynamic evaluation rule (D12) (dynEnv.globalPosition), which generates Skolem-identifiers for
blank nodes in construct parts. However, all these rules only apply to XSPARQL queries, which fall
outside the native XQuery fragment, whereas the semantics of native XQuery queries remains untouched
and independent of the extra environment components in XSPARQL. 2

We can also show that the answers of an XSPARQL SQLForClause without any previously bound
XSPARQL variables are the same as the answers of the normalised query under SQL semantics:

Lemma 4.2. Let S be a SQLForClause, xirC the XSPARQL instance relation of S, and S′ =

normaliseSQL(S) the SQL normalised query of S. Furthermore, let R1 = RAxsp(S) and R2 = RAsql(S
′),

where sort(R2) = U be the relation instances resulting from evaluating S according to the XSP-
ARQL semantics and the SQL semantics, respectively. If S does not contain any XSPARQL variables,
i.e. vars(S) = ∅, then R1[U] = R2.

Proof: Following Definition 4.8 we have that the answers of S under XSPARQL semantics are given
by σE (R1 × xirC), where E is the XSPARQL select expression of S. Since vars(S) = ∅, according to
Definition 4.7, E will also be empty and we can simplify the expression that produces R1 to R2 × xirC .
According to the definition of XSPARQL instance relation (Definition 4.5) xirC has cardinality 1 and

72

4.4. Consuming JSON Data 73

thus the cross product does not change the cardinality of R2, simply extending each solution in R2 with
the attributes from the xirC relation. Since the cardinality of R1 and R2 is the same and the × operation
does not change any existing attributes of R1, we have that R1[U] = R2. 2

Similarly for SPARQL, we show the equivalence between SPARQL BGP Matching (Prud’hommeaux
and Seaborne, 2008, Section 12.3.1) and XSPARQL BGP Matching (presented in Section 4.2.2). Based
on this, we can then prove the equivalence between the XSPARQL and SPARQL semantics for construct
queries.

Lemma 4.3. Given a graph pattern P , a dataset D and µC the XSPARQL instance mapping of P .
Furthermore, let Ω1 = evalxs(D,P, µC) and Ω2 = eval(D,P) be solution mappings. If vars(P) ∩
dom(µC) = ∅, then Ω1 = Ω2 ./ { µC }.

Proof: The XSPARQL BGP matching, evalxs(D,P, µC), extends SPARQL’s BGP matching, eval(D,P),
by defining that the solutions of the BGP are the ones compatible with the XSPARQL instance mapping µC .
Since the evaluation of graph patterns (such as union, optional, graph and filter) remains unchanged from
the SPARQL semantics let us focus on the evaluation of a BGP P . If there are no shared values between
the graph pattern and the XSPARQL instance mapping, as is the case when vars(P) ∩ dom(µC) = ∅,
then each solution µ ∈ Ω2 returned by the SPARQL BGP evaluation semantics is trivially compatible
with µC and the result of the XSPARQL BGP matching is µ ∪ µC . Extending this result to all solution
mappings in Ω2, we obtain that Ω1 = Ω2 ./ { µC }. 2

Finally, for SPARQL construct queries we can state the following:

Proposition 4.4. XSPARQL is a conservative extension of SPARQL construct queries.

Proof: For XSPARQL queries consisting of a standalone SPARQL construct query, there cannot exist
any previous bindings for variables in XSPARQL and thus the XSPARQL instance mapping µC over
which the construct query will be executed is empty. Let P represent the graph pattern of the construct

query and D the dataset, since µC is empty, trivially there are no shared variables between µC and P .
Thus, following Lemma 4.3 the bindings for XSPARQL BGP matching (say Ω1) are the same bindings as
SPARQL BGP matching (Ω2), since Ω1 = Ω2∪{∅} and hence Ω1 = Ω2. Furthermore the formal semantics
function fs:evalTemplate returns an RDF graph satisfying all the conditions of Definition 3.14: (i) ignoring
invalid RDF triples – item (1) – is guaranteed by Rules (D10) and (D11); and (ii) the generation of
distinct blank nodes for each solution sequence – item (2) – is enforced by the blank node skolemisation
rules, Rules (D12) and (D13). 2

4.4. Consuming JSON Data

Due to the similarity between JSON and XML, in XSPARQL we incorporate JSON data by translating the
JSON objects into XML data. Furthermore JSON does not specify a query language (this representation
format is meant to be incorporated directly into the JavaScript scripting language). As presented in
Section 2.3, XML is more flexible than JSON and it is possible to convert JSON into XML but not so
easy in the opposite direction.
This translation of JSON to XML enables access to the JSON data using standard XPath. The

following definition presents the translation we use in XSPARQL.

Definition 4.12 (Translation from JSON to XML). Let J be a JSON object. The translation of J to XML,
denoted translateXML(J), is an XML document <jsonObject>translateMembers(J)</jsonObject>,
where translateMembers(J) is defined as follows:

73

4.4. Consuming JSON Data 74

1 <jsonObject>
2 <bands>
3 <Nightwish>
4 <albums>
5 <Wishmaster>
6 <arrayElement>Wishmaster</arrayElement>
7 <arrayElement>FantasMic</arrayElement>
8 </Wishmaster>
9 </albums>

10 <members>
11 <arrayElement>Tuomas Holopainen</arrayElement>
12 <arrayElement>Tarja Turunen</arrayElement>
13 </members>
14 </Nightwish>
15 </bands>
16 </jsonObject>

Data 4.1: XML representation of JSON data

1 for $member in xsparql:json-doc("file:bands.json")//Nightwish/members/*
2 return data($member)

Query 4.7: Querying JSON using XSPARQL

• if J is an empty JSON object or empty array, then ();
• if J is a JSON object, then for each Ki : Vi ∈ J , <Ki>translateMembers(Vi)</Ki>;
• if J is a JSON array, then for each Ei ∈ J ,
<arrayElement>translateMembers(Ei)</arrayElement>;
• otherwise J .

For example the JSON from Data 2.2 translated into XML according to Definition 4.12 is presented in
Data 4.1.

Querying the XML representation of JSON

JSON data can be manipulated directly in JavaScript, where accessing members of objects can be done
using the ‘.’ separator, while accessing array elements is done using the standard bracket notation: ‘[’
and ‘]’. For example, if the JSON object in Data 2.2 is assigned to a JavaScript variable named ‘b’, we can
access the member ‘bands’ by using ‘b.bands’ and accessing the second member of the Nightwish band
can be done with ‘b.bands.Nightwish.members[1]’.3 In XSPARQL, querying the XML representation
of JSON data can be done using an XPath expression, where, assuming translateXML(b) is assigned to
an XSPARQL variable $b:

(i) accessing members of an object can is done using the ‘child’ XPath axis, for example to access the
representation of member ‘bands’ we write ‘$b/bands’; and

(ii) accessing specific elements of an array can be done using XPath predicates, e.g. to access the second
member of the Nightwish band can be done with ‘$b/bands/Nightwish/members/*[2]’.4

3Please note that in JavaScript the first element of an array is at position 0, while the first element of XPath sequences is 1.
4We can also use ‘arrayElement’ instead of ‘*’ in the XPath expression.

74

4.5. Processing RDB2RDF Mappings in XSPARQL 75

Example 4.9 (Querying JSON using XSPARQL). Query 4.7 presents the XSPARQL query that
returns all members of the “Nightwish” band from the (translated) JSON Data 2.2. In an XSPARQL
query the transformation from JSON into XML is implemented using the xsparql:json-doc function
(as shown in line 1 of Query 4.7).

The implementation of the translation in Definition 4.12 currently translates the complete JSON provided
as input. One possible optimisation for this implementation is to make it aware of the XPath expression
and perform a selective translation of the input JSON data.

4.5. Processing RDB2RDF Mappings in XSPARQL

The W3C RDB2RDF Working Group (WG) is currently in the process of defining a standard language
to translate a relational database into RDF. The WG has defined 2 documents: the Direct Mapping
(DM) (Arenas, Prud’hommeaux et al., 2012) specifies the process of translating a relational database
into RDF in an automated manner, and the R2RML language definition (Das, Sundara et al., 2012)
corresponds to a user specified translation (in Turtle syntax) of the input relational database. The direct
mapping provides a generic representation of the relational database while the R2RML provides more
fine-tuned control over the produced RDF.
Next we start by giving an overview of the RDB2RDF Direct Mapping, the R2RML language, and

then provide an algorithm for the implementation of R2RML in XSPARQL.

4.5.1. Direct Mapping

The aim of the DM is to provide an off-the-shelf translation of relational databases into RDF, i.e. a
transformation that requires minimal user input. This translation follows already existing approaches,
implemented by several conversion tools, and relies on creating the output RDF graph by assigning a
unique identifier to each tuple in a relation from the input database. This identifier is created based on
the relation name and the values for any existing primary keys and is then used as the subject of each
RDF triple generated from the specific tuple.5 Attributes names are used to generate a URI that is used
as a predicate, while the object consists of the value for the specific attribute.

For processing DM in XSPARQL we need to have access to the underlying relational schema. For this
we rely on a custom function that returns an XML representation of the relational schema and, based
on this representation, the DM implementation is similar to the R2RML mappings, where we can use
SQLForClauses to access the relational database and generate the target RDF graph. In the rest of this
section we will focus on R2RML mappings and describe in more detail the XSPARQL query used to
implement such transformations.

4.5.2. The R2RML mapping language

The R2RML mapping is itself an RDF graph consisting of several TriplesMap, that specify how to map a
logical table in the input relational database into RDF. The logical table can correspond to a table, a
view in the database, or the result of a SQL query to be executed over the input relational database.6

Each TriplesMap consists of one SubjectMap and possibly multiple PredicateObjectMaps. Each row in
the logical table produces a single subject in the target RDF, which is specified by the SubjectMap. The

5In case a relation does have any primary keys a distinct blank node is used as an identifier for each tuple.
6Arbitrary SQL queries can be executed in XSPARQL via an implementation-defined XQuery function and were included
only to cater for this feature of R2RML.

75

4.5. Processing RDB2RDF Mappings in XSPARQL 76

1 @prefix rr: <http://www.w3.org/ns/r2rml#> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
3 @prefix ex: <http://example.com/> .
4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
5 @base <http://example.com/base/> .
6

7 <#TriplesMapBand> a rr:TriplesMap;
8 rr:logicalTable [rr:tableName "band"];
9 rr:subjectMap [rr:template "http://example.com/band/{bandId}"];

10

11 rr:predicateObjectMap [
12 rr:predicate foaf:name ; rr:objectMap [rr:column "bandName"]];
13

14 rr:predicateObjectMap
15 [rr:predicate foaf:member ;
16 rr:objectMap [a rr:RefObjectMap ;
17 rr:parentTriplesMap <#TriplesMapPerson>;
18 rr:joinCondition [rr:child "bandId" ; rr:parent "bandId" ;]]] .

19

20

21 <#TriplesMapPerson> a rr:TriplesMap;
22 rr:logicalTable [rr:tableName "person"];
23 rr:subjectMap [rr:template "http://example.com/person/{personId}"];
24

25 rr:predicateObjectMap [
26 rr:predicate foaf:name ; rr:objectMap [rr:column "personName"]] .

Figure 4.5.: RDB2RDF mapping for tables “band” and “person”

multiple PredicateObjectMaps each specify how to generate a predicate and possibly several objects (by
means of PredicateMaps and ObjectMaps, respectively) that are related to the generated subject.

Furthermore, each SubjectMap, PredicateMap, and ObjectMap can specify how the RDF term is created
by using different RDF predicates. For instance, using the column predicate for the mapping rule (e.g. the
predicate of the ObjectMap on line 12 of Figure 4.5) indicates that the RDF object should be generated
based on the value of the column in the input database. Another example is the template predicate,
which specifies how terms are generated by using a template that will be instantiated with values from
the logical table, e.g. the subjectMap from line 9 of Figure 4.5, states that the generated subject should
be of the format

http://example.com/band/{bandId}

where {bandId} is to be replaced by the value of the “bandId” attribute in the specific tuple. The other
predicate used in the example from Figure 4.5 is rr:predicate (line 15), which states that the predicate
of the generated triples should be foaf:name.

Finally, foreign keys can be specified using RefObjectMap and by indicating the TriplesMap that represents
the foreign logical table and possibly a joinCondition that specifies how to merge the two relations, as
shown in lines 17–18 of Figure 4.5.

An R2RML mapping produces an RDF dataset with all the generated triples belonging to the default
graph unless otherwise stated. To cater for the possibility of creating triples in a named graph, we extend
XSPARQL’s generation of RDF graphs in Turtle format to generate an N-Quads representation (Cyganiak
et al., 2009) of the RDF data. This extension is also used and is further expanded in Chapter 7.

76

4.5. Processing RDB2RDF Mappings in XSPARQL 77

Algorithm 1: rdb2rdf ($m)

Input: RDB2RDF mapping $m (represented as RDF)
Result: RDF Graph

1 let $mapSk := skolemise($m)
2 for * from $mapSk
3 where
4 $map rdf:type TriplesMap; rr:logicalTable $table; rr:subjectMap $s .

5 return
6 for row $tableRow in getLogicalTable($table) do
7 let $subject := createSubject($mapSk , $tableRow , $s)
8 createPO($mapSk , $tableRow , $subject , $map)

Algorithm 2: createPO($mapSk , $row , $subject , $map)

Input: skolemised RDB2RDF mapping $mapSk , Database data $row , generated RDF term $subject ,
input RDF term $po

Result: RDF Graph
1 for * from $mapSk
2 where
3 $map rr:predicateObjectMap [rr:predicateMap $p; rr:objectMap $o]

4 return
5 let $predicate := createTerm($mapSk , $row , $p)
6 let $object := createTerm($mapSk , $row , $o)
7 construct
8 $subject $predicate $object

4.5.3. R2RML Implementation in XSPARQL

In this section we present an algorithm that implements the R2RML transformation in XSPARQL. This
transformation is implemented as an XSPARQL query but, for readability purposes, is summarised in
Algorithm 1. In this algorithm we rely on multiple queries to the R2RML input mapping file and since
the R2RML representation may use blank nodes for describing the mapping, we start by skolemising
blank nodes in the input RDF graph, i.e. any blank nodes used in the R2RML mapping are substituted
with newly generated URIs that are distinct from any other URI in the graph. This transformation allows
us to use these newly generated URIs to merge data across different queries and is represented in the
algorithm by the skolemise function (line 1).
The SparqlForClause on lines 2–8 iterates over all the TriplesMaps present in the mapping file and,

for each of these TriplesMaps, retrieves the specified data from the input relational database. This
access to the (logical) table of the relational database is represented by the SQLForClause on line 6,
which instantiates $row for each result row that the corresponding SQL query returns (as described in
Section 4.1). The function getLogicalTable is responsible for processing the different available forms of
specifying the input relation in R2RML. In line 7 we generate the subject that is shared by all the triples
derived from the same row of the relation and pass it to the createPO auxiliary function (line 8) that
takes care of generating the predicate-object pairs.

The createPO function described in Algorithm 2 retrieves all the predicateMap and objectMaps associated
with the TriplesMap we are processing (lines 1-3), creates the respective predicate (line 5) and object
(line 6) and then generates an RDF triple using the XSPARQL built-in construct expression. The
construct expression automatically takes care of discarding any non-valid RDF triples.

77

4.6. Related Work 78

Algorithm 3: createTerm($mapSk , $row , $spec)

Input: skolemised RDB2RDF mapping $mapSk , Database data $row , RDF term specification $spec
Result: RDF Term

1 for * from $mapSk
2 where
3 $spec $specType $specValue

4 return
5 if $specType == rr:predicate then
6 createURI($specValue)
7 else if $specType == rr:column then
8 createLiteral(value($row , $specValue))
9 else . . .

1 <http://example.com/band/1> <http://xmlns.com/foaf/0.1/name> "Nightwish" .
2 <http://example.com/band/1> <http://xmlns.com/foaf/0.1/member> <http://example.com/

person/2> .
3 <http://example.com/band/1> <http://xmlns.com/foaf/0.1/member> <http://example.com/

person/1> .
4 <http://example.com/person/2> <http://xmlns.com/foaf/0.1/name> "Tarja Turunen" .
5 <http://example.com/person/1> <http://xmlns.com/foaf/0.1/name> "Marco Hietala" .

Data 4.2: Output of algorithm rdb2rdf (Algorithm 1)

The auxiliary function createTerm is partially presented in Algorithm 3: given a specific database table
$row, this function produces an RDF term according to the specification given in the RDB2RDF mapping.
The SparqlForClause from lines 1-3 takes care of querying the RDB2RDF mapping to determine the type
of the RDF term to be produced. Finally, the return clause (lines 4-9) presents the process of creating
RDF terms for the rr:predicate and rr:column types of specifications. The createURI and createLiteral

functions used in this algorithm are XSPARQL built-in functions that behave as constructors for URIs and
literals, respectively. The value function returns the value associated with a column name in an SQLResult

(similar to the formal semantics function presented in Section 4.2.3). The missing RDB2RDF specifications
are similar to the presented ones possibly requiring some extra processing, e.g. the rr:template specification
needs to be parsed to extract the column names from the template and then access their values of the
current row.

Data 4.2 presents the RDF graph resulting from the applying Algorithm 1 to the RDB2RDF mapping
presented in Figure 4.5.

4.6. Related Work

Several proposals for integrating data from relational databases, XML, and RDF were presented before.
On one hand, converting between relational databases and XML has been long studied, either by the
integration of SQL and XML (Eisenberg and Melton, 2001; Eisenberg and Melton, 2004) or the specification
of the representation of database instances in XML.7 In practice, most relational database management
systems include a datatype for storing XML data while other works focus on the implementation of the
XQuery language over a relational database backend (Grust, Sakr et al., 2004; Grust, Rittinger et al.,
2008). As such, this section focuses on the integration of XML and RDF or relational databases and
RDF data.

7http://www.w3.org/XML/RDB.html, retrieved on 2012/07/17.

78

http://www.w3.org/XML/RDB.html

4.6. Related Work 79

Table 4.1.: Overview of Related Work

Input Format Target Query Language Ontology
System RDB XML RDF Model Surface Target Generation

Gloze
√

RDF — — partial
Droop et al. (2008)

√
RDF SPARQL+XSLT SPARQL ×

Vrandecic et al. (2005)
√

— — SPARQL ×
Bohring and Auer (2005)

√
RDF — —

√

Rodrigues et al. (2008)
√

RDF — —
√

Fischer et al. (2011)
√ √ √

— — XQuery ×
Walsh (2003)

√ √
— — — ×

Berrueta et al. (2008)
√ √

RDF XSLT+SPARQL —
√

Bikakis et al. (2009)
√ √

— SPARQL XQuery
√

Groppe et al. (2008)
√ √

XML SPARQL XQuery
√

MarkLogic Server
√ √

XML SPARQL XQuery
√

Corby et al. (2009)
√ √ √

— SPARQL — ×
RDB2RDF

√ √
RDF — — ×

XSPARQL
√ √ √ XML/

RDF
XSPARQL XQuery ×

To begin, an analysis of tools for converting between relational databases and RDF is presented by Gray
et al. (2009), which also aims at studying the expressivity of SPARQL to represent scientific queries,
namely in the astronomy domain. Although, as stated by the authors, data and queries were mostly
numeric and thus biased towards relational data and SQL, the comparison gives a good overview of how
the tested tools perform in comparison to relational databases. Some of the conclusions indicate that
these tools are still not able to compete with relational databases in terms of performance and that
SPARQL is also not yet expressive enough to pose the necessary queries.

Patel-Schneider and Siméon (2003) present a proposal to integrate the semantics of XML and RDF by
defining a model-theory that encapsulates both the XDM and RDF data models. This proposal has not
been applied in practice and most of the existing proposals to merge XML and RDF rely on translating
the data from different formats and/or translating the queries from different languages. With this in
mind, we divided the proposals into the following categories:

(1) Normalised Representations: include proposals that suggest using a normalised format for
representing RDF in XML. Although similar to the next proposals, in these systems the translation
can usually be automated and they do not address querying, simply reusing standardised languages.

(2) Translation of data: these tools aim at integrating the heterogeneous data by translating between
different formats, usually relying on user predefined mappings.

(3) Integration of query languages: this category of approaches (where XSPARQL is also included)
considers the integration and/or expansion of query languages to allow querying different formats
without requiring the translation of data from the original formats.

Table 4.1 presents an overview of systems considered in (2) and (3). This table classifies the different
systems according to whether they support input from relational databases (RDB), XML, or RDF. The
target model indicates, if there exists a data translation step, what is the format used for the integrated
representation. The Surface and Target query languages state, if available, the language in which the
system accepts queries and if they are translated into a different query language. Finally, the Ontology
Generation column specifies if the system generates an ontology description based an input XML Schema
or relational database structure. We next give a short description of some of the tools and proposals
available grouped by the presented categories.

79

4.6. Related Work 80

Normalised Representations

The following proposals specify a normalised syntax for RDF in XML. The TriX format (Carroll and
Stickler, 2004) consists of an alternative normalised serialisation for RDF in XML, with the aim of being
compatible with standard XML tools. In this serialisation, each RDF triple is represented as a triple
XML element with three children elements representing the subject, predicate, and object of the triple.
It uses XSLT as an extensibility mechanism, allowing syntactic extensions to be specified and macros to
be defined.
Also in 2003, TreeHugger8 defines abstraction functions (implemented as extensions of the Saxon

XQuery engine) that enable the navigation of an RDF graph structure in both XSLT and XQuery. This
navigation is specified using XPath-like expressions that specify the RDF class and property that users
want to query, which are in turn translated into SPARQL queries.

Well known parsers for RDF, such as the Redland RDF Libraries9 also provide canonical formats of
RDF/XML. R3X 10 takes this representation one step further by grouping the canonical RDF/XML
output of the Redland parser and grouping the triples by subject. The aim of this grouping by subject
is to make the canonical format easier to process with XSLT. Very similar to R3X, Grit11 also defines
a normalised format of RDF/XML where triples are grouped by their subject to facilitate processing
in XSLT and improve the triple access evaluation times. Furthermore Grit normalises URIs to make
lookups easier in XSLT.

Data Translation

We now present the proposals that rely on a user-specified normalised format for RDF. Gloze (Battle,
2006) aims at interpreting an XML document as RDF data based on the XML Schema definition. XML
elements and attributes are mapped to RDF object or datatype properties, depending on wether they
are described as complex or simple types in the XML Schema (complex types are mapped to object
properties and simple types are mapped to datatype properties).

Droop et al. (2008) translate the XML document into RDF, annotating it with necessary information
to answer XPath queries, namely the ordering, axes relations between XML elements, and attributes of
elements. The authors then propose to integrate XPath queries into SPARQL as subqueries in BGPs,
where the result of the subexpressions is assigned to SPARQL variables. These XPath subexpressions are
in turn translated into SPARQL queries that, using the introduced annotations, allow the preservation of
the semantics of the original queries and ordering of solutions.

Deursen et al. (2008) presents an approach for the transformation between XML and RDF by specifying
mappings between an XML Schema and an OWL ontology. The authors introduce a language for the
mapping specification, relying on XPath expressions for selecting the XML elements, and defining with
OWL classes the elements are mapped to. The target RDF data is generated by processing these input
mappings.

Vrandecic et al. (2005) suggests using a normalised form of RDF/XML by specifying a restricted form
of DTDs that generate normalised XML format and again relying on standard XML processing tools for
subsequent transformations. The provided DTD is used to generate SPARQL queries that access the
RDF data and the system then relies on post-processing of the SPARQL query results to generate the
desired output. The use of DTDs and automatic generation of SPARQL queries allows to leverage the
existing XML users that are not familiar with RDF technologies.

8http://rdfweb.org/people/damian/treehugger/index.html, retrieved on 2012/07/17.
9http://librdf.org/, retrieved on 2012/07/17.

10http://wasab.dk/morten/blog/archives/2004/05/30/transforming-rdfxml-with-xslt, retrieved on
2012/07/17.

11http://code.google.com/p/oort/wiki/Grit, retrieved on 2012/07/17.

80

http://rdfweb.org/people/damian/treehugger/index.html
http://librdf.org/
http://wasab.dk/morten/blog/archives/2004/05/30/transforming-rdfxml-with-xslt
http://code.google.com/p/oort/wiki/Grit

4.6. Related Work 81

Also catering for SQL queries, Fischer et al. (2011) present a translation of both SQL and SPARQL
queries into XQuery. Again the translation of SPARQL to XQuery operates on a normalised form of
RDF/XML and thus a data translation step is required. A similar approach is taken for translating
relational data into XML and then rewriting SQL to XQuery. In this paper the authors do not present
an extended syntax language for the combination of data in the different formats and rather rely on the
translation of data into XML.
RDF Twig (Walsh, 2003) suggests XSLT extension functions that provide views on the sub-trees of an

RDF graph. The main idea of RDF Twig is that while RDF/XML is hard to navigate using XPath, a
subtree of an RDF graph can be serialised in more useful forms that facilitate navigation. As such the
authors provide XSLT extension functions that create different views of parts of the input RDF.
Several other approaches aim at automatically translating an XML Schema into an equivalent OWL

ontology (Bohring and Auer, 2005; Rodrigues et al., 2008), focusing on mapping XML elements to OWL
classes and properties. However in XSPARQL, we are focusing on translation and integration of instance
data, rather than aiming to provide a semantic interpretation for XML data.
While not catering for the integration of XML, several other approaches focus on mapping relational

data to RDF. For instance, D2R Server (Bizer, 2003) and D2R Map or Triplify (Auer et al., 2009) enable
the conversion between RDB data and RDF. Large commercial database companies are also providing
solutions for RDF triple stores, such as Oracle (Das and Srinivasan, 2009) and Virtuoso (Erling and
Mikhailov, 2007). Most of these projects assume a fixed translation schema where, for instance, database
tables are translated into RDFS classes and table attributes are represented as properties.

Language Integration

In this category of proposals we include the systems that consider the integration and/or expansion of
query languages that allow the querying different formats without requiring the translation of data from
the original formats.

Berrueta et al. (2008) presents a framework that facilitates SPARQL queries to be performed from XSLT:
XSLT+SPARQL. It adds functions to XSLT that provide the ability to query SPARQL endpoints and
uses standard XSLT to process the SPARQL XML results format. Similar to our current implementation,
this relies on a clear separation between the SPARQL query and XSLT parts of the query.

Some proposals suggest compiling a SPARQL query to XSLT or XQuery. Bikakis et al. (2009) translate
each SPARQL query into an XQuery using a mapping from OWL to XML Schema. The translation from
SPARQL to XQuery is guided by the provided mapping (which can be automatically generated by a
separate system) and thus allows the use of the SPARQL query language to access legacy XML data
without the need to perform data translation.

Similarly Groppe et al. (2008) proposes to embed SPARQL into XSLT or XQuery, by presenting
extensions to these languages that enable to query RDF data. In this proposal each SPARQL query is
also translated into an equivalent XQuery. This language is very close to the XSPARQL language but
however it requires converting the RDF data to XML according to a predefined schema. Assuming the
queried dataset is available beforehand, this translation introduces an overhead to the query and, in case
the dataset is not available for example due to being stored behind a SPARQL endpoint, such translation
is not possible. In Chapter 5, we present some benchmark comparisons between an implementation of
this language (provided to us by the authors) and our implementation of the XSPARQL language.

Ding and Buxton presented another approach to translate SPARQL into XQuery at the 2011 Semantic
Technology Conference.12 This rewriting generates XQuery specifically tailored for the Marklogic Server

12http://semtech2011.semanticweb.com/sessionPop.cfm?confid=62&proposalid=4015, retrieved on
2012/07/17.

81

http://semtech2011.semanticweb.com/sessionPop.cfm?confid=62&proposalid=4015

4.7. Conclusion 82

XML database engine,13 which incorporates RDF triples by using an internal XML representation.
Part of the CORESE Semantic Web framework,14 Corby et al. (2009) provides extensions of SPARQL

to process SQL, XPath, and XSLT in SPARQL queries. The authors also define an XSLT extension
function that allows to evaluate SPARQL queries and integrate the query result into the XSLT processing.
The implementation of these extensions is based on the CORESE framework, which employs caching
mechanisms for the input XML and RDF documents. This approach is again similar to XSPARQL
however the choice here was to extend SPARQL and XSLT, opposed to XSPARQL’s extension of XQuery.
The Saxon XQuery engine (which we are using in our implementation) provides extension functions

that allow to execute SQL queries and represent the results of the query as XML, easily incorporating
them into the XQuery or XSLT query. This feature follows a similar implementation as XSPARQL but
however does not provide the extend syntax as XSPARQL. The extension function executes a SQL query,
although the functionality of injecting variable values provided by XSPARQL can be done, this task is
left in charge of the query writer.
The nSPARQL query language (Pérez et al., 2008) proposes to extend SPARQL with navigational

capabilities using nested regular expressions. With this addition, the language is sufficiently expressive to
capture the semantics of RDFS. In addition to this, it introduces a number of graph navigation operators
and adds the ability to selectively traverse the graph. This work is different than our current proposed
approach for XSPARQL, but one of the possibilities for extending XSPARQL is to enable it to perform
XQuery enriched SPARQL queries.

4.7. Conclusion

This chapter described the novel query language that we defined to tackle the integration of heterogeneous
sources. We presented the syntax and semantics of the language, which are based on the syntax and
semantics of the XQuery language. XSPARQL relies on the semantics of the other languages, SQL and
SPARQL for querying the relational and RDF data and we also presented equivalences between the
execution of queries in the different languages.

This query language forms the basis for a possible solution for the presented data integration scenario.
In the next chapter we present our implementation of XSPARQL and tackle the problem of defining
optimisations for the XSPARQL language, in an attempt to lower the query evaluation times for more
complex queries, while the issue of representing meta-information in RDF is addressed in Chapter 6.

13http://www.marklogic.com/products-and-services/marklogic-5/, retrieved on 2012/07/17.
14http://wimmics.inria.fr/corese, retrieved on 2012/07/17.

82

http://www.marklogic.com/products-and-services/marklogic-5/
http://wimmics.inria.fr/corese

5. XSPARQL Evaluation and Optimisations

This chapter describes our prototype implementation of the XSPARQL language presented in the previous
chapter. We then describe a benchmark suite that will be used to evaluate our XSPARQL implementation.
This benchmark is based on a widely used XML benchmark suite (XMark), and extends it to cater for
XML and RDF data. The experimental evaluation will show that, in our current implementation, nested
queries with an inner SparqlForClause present the highest overhead when compared to their XQuery
counterpart.
To tackle this issue, Section 5.3 details different possible approaches for evaluating nested queries in

our prototype and compares these approaches regarding their evaluation times. In Section 5.4 we present
an overview of work related to the optimisations presented in this chapter.

5.1. Implementation

In this section we present our prototype implementation of the XSPARQL language, which translates an
XSPARQL query into an XQuery query with interleaved calls to a relational database and/or a SPARQL
engine. The architecture of our implementation is shown in Figure 5.1 and consists of the following
main components: (1) a query rewriter, which turns an XSPARQL query into an XQuery; and (2) an
(enhanced) XQuery engine for evaluating the rewritten XQuery. This enhanced XQuery engine relies on a
SQL relational database and on a SPARQL engine, for accessing the heterogeneous data sources from
within the rewritten XQuery.

We implement the XSPARQL language syntax and query rewriter by using the ANTLR parser
generator,1 which produces an XQuery with calls to the SQL and SPARQL engines. For the XQuery
engine we use Saxon2 and use the ARQ SPARQL engine3 for querying the RDF data. As for accessing
relational databases, we rely on a JDBC interface to the relational database and we have tested the
connection to MySQL,4 PostgreSQL,5 and Microsoft SQL Server.6 This interface between the different
engines is implemented using the Saxon Extension API, which allows to create custom XQuery functions
associated with Java methods. The functions that the rewritten queries use to access the relational and
RDF data are called xsp:sqlCall and xsp:sparqlCall, which translate a SQLForClause or a SparqlFor-
Clause into a SQL or SPARQL select query respectively, and evaluate it, returning the results according
to the types presented in Section 4.2.1.7 However, instead of implementing all the newly introduced types
as custom types in XQuery, we reuse the XML Schema of the SPARQL Query Results XML Format,8

where the sr:binding type corresponds directly to XSPARQL’s RDFTerm type. An RDFGraph, e.g. the result

1http://www.antlr.org/, retrieved on 2012/07/17.
2http://saxon.sourceforge.net/, retrieved on 2012/07/17.
3http://jena.sourceforge.net/ARQ/, retrieved on 2012/07/17.
4http://www.mysql.com/, retrieved on 2012/07/17.
5http://www.postgresql.org/, retrieved on 2012/07/17.
6http://www.microsoft.com/sqlserver/, retrieved on 2012/07/17.
7In the produced XQuery expressions we assume the reserved namespace prefix xsp: associated with http://xsparql.
deri.org/demo/xquery/xsparql.xquery. This prefix is not allowed in an XSPARQL query and is used not only
as the namespace for the XQuery functions xsp:sqlCall and xsp:sparqlCall but also as the namespace for any
auxiliary variables introduced by the rewriting, effectively avoiding clashes with variables from the XSPARQL query.

8See http://www.w3.org/2007/SPARQL/result.xsd, we assume this schema is associated with the namespace prefix sr.

83

http://www.antlr.org/
http://saxon.sourceforge.net/
http://jena.sourceforge.net/ARQ/
http://www.mysql.com/
http://www.postgresql.org/
http://www.microsoft.com/sqlserver/
http://xsparql.deri.org/demo/xquery/xsparql.xquery
http://xsparql.deri.org/demo/xquery/xsparql.xquery
http://www.w3.org/2007/SPARQL/result.xsd

5.1. Implementation 84

XML /
JSON
XML /
JSON

RDFRDF

Query
Rewriter

XQuery
query

Enhanced
XQuery
engine

XSPARQL
query

XML /
JSON RDFRDB

XQuerySQL SPARQL

XML /
RDF

XSPARQL

Figure 5.1.: XSPARQL implementation architecture

of a ConstructClause, is serialised using Turtle syntax by building the output as xs:string. The remaining
types RDFDataset and RDFNamedGraph are adapted accordingly.

A more general form of using a SPARQL engine would be to rely on a SPARQL endpoint, as presented
in the initial XSPARQL prototype described by Akhtar et al. (2008). However, by using Saxon’s extension
mechanism the query engines are more tightly integrated and allow for a more efficient communication of
results (opposed to using a SPARQL endpoint via HTTP). As we will describe later in Section 5.1.1, we
can still rely on this feature if necessary, and we use it for the implementation of the remote endpoint
feature that allows us to mimic SPARQL 1.1 SERVICE feature.

Blank Node Matching in Nested Queries The xsp:sparqlCall function also implements the matching
blank nodes in nested queries feature (as described in Section 4.2.2), for which we rely on custom Java
code that uses the ARQ API to preserve blank node labels in consecutive SPARQL calls over the same
dataset. The custom Java code maintains a stack of the previously used datasets during the query
execution: upon the execution of a SparqlForClause with a DatasetClause, the code stores the blank node
identifiers in the dataset and when executing a SparqlForClause without an explicit DatasetClause, we
use the first element of the stack as the implicit dataset along with its existing blank node identifiers.

Creating Distinct Blank Nodes in ConstructClauses In the XSPARQL semantics (Section 4.2.4), we
use the new globalPosition dynamic environment component to cater for creating fresh blank node
identifiers for each instantiation of the ConstructClause. In our implementation we rely on position
variables in XQuery for expressions (cf. Section 3.2.3) for generating the distinct identifiers. In the query
rewriting step we normalise all the for expressions to include a position variable and also keep a list of
all previous position variables in the query. Hence, when a blank node is found in a ConstructClause, we
can generate the blank node label based on the label provided in the query and the values of the existing
position variables.

Next we present how SQLForClauses, SparqlForClauses and ConstructClauses are processed by using
what we call rewriting functions, which operate on syntactic objects of XSPARQL and return an XQuery
expression.

5.1.1. SQLForClause and SparqlForClause

Our implementation defers the SQL and SPARQL query fragments to the respective external engines
and extracts the bindings for the existing variables from the returned XML results document. For the

84

5.1. Implementation 85

definitions of the rewriting functions, let XS and XQ denote the set of all XSPARQL and XQuery core
expressions, respectively. The rewriting function tr : XS→ XQ details our translation from XSPARQL to
XQuery core. We now describe the rewriting function for the translation of SparqlForClauses, given an
XSPARQL expression Q of form

for Vars DatasetClause
WhereClause SolutionModifier
return ExprSingle

(Q1)

then tr(Q) is defined as the XQuery Core expression

tr(Q) =

(1) let $xsp:results := xsp:sparqlCall

(
select Vars DatasetClause
WhereClause SolutionModifier

)
return

(2) for $xsp:result at $xsp:posvar in $xsp:results//sr:result return
(3) let $v := $xsp:result/sr:binding[@name = v]/∗ return for each $v ∈ Vars

(4) ExprSingle

That is, we implement the fs:sparql formal semantics function by translating Q into a SPARQL select

query, which is then executed by the custom runtime function xsp:sparqlCall. that returns the result
in SPARQL’s XML result format. This is represented in line (1) of the rewritten query. The for

expression in line (2) selects all solutions from the XML representation of the query results, while the let

expressions in line (3) assign the result value of each variable to XSPARQL variables. Finally, the return

expression ExprSingle of line (4) is evaluated with the new variables available.
For XSPARQL SQLForClauses of the form

for AttrSpec1 as $Var1 , . . . ,AttrSpecn as $Varn

RelationList SQLWhereClause
return ExprSingle

(Q2)

then tr(Q) is defined as the XQuery Core expression

tr(Q) =

(1) let $xsp:results := xsp:sqlCall

(
select AttrSpec1 , . . . ,AttrSpecn

RelationList SQLWhereClause

)
return

(2) for $xsp:result at $xsp:posvar in $xsp:results//sr:result return
(3) let $Var i := for each AttrSpeci , $Var i ∈ AttrSpec1 as $Var1 , . . . ,AttrSpecn as $Varn

$xsp:result/sr:binding[@name = AttrSpeci]/∗ return
(4) ExprSingle

Furthermore, in case the XSPARQL specifies the attribute selection as a ‘FOR *’ the translation function
requires access to the input relational database during the rewriting in order to determine the relation
attributes and the names of the XSPARQL variables to be generated.

Implementation of the XSPARQL Semantics

The presented xsp:sparqlCall function also implements XSPARQL’s BGP matching, as described in
Section 4.2, by replacing any previously assigned variables in the SPARQL query with their current value
according to the rules presented in Definition 4.9. This behaviour implements XSPARQL’s BGP matching
while relying on an off-the-shelf SPARQL engine. In Section 5.1.3 we present the formal correspondence
between the variable replacement approach and XSPARQL’s semantics. This replacement of variables can
be statically determined during the query rewriting step and generate the respective SQL or SPARQL

85

5.1. Implementation 86

query string (the parameters to the xsp:sqlCall and xsp:sparqlCall functions, respectively) by using
XQuery’s fn:concat function. The fn:concat allows for an arbitrary number of arguments and when
executed concatenates the string value resulting from the evaluation of each argument. When parsing
a SparqlForClause we have access to the set of previously declared variables and, whenever we find a
variable it is possible to determine whether to replace it by its previously assigned value or keep it as a
variable. If the variable has been previously declared, the variable name is inserted as an argument of the
fn:concat function, which upon evaluation accesses the value of the variable and use it in the creation of
the select query. If the variable is fresh, i.e. has not been declared before, we leave the variable name as
a (quoted) string within the fn:concat, which effectively postpones the evaluation of the variable to the
SPARQL engine.

Example 5.1 (select query generation). Consider the following simple XSPARQL query:

let $name := "Nightwish"
for * where { $band foaf:name $name }
return $band

The rewritten code that generates the SPARQL select query is as follows:

fn:concat("SELECT $band where { ", "$band", " foaf:name ", $name, "}")

Note that the ‘for *’ has also been replaced to select only the unbound variables in the WhereClause.

For SQLForClauses we follow a similar approach but since SQL does not allow for $-prefixed variable
names, we always leave the variable name unquoted, which means that for SQLForClauses all variables
used in SQLWhereClauses must be previously bound.

Querying External SPARQL Endpoints Since our implementation of XSPARQL rewrites SparqlFor-
Clauses into SPARQL queries, we can execute the rewritten SPARQL query in different ways: the
typical way is to use a local instance of the ARQ engine to execute the query. One of the new features
of SPARQL 1.1 (presented in Section 3.3) is the SERVICE keyword, which specifies that the following
subquery will be executed in a remote SPARQL endpoint. In XSPARQL we can also enable this behaviour
by specifying the ‘endpoint’ URI in a SparqlForClause, after the DatasetClause. This instructs the
XSPARQL engine to use the remote endpoint specified by URI for executing the query and incorporate
the bindings into the query as usual. As opposed to SPARQL 1.1, which does not allow to inject bindings
of results into the SERVICE subquery,9 our variable replacement operation allows to inject values from the
outer query into the inner query. This feature allows to write queries that are otherwise unavailable or
impractical in SPARQL, either by design restrictions of the language or practical restrictions of SPARQL
endpoints (as illustrated in the following example).

Example 5.2 (Querying Remote SPARQL Endpoints). Consider as an example we want to retrieve
from DBPedia persons that have the same birthday as Marco Hietala. For this we first need to
retrieve Marco’s birthday (we are taking this information from DBPedia but we could rather use
the artists personal FOAF file) and then retrieve from DBPedia the persons with the same birthday.
Queries 5.1 and 5.2 present possible XSPARQL and SPARQL versions of this query, respectively.
These queries both involve querying the remote DBPedia SPARQL endpoint. The SPARQL version
(Query 5.2) quickly runs into limits imposed by the DBPedia SPARQL endpoint, since the SERVICE

nested query attempts to retrieve the all persons that have any birthday specified, due to not being

9Please note that the BINDINGS can only take fixed values for variables, preventing to use results from the execution of
other parts of the query

86

5.1. Implementation 87

1 prefix foaf: <http://xmlns.com/foaf/0.1/>
2 prefix : <http://example.org/>
3 prefix dbpedia-owl: <http://dbpedia.org/ontology/>
4

5 let $MB := for * from <http://dbpedia.org/resource/Marco_Hietala>
6 where { [dbpedia-owl:birthDate $B]. }
7 return $B
8

9 for * from <http://dbpedia.org/>
10 endpoint <http://dbpedia.org/sparql>
11 where { [dbpedia-owl:birthDate $B; foaf:name $N] . filter (regex(str($B),str($MB))

) }
12 construct { <http://dbpedia.org/resource/Marco_Hietala> :sameBirthDayAs $N }

Query 5.1: Querying a remote endpoint with XSPARQL

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
3

4 SELECT $M $MB $B
5 FROM <http://dbpedia.org/resource/Marco_Hietala>
6 WHERE { [dbpedia-owl:birthDate $MB]
7

8 SERVICE <http://dbpedia.org/sparql> {
9 SELECT $B $N WHERE {

10 [dbpedia-owl:birthDate $B ; foaf:name $N]. } }
11

12 FILTER (regex(str($B), str($MB)))
13 }

Query 5.2: Querying a remote endpoint with SPARQL

aware of the bindings of variable $MB . On the other hand, in the XSPARQL version in Query 5.1
the inner endpoint query only retrieves the required birthdays.

5.1.2. ConstructClause

As for the construction of RDF graphs (i.e. whenever the ReturnClause is a ConstructClause), our
implementation XQuery rewriting produces a string in Turtle syntax, where we ensure that each generated
RDF triple is syntactically valid. For this we rely on a number of additional auxiliary XQuery functions:
firstly, the function xsp:rdfTerm($VarName) (presented in Figure 5.2a), when given a variable of type
RDFTerm, returns the correctly formatted RDF term (according to the Turtle syntax) of $VarName. Next,
the xsp:validTriple presented in Figure 5.2b implements the semantics function fs:validTriple by calling
the xsp:rdfTerm function to correctly format triples to Turtle syntax. This function further uses the
auxiliary functions xsp:validSubject, xsp:validPredicate and xsp:validObject that determine, according
to the RDF semantics, if their argument is a valid subject, predicate, or object, respectively.

Our implementation of the fs:skolemConstant function, that ensures blank nodes in construct expres-
sions are distinct between different solutions, consists of appending the position variables from all the
surrounding for expressions to the respective blank node identifier using “_” as a separator. This is
represented by the following rewriting function

trsk ($BNodeName, { $PosVar1 , · · · , $PosVarn }) =
fn:concat(" :", $BNodeName, " ", $PosVar1 , · · · , " ", $PosVarn) .

87

5.1. Implementation 88

declare function xsp:rdfTerm($VarName) {
typeswitch $VarName
case $e as literal
let $DT := data($e/@datatype)
let $L:= data($e/@xml:lang)
return concat("""", $e,

if($L) then concat("@", $L) else "",
if($DT) then concat("^^<", $DT,">")

else "",
"""")

case $e as bnode return concat("_:", $e)
case $e as uri return concat("<", $e, ">")
default return "" };

(a) xsp:rdfTerm function

declare function xsp:validTriple($sub,
$pred, $obj) {

if(xsp:validSubject($sub)
and xsp:validPredicate($pred)
and xsp:validObject($obj))

then concat(xsp:rdfTerm($sub), " ",
xsp:rdfTerm($pred), " ",
xsp:rdfTerm($obj), ".")

else "" };

(b) xsp:validTriple function

Figure 5.2.: Implementation functions example

Finally, the function xsp:evalCT implements fs:evalCT by simply concatenating all the triples generated
by the xsp:validTriple function to a string representation of the RDF graph to be constructed.

Implementation of Constructed Datasets As described in Section 4.1, it is possible to assign the result
of a construct query to an XSPARQL variable, which can later be used in the DatasetClause of a
SparqlForClause. In order to make this constructed graph available to the ARQ SPARQL engine, we
need to materialise it as a temporary file and specify this temporary file’s location in the SPARQL query.
To enable this feature, during the query rewriting step, whenever we find a ConstructClause assigned
to an XSPARQL variable, we create a temporary RDF file with the result of the construct expression
represented as Turtle and assign the local path of this generated file to the XSPARQL variable.

5.1.3. Soundness & Completeness of the Implementation

We next present the equivalence between our implementation of the XSPARQL language and the
XSPARQL semantics presented in Section 4.2. We start by presenting a lemma stating that the results
of the evaluation of a BGP P under XSPARQL BGP matching semantics can be determined based on
the results of evaluating µ(P) (cf. Definition 3.7) under SPARQL semantics. Similar correspondence for
SQLForClauses is presented was Lemma 4.2.

Lemma 5.1. Let P be a BGP, D a dataset and µ the XSPARQL instance mapping of P . Considering P ′ =

µ(P), we have that evalxs(D,P, µ) = eval(D,P ′) ./ { µ }.

Proof: Since, according to the variable substitution operation we have that vars(P ′) = vars(P)\dom(µ),
we also have that vars(P ′) ∩ dom(µ) = ∅ and it follows directly from Lemma 4.3 that evalxs(D,P, µ) =

eval(D,P ′) ./ { µ }. 2

The following result presents the equivalence of our implementation function tr and the XSPARQL
semantics.10

Proposition 5.2. Let Q be a SparqlForClause of form (Q1) or a SQLForClause of form (Q2) and
dynEnv the dynamic environment of Q, then dynEnv ` Q ⇒ Val if and only if dynEnv ` tr(Q)⇒ Val .

Proof: We present here only the proof for SparqlForClauses of form (Q1), the proof for SQLForClauses
is analogous.
10Please note that, for presentation purposes, we are omitting the initial empty line in case the proof trees require no

premises and the variable expansion premises.

88

5.1. Implementation 89

(⇐) Let us show that if dynEnv ` tr(Q)⇒ Val then dynEnv ` Q ⇒ Val . The evaluation of Q consists
of the application of Rule (D7) as

dynEnv.globalPosition = (Pos1 , · · · ,Pos j)

dynEnv ` fs:dataset(DatasetClause)⇒ Dataset

dynEnv ` fs:sparql

(
Dataset ,WhereClause,
SolutionModifier

)
⇒ µxs

i

dynEnvxs
1 ` ExprSingle ⇒ Value i . .

.

dynEnv `
for $Var1 · · · $Varn DatasetClause
WhereClause SolutionModifier
return ExprSingle

⇒ Value1 · · ·Valuem

where, for each µxs
i ,

dynEnvxs
1 = dynEnv + activeDataset(Dataset) + globalPosition((Pos1 , · · · ,Pos j , i))

+ varValue

 Var1 ⇒ fs:value(µxs
i ,Var1) ;

· · · ;
Varn ⇒ fs:value(µxs

i ,Varn)

 .
(T1)

Let µC be the XSPARQL instance mapping of the expression context that includes dynEnv and Ωtr

the pattern solution resulting from the evaluation of the xsp:sparqlCall function, i.e. Ωtr =

eval(DatasetClause, P), where P is the rewriting of WhereClause according to µC . Furthermore,
let µi ∈ Ωtr be the solution mapping from which Val is generated, i.e. there exists some dynamic
environment dynEnvtr based on dynEnv and extended with the variable bindings from µi such
that dynEnvtr ` ExprSingle⇒ Val .
Consider Ωxs = evalxs(DatasetClause,WhereClause, µC) as the solution sequence resulting from the

evaluation of the fs:sparql function. As we know from Lemma 5.1, Ωxs = Ωtr ./ { µC } and thus
there must exist a solution mapping µxs ∈ Ωxs such that µxs = µi ./ µC . From (T1) we know that
there exists a dynamic environment dynEnvxs that results from extending dynEnv with the variable
bindings from µxs and thus this environment will also contain all the variable mappings from µi

(and from dynEnvtr , respectively). Since we know that dynEnvtr ` ExprSingle ⇒ Val , we also have
that dynEnvxs ` ExprSingle⇒ Val and thus dynEnv ` Q ⇒ Val .

(⇒) Next we will show that if dynEnv ` Q ⇒ Val then dynEnv ` tr(Q)⇒ Val . We present the proof
tree for each of the XQuery core expressions in the tr(Q) rewriting. The proof trees are presented for
each line of the tr(Q) rewriting and, in each proof tree, Expr corresponds to the XQuery expressions of
the following lines.

let expression of line (1):

dynEnv ` xsp:sparqlCall

(
select Vars DatasetClause
WhereClause SolutionModifier

)
⇒ Ωtr

dynEnvtr
1 ` Expr⇒ Res

dynEnv `

let $xsp:results :=

xsp:sparqlCall

(
select Vars DatasetClause
WhereClause SolutionModifier

)
return Expr

⇒ Res

where

dynEnvtr
1 = dynEnv + varValue(xsp:results⇒ Ωtr) . (T2)

89

5.2. The XMarkRDF benchmark 90

for expression of line (2):

dynEnvtr
1 ` $xsp:results//sr:result⇒ µi

dynEnvtr
2 ` Expr⇒ Res i . .

.

dynEnvtr
1 `

for $xsp:result at $xsp:posvar

in $xsp:results//sr:result

return Expr
⇒ Res1 , · · · ,Resn

where dynEnvtr
2 = dynEnvtr

1 + varValue

(
xsp:result⇒ µi ;

xsp:posvar⇒ i

)

let expressions of lines (3)–(4). Here we consider all the let expressions represented by line (3),
where $v ∈ Vars, i.e. this rule is repeated for each $v ∈ Vars:

dynEnvtr
2 ` $xsp:result/sr:binding[@name = v]/∗ ⇒ V

dynEnvtr
3 ` ExprSingle⇒ Res

dynEnvtr
2 `

let $v := $xsp:result/sr:binding[@name = v]/∗
return ExprSingle

⇒ Res

where dynEnvtr
3 = dynEnvtr

2 + varValue(v ⇒ V)

Consider the dynamic environment dynEnvxs
i such that dynEnvxs

i ` ExprSingle⇒ Val where, as we
know from (T1), dynEnvxs

i extends dynEnv with the bindings from a solution mapping µxs
i . Furthermore,

consider µC , Ωxs , and Ωtr as per the (⇐) part of the proof.
From the proof trees of tr(Q) we can see that the let expression from line (1) extends dynEnv with the

value for the reserved variable $xsp:results, which cannot be included in Q. The for expression from
line (2) iterates over all the solution mappings µtr ∈ Ωtr and, as we know from Lemma 5.1, Ωxs = Ωtr ./

{ µC}. Since µC is created based on dynEnv.varValue, all the variable bindings from µC are already
included in dynEnv and all solution mappings µtr ∈ Ωtr are guaranteed to be compatible with µC and
thus we have that µxs

i ∈ Ωtr .
Finally, the let expressions from lines (3) and (4) ensure that there exists a dynEnvtr

2 such
that dynEnvtr

2 .varValue contains all the variable bindings from µxs
i , and we have that dynEnvtr

2 `
ExprSingle ⇒ Val and dynEnv ` tr(Q)⇒ Val . 2

5.2. The XMarkRDF benchmark

For the evaluation of our implementation we created a benchmark suite based on the XMark benchmark
suite (Schmidt et al., 2002), which according to Afanasiev and Marx (2008) is the most widely used
benchmark suite for XQuery. It provides a data generator that produces XML data simulating an auction
website (including information about persons and items they bid for) and includes 20 XQuery queries,
henceforth referred to as q1 to q20, over this generated data.

In order to benchmark the XSPARQL language we also require data in the relational and RDF formats,
hence we provide transformations (in fact, using XSPARQL queries) from the XMark XML datasets into
RDF triples and a relational instance, following a manually created schema for representing the XMark
data. These transformations replicate all the data in the original XMark datasets as RDF triples and
relational tuples. Next, we converted the XMark queries into corresponding XSPARQL queries using
SparqlForClauses and SQLForClauses to access the RDF data and the relational database, respectively.
We call this new benchmark suite the XMarkRDF benchmark.

We have made two changes to the original XMark queries: (1) SPARQL queries do not guarantee
any default ordering, hence all original XMark queries were declared unordered – as a consequence the
XQuery engine is not required to follow document order when executing the query; and (2) we added the

90

5.2. The XMarkRDF benchmark 91

Table 5.1.: XMark (and variants) benchmark dataset description

Scaling XMark XMarkRDF XMarkRDB
factor Persons Categories Size (MB) Size (MB) # Triples Size (MB) # Tuples

0.01 255 10 1.1 1.2 14745 1 4112
0.02 510 20 2.3 2.3 27519 2 7799
0.05 1275 50 5.8 5.8 70859 5 20190
0.10 2550 100 11.7 12.4 142721 10 40183
0.20 5100 200 23.5 24.9 283639 20 80622
0.50 12750 500 58.0 61.7 706723 50 200496
1.00 25500 1000 116.5 124.8 1414469 101 400620

Table 5.2.: XMarkRDFS2XQ dataset and translation times

Scaling factor Dataset size (MB) Translation times (sec)

0.01 3.3 18.94
0.02 6.4 18.30
0.05 16.1 26.08
0.10 32.7 39.01
0.20 65.3 62.35
0.50 162.3 143.35
1.00 326.2 329.93

external variables $xml and $rdf in the XQuery and XSPARQL queries as parameters used to specify the
URI identifying the input benchmark instance.

We also included in our own comparisons the SPARQL2XQuery system (Groppe et al., 2008), which is
similar in spirit to XSPARQL. While the SPARQL2XQuery language allows to perform similar queries to
the RDF and XML fragment of the XSPARQL language, the implementation follows a different approach
to integrate the XML and RDF data: rather than performing interleaved calls to a SPARQL engine,
the SPARQL2XQuery system relies on translating the RDF data into a pre-defined XML format and
transforming SPARQL queries into equivalent XQuery over this pre-defined XML format. The translated
queries can be directly executed using a native XQuery engine. We focussed our experimental evaluation
on query response time rather than on data transformation time, and as SPARQL2XQuery requires an
additional translation step from RDF to a custom RDF/XML format, we converted the XMarkRDF
RDF data into the format required by the SPARQL2XQuery system. We denote these new datasets,
containing the RDF/XML format required for the SPARQL2XQuery, by XMarkRDFS2XQ .
Using the data generators and translators, provided by the XMark benchmark and the XSPARQL

translation to RDF (as presented in Section 5.3), we created datasets with scaling factors of 0.01, 0.02,
0.05, 0.1, 0.2, 0.5, and 1.0 and translated them into XMarkRDF and XMarkSQL. An overview of the
generated data is presented in Table 5.1, including the number of persons and item categories modelled,
dataset sizes,11, the number of relational tuples and RDF triples.
Furthermore, we converted the XMarkRDF datasets into the RDF/XML format required by the

SPARQL2XQuery system. The resulting dataset sizes and translation times for the different scaling
factors of the XMarkRDF dataset are presented in Table 5.2.

11For the dataset sizes we determined the dataset size based on a Turtle representation of the RDF graph and the SQL
INSERT statements that populate the database.

91

5.2. The XMarkRDF benchmark 92

Table 5.3.: Query response times (in seconds) of the 2MB dataset. Query rewriting error (err).

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

XQ 0.71 0.70 0.77 0.74 0.71 0.70 0.72 1.11 1.12 0.99
XS rdb 0.19 0.75 1.50 0.22 0.26 0.38 0.85 1.27 1.56 1.62
XS rdf 3.06 3.29 3.43 3.08 3.18 3.32 3.94 293.62 292.84 16.92
S2XQ 1.06 17.41 err 65.13 1.00 0.98 err 1.28 11.57 309.21

q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

XQ 0.97 0.94 0.73 0.73 0.69 0.72 0.72 0.74 0.78 0.74
XS rdb 2.33 1.81 0.28 0.56 err err 0.59 0.36 0.69 1.20
XS rdf 295.19 55.55 3.20 3.15 err err 3.24 3.24 3.92 6.75
S2XQ 102.42 70.89 7.84 1.01 1.42 7.77 8.54 6.10 13.43 —

5.2.1. Experimental Setup

The benchmark system consists of a dual core Intel XEON E5606 2.13GHz, 64GB memory running a 64
bit installation of Debian 6.0.3 (stable distribution). For the XQuery engine, we rely on Saxon version 9.4
Home Edition and Java version 1.6.0 64 bit. For evaluating SPARQL queries we used ARQ 2.8.7. We ran
each query with a timeout of 10 minutes per query and with the Java Heap size set to 1GB. Each query
was run 10 times and the response time was measured using GNU time 1.7. For each query we discard
the fastest and slowest response time and calculate the average of the remaining times. From this result
we deduce the process startup time, determined by following the same procedure and executing an empty
query.
For the evaluation we defined the following run configurations:

XQ : original XQuery queries, evaluated using the Saxon engine;
XS rdf : using the XSPARQL implementation over the XMarkRDF datasets (translated data and queries);
XS rdb: using the XSPARQL implementation over the XMarkRDB datasets stored on a PostgreSQL

8.4.11 relational database management system (translated data and queries); and
S2XQ : using the SPARQL2XQuery implementation over the translation of the XMarkRDF datasets into

the required XML format (XMarkRDFS2XQ).

5.2.2. Base System Results

In this section we present an experimental evaluation of our prototype presented in Section 5.1 using
the novel XMarkRDF and XMarkRDB benchmark suites. We also compare our XSPARQL prototype
with the SPARQL2XQuery engine, an implementation of the direct translation of SPARQL to XQuery
presented by Groppe et al. (2008).

The response times of the XQ , XS rdb , XS rdf , and S2XQ runs for the benchmark queries over the 2MB
dataset size are shown in Table 5.3.12 We present the 2MB dataset as it is the largest dataset our XS rdf

implementation can process within the time limit of 10 minutes. Both the data and query translation
times for the S2XQ configuration are not included in the presented results since this process can be done
a priori. The XQ response times are presented as a baseline measure, however it is noteworthy that
these queries do not cater for our heterogeneous data sources scenario. The XS rdb configuration often

12Queries q15 and q16 involve applying an XPath expression to data that is stored in RDF or in the relational database as
a string. Since parsing this string representation back into an XML element is not available to the Saxon HE engine we
are using for benchmarking, these queries were considered as errors (err) for the XS rdf and XS rdb configurations. The
errors in S2XQ were due to translation errors from the application that was provided to us.

92

5.3. Optimisations of Nested for Expressions 93

Table 5.4.: Query response times (in seconds) of the 100MB dataset. Query rewriting error (err).

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

XQ 3.19 3.27 3.39 3.32 3.16 3.06 3.07 154.59 168.78 22.64
XS rdb 0.19 120.92 45.78 0.24 2.07 2.44 3.64 62.43 68.86 20.31
XS rdf 37.84 41.53 42.41 37.93 40.28 40.43 41.96 — — —
S2XQ — — err — — — err — — —

q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

XQ 93.40 37.50 3.34 3.31 3.05 3.05 3.35 3.59 3.94 3.34
XS rdb — 443.29 1.68 3.41 err err 2.90 2.52 3.99 71.41
XS rdf — — 40.07 39.30 err err 40.90 41.55 41.58 —
S2XQ — — — — — — — — — —

presents the best response times undoubtably due to the underlying relational database system. Since the
inner queries in nested queries access the primary keys of relations, their response time is fast. Table 5.4
presents the results for our largest dataset, where we can see that the XS rdb approach is able to evaluate
most of the queries (except q11) within the time limit.

Table 5.3 shows that for most of the queries in the S2XQ runs are faster than the interleaved calls to a
SPARQL engine in the XS rdf runs. Even considering that the response times do not include the data
translation times (presented in Table 5.2), this suggests that an implementation of XSPARQL where
the SPARQL queries are translated into native XQuery is a viable alternative to interleaving calls to a
SPARQL engine. However, for such translations to be possible we need access to the full RDF dataset
to perform the query translation, which is not possible for example in the case where we are querying
data behind a SPARQL endpoint. Another issue related to the implementation of the SPARQL2XQuery
system is that response times deteriorate considerably for larger datasets. This was observed for all the
queries in the benchmark and can be seen in the graphs of Figures 5.5 and 5.6.

Queries q8–q12 have the highest execution times of all the benchmark queries (especially noticeable in
the XS rdf configuration) since they contain nested expressions. For these nested queries, our interleaved
SparqlForClauses XSPARQL implementation can only handle small datasets: the 2MB dataset is the
largest for which all queries finish within the time limit and for the 20MB dataset all queries result in a
timeout.

Based on these results, we propose a set of different rewritings that aim at reducing the response times
of nested queries.

5.3. Optimisations of Nested for Expressions

Following our current implementation of the XSPARQL language, this section presents different rewriting
strategies for XSPARQL queries containing nested expressions. Based on the experimental evaluation
results from the previous section, we are especially interested in nested expressions with an inner Sparql-
ForClause, as the number of interleaved calls to the SPARQL engine can be reduced drastically by using
these rewritings. Intuitively, these rewritings rely on executing the inner SPARQL query only once in an
unbounded manner, and then either performing the a nested loop over the results of the queries directly
in XQuery, or, if possible, transforming the nested queries into a single SPARQL query.
We start by presenting the definitions and conditions under we can perform these rewritings.

Definition 5.1 (Dependent Join). We call two nested XSPARQL for expressions (ForClause, SparqlFor-

93

5.3. Optimisations of Nested for Expressions 94

Clause, or SQLForClause), where the inner expression is a SparqlForClause and at least one variable in
the inner expression is bound by the outer expression, a dependent join. The shared variables between the
for expressions are called dependent variables.

Note that the strategies presented here are only applicable for dependent joins satisfying the following
restrictions:

1. An explicit DatasetClause of the inner query needs to be statically determined i.e. it cannot be
determined based on variables bound from the outer expression;

2. The return clause of the inner expression can not be a ConstructClause; and
3. The dependent variable in the inner query’s graph pattern must be strictly bounded as defined next.

Definition 5.2 (Strict Boundedness). The set of strictly bound variables in a graph pattern P , de-
noted bVars(P), is recursively defined as follows: if P is
• a BGP, then bVars(P) = vars(P);
• (P1 and P2), then bVars(P) = bVars(P1) ∪ bVars(P2);
• (P1 optional P2), then bVars(P) = bVars(P1);
• (P1 union P2), then bVars(P) = bVars(P1) ∩ bVars(P2);
• (graph i P1), then bVars(P) = bVars(P1) ∪ ({ i } ∩V); and
• (P1 filter R), then bVars(P) = bVars(P1).

Informally, the dependent variables must occur (i) in a BGP, (ii) in every alternative of unions pattern,
and (iii) it must also occur outside of the optional graph pattern in case of optionals. Strict boundedness
essentially ensures that the join variable does not occur only in a filter expression, which would lead to
problems in case the inner expression is called unconstrained, see below.
Next, we define the notion of inclusion of solution sequences.

Definition 5.3 (Solution sequence inclusion). Let Ω1 and Ω2 be solution sequences. We say Ω1 is
included in Ω2, denoted Ω1 � Ω2, if for all solution mappings µ1 ∈ ToMultiset(Ω1) there exists a solution
mapping µ2 ∈ ToMultiset(Ω2) such that µ1 ⊆ µ2.

Please note that this definition extends the notion of subset between multisets by considering also the
subset relation between their elements, i.e. solution mappings.

The following rewritings for the implementation of dependent joins can be grouped into two categories,
depending whether the join is performed in XQuery or SPARQL. For performing the join in XQuery, we
use already known join algorithms from relational databases, namely nested-loop joins. For performing
the join in SPARQL, if the outer expression is a SparqlForClause we can implement the join by rewriting
both the inner and the outer expressions into a single SPARQL call. In case the outer query consists of
an XQuery ForClause, we can still consider this approach, but we need to convert the result of the outer
XQuery ForClause to an RDF graph, for instance relying on a SPARQL engine that supports SPARQL
Update (Gearon et al., 2012) to add this temporary graph to a triple store.

5.3.1. Dependent Join implementation in XQuery

The intuitive idea with these rewritings is, instead of using the naïve rewriting that performs one SPARQL
query for each iteration of the outer expression, to execute only one unconstrained SPARQL query, before
the outer query. The resulting sequence of SPARQL solution mappings is then joined in XQuery with the
results of the outer expression, using one of the following strategies.
The straightforward way to implement the join over dependent variables directly in XQuery is by

nesting two XQuery for expressions, much like a regular nested-loop join (Abiteboul, Hull et al., 1995)

94

5.3. Optimisations of Nested for Expressions 95

in standard relational databases. The join consists of restricting the values of variables from the inner
expression to the values taken from the current iteration of the outer expression.
Similar to Section 5.1, we will describe the implementation of this nested-loop join by means of the

rewriting function optnl . We use A4B = (A ∪B) \ (A ∩B) to denote the symmetric difference of two
sets A and B.
Let Q be an XSPARQL expression of form

(1) for $Varout at $PosVarout in ExprSingle1 return
(2) for Vars in DatasetClause WhereClause SolutionModifier
(3) return ExprSingle2

(Q3)

the application of the rewriting function optnl(Q) can be split into two cases:

• if ExprSingle1 and ExprSingle2 do not contain any occurrences of (Q3) then, assuming Varssp =

Vars(WhereClause), we have that:

optnl(Q) =

(1) let $xsp:results := xsp:sparqlCall

(
select {$Varout} ∪Vars in DatasetClause
WhereClause SolutionModifier

)
return

(2) for $Varout at $PosVarout in ExprSingle1 return
(3) for $xsp:result at $xsp:posvar in in $xsp:results//sr:result return

(4) if

(
joinnl

(
{$Varout} ∩Varssp ,

$xsp:result

))
then

(5) let $v := $xsp:result/sr:binding[@name = v]/∗ for each $v ∈
{
Varout

}
4Varssp

(6) ExprSingle2
(7) else ()

• otherwise:

optnl(Q) =

optnl

 for $Varout at $PosVarout in optnl(ExprSingle1) return
for Vars in DatasetClause WhereClause SolutionModifier
return optnl(ExprSingle2)

The auxiliary function joinnl consists of an XPath expression that determines if an XQuery tuple stream
is compatible with a SPARQL solution mapping. More specifically, this function considers two variables
as compatible if their values are equal, the outer value is a blank node, or the inner value ($VarResi) is
unbound. These cases represent the semantics of XQuery nested queries, behaving similar to a left outer
join (./).

joinnl({ $Var1 , · · · , $Varn } , $res) = xsp:isBlank($Var1) or
fn:empty($res/sr:binding[@name = Var1]/∗) or
($Var1 eq $res/sr:binding[@name = Var1]/∗)

 and

· · ·

and

 xsp:isBlank($Varn) or
fn:empty($res/sr:binding[@name = Varn]/∗) or
($Varn eq $res/sr:binding[@name = Varn]/∗)

95

5.3. Optimisations of Nested for Expressions 96

When Q is an XSPARQL expression of form

(1) for Varsout DatasetClauseout WhereClauseout SolutionModifierout

(2) return
(3) for Vars in DatasetClausein WhereClausein SolutionModifier in

(4) return ExprSingle

(Q4)

the application of the rewriting function optnl(Q) can be split into two cases:

• in case ExprSingle does not contain any occurrences of (Q4) then, considering Varssp =

vars
(
WhereClausein

)
the set of variables from the inner WhereClause, we have that:

optnl(Q) =

(1) let $xsp:res in := xsp:sparqlCall

 select Vars in ∪Varsout ∩Varssp

DatasetClausein WhereClausein

SolutionModifierin

 return

(2) let $xsp:res out := xsp:sparqlCall

(
select Varsout DatasetClauseout

WhereClauseout SolutionModifierout

)
return

(3) for $xsp:rout at $xsp:posvar out in $xsp:res out//sr:result return
(4) let $v := $xsp:rout/sr:binding[@name = v]/∗ return for each $v ∈ Varsout

(5) for $xsp:rin at $xsp:posvar out in $xsp:res in//sr:result return

(6) if
(

joinsr

(
Varsout ∩Varssp , $xsp:res out, $xsp:res in

))
then

(7) let $v := $xsp:res in/sr:binding[@name = v]/∗ return for each $v ∈ Varsout4Varssp

(8) ExprSingle
(9) else ()

• otherwise:

optnl(Q) =

optnl

for Varsout DatasetClauseout WhereClauseout SolutionModifierout

return
for Vars in DatasetClausein WhereClausein SolutionModifier in

return optnl(ExprSingle)

The joinsr function is defined as:

joinsr ({ $Var1 , · · · , $Varn } , $resOut , $resIn) =

joinnl({ $resOut/sr:binding[@name = Var1]/∗ } , $resIn)

and · · · and
joinnl({ $resOut/sr:binding[@name = Varn]/∗ } , $resIn) .

The joinsr function behaves in a similar fashion to the joinnl function with the difference that it compares
two SPARQL solution sequences. For nested expressions with an outer SQLForClause, i.e. when Q is an
XSPARQL expression of form

(1) for AttrSpec1 as $Var1 , . . . ,AttrSpecn as $Varn RelationList SQLWhereClause
(2) return
(3) for Vars in DatasetClausein WhereClausein SolutionModifier in

(4) return ExprSingle

(Q5)

the application of the rewriting function optnl(Q) can also be split into two cases:

• in case ExprSingle does not contain any occurrences of (Q5) then, considering Varssp =

vars
(
WhereClausein

)
is the set of variables from the inner WhereClause and Varsout =

96

5.3. Optimisations of Nested for Expressions 97

{ $Var1 , . . . , $Varn } is a shorthand notation for the variables in the outer SQLForClause, we
have that:

optnl(Q) =

(1) let $xsp:res in := xsp:sparqlCall

 select Vars in ∪Varsout ∩Varssp

DatasetClausein WhereClausein

SolutionModifierin

 return

(2) let $xsp:res out := xsp:sqlCall

(
select AttrSpec1 , . . . ,AttrSpecn

RelationList SQLWhereClause

)
return

(3) for $xsp:rout at $xsp:posvar out in $xsp:res out//sr:result return
(4) let $v := $xsp:rout/sr:binding[@name = v]/∗ return for each $v ∈ Varsout

(5) for $xsp:rin at $xsp:posvar out in $xsp:res in//sr:result return

(6) if
(

joinsr

(
Varsout ∩Varssp , $xsp:res out, $xsp:res in

))
then

(7) let $v := $xsp:res in/sr:binding[@name = v]/∗ return for each $v ∈ Varsout4Varssp

(8) ExprSingle
(9) else ()

• otherwise:

optnl(Q) =

optnl

for AttrSpec1 as $Var1 , . . . ,AttrSpecn as $Varn RelationList SQLWhereClause
return
for Vars in DatasetClausein WhereClausein SolutionModifier in

return optnl(ExprSingle)

The following proposition states that the optnl rewriting function is sound and complete.

Proposition 5.3. Let Q be an XSPARQL expression of form (Q3), (Q4), or (Q5) and dynEnv the
dynamic environment of Q, then dynEnv ` Q ⇒ Val if and only if dynEnv ` optnl(Q)⇒ Val .

Proof: We now present the proof of the optnl rewriting function for expressions of the form (Q4). We
start by showing the proof for the base case, where ExprSingle of (Q4) does not contain any occurrences
of (Q4).

Base Case. (⇒) We start by showing that if dynEnv ` Q ⇒ Val then dynEnv ` optnl(Q)⇒ Val . We
present the proof tree for each of the XQuery core expressions in the optnl(Q) rewriting where, in each
proof tree, Expr corresponds to the XQuery expressions of the following lines.

let expression of line (1). For this rule let Vars = Vars in ∪
(
Varsout ∩ vars

(
WhereClausein

))
be the

set of variables from the inner SparqlForClause and any variables from the outer SparqlForClause
used in the inner WhereClause. Thus, we have that:

dynEnv ` xsp:sparqlCall

(
select Vars DatasetClausein

WhereClausein SolutionModifierin

)
⇒ Ω in

nl

dynEnvnl
1 ` Expr⇒ Res

dynEnv `
let $xsp:res in := xsp:sparqlCall

(
select Vars DatasetClausein

WhereClausein SolutionModifierin

)
return Expr

⇒ Res

where

dynEnvnl
1 = dynEnv + varValue

(
xsp:res in⇒ Ω in

nl

)
. (T3)

97

5.3. Optimisations of Nested for Expressions 98

let expression of line (2):

dynEnvnl
1 ` xsp:sparqlCall

(
select Varsout DatasetClauseout

WhereClauseout SolutionModifierout

)
⇒ Ωout

nl

dynEnvnl
2 ` Expr⇒ Res

dynEnvnl
1 `

let $xsp:res out :=

xsp:sparqlCall

(
select Varsout DatasetClauseout

WhereClauseout SolutionModifierout

)
return Expr

⇒ Res

where dynEnvnl
2 = dynEnvnl

1 + varValue
(
xsp:res out⇒ Ωout

nl

)
.

for expression of line (3):

dynEnvnl
2 ` $xsp:res out//sr:result⇒ µout

i

dynEnvnl
3 ` Expr⇒ Res i . .

.

dynEnvnl
2 `

for $xsp:rout at $xsp:posvar out

in $xsp:res out//sr:result

return Expr
⇒ Res1 , · · · ,Resn

where dynEnvnl
3 = dynEnvnl

2 + varValue

(
xsp:rout⇒ µout

i ;

xsp:posvar out⇒ i

)
.

let expressions of line (4). Here we consider all the let expressions represented by line (4), where $v ∈
Varsout :

dynEnvnl
3 ` $xsp:rout/sr:binding[@name = v]/∗ ⇒ V

dynEnvnl
4 ` Expr⇒ Res

dynEnvnl
3 `

let $v := $xsp:rout/sr:binding[@name = v]/∗
return Expr

⇒ Res

where dynEnvnl
4 = dynEnvnl

3 + varValue(v ⇒ V) .

for expression of line (5):

dynEnvnl
4 ` $xsp:res in//sr:result⇒ µout

j

dynEnvnl
5 ` Expr⇒ Res j . .

.

dynEnvnl
4 `

for $xsp:rin at $xsp:posvar in

in $xsp:res in//sr:result

return Expr
⇒ Res1 , · · · ,Resn

where dynEnvnl
5 = dynEnvnl

4 + varValue

(
xsp:rin⇒ µout

j ;

xsp:posvar in⇒ j

)
.

if expression of lines (6)–(9). In this rule, Expr represents the let expressions from lines (7)–(8):

dynEnvnl
5 ` joinsr

(
Varsout ∩ vars(WhereClause) ,
$xsp:res out, $xsp:res in

)
⇒ true

dynEnvnl
5 ` ExprSingle⇒ Res1

dynEnvnl
5 `

if

(
joinsr

(
Varsout ∩ vars(WhereClause) ,
$xsp:res out, $xsp:res in

))
then Expr else ()

⇒ Res1

98

5.3. Optimisations of Nested for Expressions 99

let expressions of lines (7)–(8). Again, we consider all the let expressions represented by line (7),
where $v ∈ Varsout4vars

(
WhereClausein

)
:

dynEnvnl
5 ` $xsp:res in/sr:binding[@name = v]/∗ ⇒ V

dynEnvnl
6 ` ExprSingle⇒ Res

dynEnvnl
5 `

let $v := $xsp:res in/sr:binding[@name = v]/∗
return ExprSingle

⇒ Res

where dynEnvnl
6 = dynEnvnl

5 + varValue(v ⇒ V) .

Consider Ωout
xs and Ω in

xs the solution sequences returned by the evaluation of the outer and inner
SparqlForClauses of Q, respectively, and the set of join variables J = Varsout ∩ vars

(
WhereClausein

)
.

Furthermore consider µout
xs ∈ Ωout

xs and µin
xs ∈ Ω in

xs the solution mappings that agree on the value of
each join variable j ∈ J from where Val is generated, i.e. there exists some dynamic environment
dynEnvxs

i based on dynEnv and extended with the variable mappings from µout
xs and µin

xs such that
dynEnvxs

i ` ExprSingle⇒ Val .

Outer SparqlForClause: Regarding the SparqlForClause of lines (1)–(2) of Q (evaluated consider-
ing dynEnv), the optnl(Q) translates it into the xsp:sparqlCall from line (2), which is evaluated
over dynEnvnl

1 . Consider C1 the expression context where dynEnvnl
1 is included, µC1

the XSPARQL
instance mapping of C1 and Pout = µC1

(
WhereClauseout

)
the graph pattern obtained from repla-

cing the variables in WhereClauseout according to µC1 . From (T3) we can see that dom(µC1) =

dom(µC) ∪ { $xsp:res in } but $xsp:res in belongs to the $xsp: reserved namespace so it cannot be in-
cluded in the variables of WhereClauseout and we can observe that we obtain the same graph pattern Pout

by replacing WhereClauseout according to µC , i.e. Pout = µC1

(
WhereClauseout

)
= µC

(
WhereClauseout

)
.

Furthermore, let Ωout
xs = evalxs

(
DatasetClauseout ,WhereClauseout , µC

)
be the solution sequence res-

ulting from evaluating the outer SparqlForClause according to XSPARQL semantics and Ωout
nl =

eval
(
DatasetClauseout ,Pout

)
be the pattern solution resulting from evaluating the rewritten outer Sparql-

ForClause according to SPARQL semantics. Following Lemma 5.1, we have that Ωout
xs = Ωout

nl ./ { µC }
and, as we have seen from the proof of Proposition 5.2, since µC is already included in dynEnv, we have
that Ωout

xs = Ωout
nl .

Inner SparqlForClause: The inner SparqlForClause from lines (3)–(4) of Q is evaluated considering
some dynamic environment dynEnvxs

i (with expression context Ci). On the other hand, the optnl(Q)

translates this inner expression into the xsp:sparqlCall of line (1), which is evaluated over the dynamic
environment dynEnv (with expression context C). Consider µC the XSPARQL instance mapping of C
and µCi the XSPARQL instance mapping of Ci. Since dynEnvxs

i is an extension of dynEnv we have
that dom(µC) ⊆ dom(µCi). Let Ω in

xs = evalxs
(
DatasetClausein ,WhereClausein , µCi

)
be the solution

sequence resulting from the evaluation of the inner SparqlForClause of Q and the solution sequence
resulting from the evaluation of the xsp:sparqlCall function be Ω in

nl = eval
(
DatasetClausein ,P in

)
,

where P in = µC (P) is the graph pattern obtained from replacing the variables in WhereClausein

according to µC . As dom(µC) ⊆ dom(µCi
), i.e. µC contains less bindings for variables than µCi

, the
rewritten graph pattern Pin contains more variables and we get that Ω in

xs � Ω in
nl .

Since we know that Ωout
nl = Ωout

xs and Ω in
xs � Ω in

nl , we obtain that µout
xs ∈ Ωout

nl and µin
xs ∈ Ω in

nl .
Since optnl(Q) performs a nested-loop iteration over Ωout

nl and Ω in
nl , the joinsr function will join the two

solution mappings successfully since µout
xs and µin

xs share the same values for the join variables, and thus
we have that dynEnv ` optnl(Q)⇒ Val .

(⇐) We now proceed by showing that if dynEnv ` optnl(Q)⇒ Val then dynEnv ` Q ⇒ Val . Let us turn
to the evaluation of dynEnv ` Q ⇒ Val .

99

5.3. Optimisations of Nested for Expressions 100

SparqlForClause from lines (1)–(2). Considering that Expr corresponds to the SparqlForClause from
lines (3)–(4) of Q, the evaluation of this SparqlForClause consists of the application of Rule (D7):

dynEnv.globalPosition = (Pos1 , · · · ,Posm)

dynEnv ` fs:dataset
(
DatasetClauseout

)
⇒ DSout

dynEnv ` fs:sparql

(
DSout , WhereClause,
SolutionModifier

)
⇒ µi

dynEnvxs
1 ` Expr⇒ Value i . .

.

dynEnv `
for Varsout DatasetClauseout

WhereClauseout SolutionModifierout

return Expr
⇒ Value1 , · · · ,Valuem

with Varsout = $Var
out
1 · · · $Var

out
n , we have for each µi

dynEnvxs
1 =

dynEnv + activeDataset
(
DSout

)
+ globalPosition((Pos1 , · · · ,Posm , i))

+ varValue

 Varout
1 ⇒ fs:value

(
µi ,Varout

1

)
;

. . . ;

Varout
n ⇒ fs:value

(
µi ,Varout

n

)
 (T4)

SparqlForClause of lines (3)–(4). The evaluation of dynEnvxs
1 ` Expr⇒ Valuei is given by:

dynEnv.globalPosition = (Pos1 , · · · ,Posm)

dynEnvxs
1 ` fs:dataset

(
DatasetClausein

)
⇒ DS in

dynEnvxs
1 ` fs:sparql

(
DS in ,WhereClausein ,
SolutionModifier in

)
⇒ µj

dynEnvxs
2 ` ExprSingle⇒ Value j . .

.

dynEnvxs
1 `

for Vars in DatasetClausein

WhereClausein SolutionModifier in

return ExprSingle
⇒ Value1 · · ·Valuem

where, considering Vars in = $Var
in
1 . . . $Var

in
n , we have for each µj

dynEnvxs
2 =

dynEnvxs
1 + activeDataset

(
DS in

)
+ globalPosition((Pos1 , · · · ,Posm , j))

+ varValue

 Var in
1 ⇒ fs:value

(
µj ,Var in

1

)
;

· · · ;
Var in

n ⇒ fs:value
(
µj ,Var in

n

)
 .

Let Ωout
nl and Ω in

nl be the pattern solutions returned by the outer and inner SparqlForClauses, respectively,
and let µout

nl ∈ Ωout
nl and µin

nl ∈ Ω in
nl be the solution mappings. Without loss of generality we can assume

these are the solution mappings from where Val is deduced, i.e. µout
nl and µin

nl are compatible. We also
know that there exists a dynamic environment dynEnvnl , based on dynEnv and extended with the
variable mappings µout

nl and µin
nl such that dynEnvnl ` ExprSingle⇒ Val .

As we know from the (⇒) direction of the proof, Ωout
nl = Ωout

xs and so we have that µout
nl ∈ Ωout

xs .
Regarding the evaluation of the inner SparqlForClause we also know that Ω in

xs � Ω in
nl and as such, we

must consider two cases: (i) µin
nl ∈ Ω in

xs or (ii) µin
nl 6∈ Ω in

xs . From (i), we immediately get the desired
result that dynEnv ` Q ⇒ Val . For (ii), we know from (T4) that the inner SparqlForClause is executed
over dynEnvxs

1 (and the respective XSPARQL instance mapping µxs
C1

), which include the bindings for
variables from each solution mapping µi ∈ Ωout

xs . Thus, according to the XSPARQL BGP matching
(cf. Definition 4.11), Ω in

xs will contain all the solution mappings that are compatible with any solution
mapping µi ∈ Ωout

xs and, since µout
nl ∈ Ωout

xs , specifically those compatible with µout
nl . However, we know

100

5.3. Optimisations of Nested for Expressions 101

that µin
nl is compatible with µout

nl and thus we have that µin
nl must also belong to Ω in

xs and we can deduce
that dynEnv ` Q ⇒ Val .

Inductive Step. The proof follows from the recursive application of the base case, over a new dynamic
environment determined by the optnl rewriting to dynEnvi ` optnl(ExprSingle).

The proof for nested queries with an XQuery for outer expression (Q3) is analogous where, in the
preceding, the evaluation of the SparqlForClause from lines (1)–(2) of (Q4) is replaced by the evaluation
of an XQuery ForClause, as presented by (Draper, Fankhauser et al., 2010, Section 4.8.2). 2

5.3.2. Dependent Join implementation in SPARQL

This form of rewriting of nested expressions aims at improving the runtime of the query by delegating
the execution of the join to the SPARQL engine, as opposed to performing the join within XQuery (as in
the previous optimisation). We start by presenting the rewriting function for the case when both nested
expressions are SparqlForClauses: for such nested expressions we can implement the join by rewriting the
SparqlForClauses into a single SPARQL query.

SparqlForClause within a SparqlForClause

The idea with these rewritings is that nested SparqlForClauses in XSPARQL can be implemented by a
SPARQL query that merges the where clauses of the outer and inner SparqlForClause. However, there
are some restrictions to the applicability of this rewriting: (i) both queries must be done over the same
dataset; (ii) apart from order by, no other solution modifiers can be used in the queries; and (iii) the
original queries must not require any nesting of the XML output or use of aggregators. The use of
aggregators is restricted since in SPARQL queries they are only possible in the not yet standardised
SPARQL 1.1. Thus it is not possible to generate the nested XML structure required by some queries,
for example the query presented in Figure 5.3, by using a single SPARQL query or alternatively further
processing of the SPARQL results in XQuery. As indicated before, for the next rewriting we are only
allowing the order by solution modifier and the concatenation of “order by $o1” and “order by $o2” is
“order by $o1 $o2”.

For an XSPARQL query Q of form:13

(1) for Varsout DatasetClause where GGPout order by OCout

(2) return
(3) for Vars in DatasetClause where GGPin order by OCin

(4) return ExprSingle

(Q6)

then

• in case ExprSingle does not contain any occurrences of (Q6), we have that:

optsr (Q) =

(1) let $xsp:results := xsp:sparqlCall

 select Varsout ∪Vars in DatasetClause
where

{
GGPout . GGPin

}
order by OCout OCin

 return

(2) for $xsp:result at $xsp:posvar in $xsp:results//sr:result return
(3) let $v := $xsp:result/sr:binding[@name = $v]/∗ return for each $v ∈ Varsout ∪Varsin

(4) ExprSingle

13For presentation purposes, GGP and OC are a short representation for GroupGraphPattern and OrderCondition,
respectively.

101

5.3. Optimisations of Nested for Expressions 102

Please note that the group graph patterns GGP1 and GGP2 include the surrounding curly braces:
{ and }.

• otherwise:
optsr (Q) =

optsr

for Varsout DatasetClause where GGPout order by OCout

return
for Vars in DatasetClause where GGPin order by OCin

return optsr (ExprSingle)

Proposition 5.4. Let Q an XSPARQL expression of form (Q6) and dynEnv the dynamic environment
of Q, then dynEnv ` Q ⇒ Val if and only if dynEnv ` optsr (Q)⇒ Val .

Proof: We start by showing the proof for the base case, where ExprSingle of (Q6) does not contain any
occurrences of (Q6).

Base Case. (⇒) We start by showing that if dynEnv ` Q ⇒ Val then dynEnv ` optsr (Q)⇒ Val . Next,
we show the proof tree for each of the XQuery core expressions in each line of the optsr rewriting where,
for each line, Expr represents the expressions of the following lines.

let expression of line (1):

dynEnv ` xsp:sparqlCall

select Varsout ∪Vars in

DatasetClause
where

{
GGPout . GGPin

}
order by OCout OCin

 ⇒ Ωsr

dynEnvsr
1 ` Expr⇒ Res

dynEnv `

let $xsp:results :=

xsp:sparqlCall

 select Varsout ∪Vars in DatasetClause
where

{
GGPout . GGPin

}
order by OCout OCin

return Expr

⇒ Res

where dynEnvsr
1 = dynEnv+ varValue(xsp:results⇒ Ωsr) .

for expression of line (2):

dynEnvsr
1 ` $xsp:results//sr:result⇒ µi

dynEnvsr
2 ` ExprSingle⇒ Res i . .

.

dynEnvsr
1 `

for $xsp:result at $xsp:posvar

in $xsp:results//sr:result

return ExprSingle
⇒ Res1 , · · · ,Resn

where dynEnvsr
2 = dynEnvsr

1 + varValue

(
xsp:result⇒ µi ;

xsp:posvar⇒ i

)
.

let expressions of lines (3)–(4). Here we consider all the let expressions represented by line (3),
where $v ∈ Varsout ∪Vars in :

dynEnvsr
2 ` $xsp:result/sr:binding[@name = $v]/∗ ⇒ V

dynEnvsr
3 ` ExprSingle⇒ Res

dynEnvsr
2 `

let $v := $xsp:result/sr:binding[@name = v]/∗
return ExprSingle

⇒ Res

where dynEnvsr
3 = dynEnvsr

2 + varValue(v ⇒ V) .

102

5.3. Optimisations of Nested for Expressions 103

Let Ωout
xs and Ω in

xs be the solution sequences returned by the evaluation of the outer and inner SparqlFor-
Clauses of Q, respectively. Furthermore, let µout

xs ∈ Ωout
xs and µin

xs ∈ Ω in
xs be compatible solution mappings

and dynEnvexpr
i the dynamic environment that results from extending dynEnv with the variable mappings

from µout
xs and µin

xs , such that dynEnvexpr
i ` ExprSingle⇒ Val .

According to the SPARQL semantics, the solution sequence that results from evaluating the graph
pattern “

{
GGPout . GGPin

}
”, Ωsr = Ωout

sr ./ Ω in
sr consists of all the solution mappings µout

sr ∈ Ωout
sr

and µin
sr ∈ Ω in

sr such that µout
sr and µin

sr are compatible. The evaluation of the outer SparqlForClause
(lines (1)–(2) of Q), evaluated over dynEnv, is translated by optsr (Q) into the xsp:sparqlCall from line (1),
which is also evaluated over dynEnv. In this case, according to Lemma 5.1, we have that Ωout

sr = Ωout
xs

and then µout
xs ∈ Ωout

sr .
The inner SparqlForClause (lines (3)–(4) of Q), which is evaluated over some dynamic environment

dynEnvxs
i , is incorporated by the optsr (Q) rewriting into the xsp:sparqlCall from line (1), which is

also evaluated over dynEnv. Considering that dynEnv is less restrictive than dynEnvxs
i , i.e. dynEnv

contains less bindings for variables than dynEnvxs
i , and thus the evaluation of the inner SparqlForClause

over dynEnv will contain all the solution mappings from Ω in
xs and specifically µin

xs . As µout
xs and µin

xs are
compatible we have that dynEnv ` optsr (Q)⇒ Val .
Please note that we are only considering order by solution modifiers, thus the number of results of

each query is not modified. The ordering of the results may be changed but this does not interfere with
this proof and solution modifiers can be safely ignored.

(⇐) Next we show that if dynEnv ` optsr (Q) ⇒ Val then dynEnv ` Q ⇒ Val . Let us turn to the
evaluation of dynEnv ` Q ⇒ Val .

SparqlForClause from lines (1)–(2). Where Expr corresponds to the SparqlForClause from lines (3)–(4)
of Q. The evaluation of this SparqlForClause consists of the application of Rule (D7):

dynEnv.globalPosition = (Pos1 , · · · ,Posm)

dynEnv ` fs:dataset(DatasetClause)⇒ DS

dynEnv ` fs:sparql

(
DS, where GGPout

order by OCout

)
⇒ µi

dynEnvxs
1 ` Expr⇒ Value i . .

.

dynEnv `
for Varsout DatasetClause
where GGPout order by OCout

return Expr
⇒ Value1 , · · · ,Valuem

where Varsout = $Var
out
1 · · · $Var

out
n , we have for each µi

dynEnvxs
1 =

dynEnv + activeDataset(DS) + globalPosition((Pos1 , · · · ,Posm , i))

+ varValue

 Varout
1 ⇒ fs:value

(
µi ,Varout

1

)
;

· · · ;
Varout

n ⇒ fs:value
(
µi ,Varout

n

)
 . (T5)

SparqlForClause of lines (3)–(4). The evaluation of dynEnvxs
i ` ExprSingleout ⇒ Valuei is shown next:

dynEnv.globalPosition = (Pos1 , · · · ,Posm)

dynEnvxs
1 ` fs:dataset(DatasetClause)⇒ DS

dynEnvxs
1 ` fs:sparql

(
DS, where GGPin

order by OCin

)
⇒ µj

dynEnvxs
2 ` ExprSingle⇒ Value j . .

.

dynEnvxs
1 `

for Vars in DatasetClause
where GGPin order by OCin

return ExprSingle
⇒ Value1 , · · · ,Valuem

103

5.3. Optimisations of Nested for Expressions 104

where Vars in = $Var
in
1 · · · $Var

in
n , for each µj we have that:

dynEnvxs
2 =

dynEnvxs
1 + activeDataset(DS) + globalPosition((Pos1 , · · · ,Posm , j))

+ varValue

 Var in
1 ⇒ fs:value

(
µj ,Var in

1

)
;

· · · ;
Var in

n ⇒ fs:value
(
µj ,Var in

n

)
 .

As we have seen in the (⇒) direction, we have that Ωout
sr = Ωout

xs and so we have that µout
sr ∈ Ωout

xs .
Furthermore let Ωout

sr and Ω in
sr be as per the (⇒) direction of the proof. As we have seen, Ωsr contains

all the solution mappings µ = µout
sr ./ µin

sr such that µout
sr ∈ Ωout

sr and µin
sr ∈ Ω in

sr and µout
sr and µin

sr are
compatible. Without loss of generality let us consider µout

sr and µin
sr the solution mappings where Val is

deduced from.
Let C be the expression context where dynEnv is included and µC the XSPARQL instance mapping of C.

Furthermore, let P in = µC

(
GGPin

)
be the graph pattern obtained from replacing the variables in GGPin

according to µC . Since vars
(
GGPin

)
⊆ vars

(
P in

)
all solutions mappings returned by evaluating GGPin

under XSPARQL semantics are included in the solution sequence of evaluating P in under SPARQL
semantics i.e. Ω in

xs � Ω in
sr . We obtain two cases: (i) µin

sr ∈ Ω in
xs or (ii) µin

sr 6∈ Ω in
xs . From (i) we immediately

get that dynEnv ` Q ⇒ Val . For (ii), consider µxs
C1

the XSPARQL instance of the inner SparqlForClause
(created based on dynEnvxs

1). As we can see from (T5), dynEnvxs
1 (and thus also µxs

C1
) includes the

bindings for variables from each solution mapping µi ∈ Ωout
xs . Thus, according to the XSPARQL BGP

matching (cf. Definition 4.11), Ω in
xs will contain all the solution mappings that are compatible with any

solution mapping µi ∈ Ωout
xs and specifically those compatible with µout

sr . Since we know that µin
sr is

compatible with µout
sr , we have that µin

sr must belong to Ω in
xs , thus we can deduce that dynEnv ` Q ⇒ Val .

Inductive Step. The proof follows from the recursive application of the base case, over a new dynamic
environment determined by the optsr rewriting to dynEnvi ` optsr (ExprSingle). 2

SparqlForClause within an XQuery for

In case the outer expression is an XQuery for or an XSPARQL SQLForClause a similar strategy of
deferring the join to a single SPARQL query is still possible. This optimisation relies on first transforming
the outer expressions’ XML results into RDF and then joining this newly created RDF graph with
the inner SparqlForClause’s where pattern in a single SPARQL query. For the implementation of this
optimisation we can rely on a triple store with support for named graphs and temporarily store the
bindings for dependent variables from the outer XQuery for expression’s as RDF triples. We can then
execute a combined query with an adapted graph pattern, that joins the pattern in the where clause of the
inner SparqlForClause with the bindings stored in the newly created named graph. The optng rewriting
function (presented below) starts by creating RDF triples representing the XML input, which are then
collected into the variable $xsp:ds corresponding to the RDF graph to be inserted into the triple store.
This operation is achieved by the XSPARQL functions xsp:createNG that returns a URI for the newly
inserted RDF named graph, which is distinct from any other URIs for named graphs used in the query or
present in the triple store, while finally the function xsp:deleteNG takes care of deleting the temporary
graph. We will show this optimisation only for the case where the outer expression is an XQuery for, the
case of an outer XSPARQL SQLForClause expression is analogous. Let Q be an XSPARQL expression of
form

104

5.3. Optimisations of Nested for Expressions 105

(1) for $VarName OptTypeDeclaration OptPositionalVar in ExprSingle1
(2) return
(3) for Vars DatasetClause WhereClause SolutionModifier
(4) return ExprSingle2

(Q7)

then

• in case ExprSingle1 and ExprSingle2 do not contain any occurrences of (Q7), we have that:

optng(Q) =

(1) let $xsp:ds := xsp:createNG

 for $VarName OptTypeDeclaration
OptPositionalVar in ExprSingle1
return xsp:evalCT(NGP)

 return

(2) let $xsp:results :=

xsp:sparqlCall

select Vars ∪ { $VarName }
DatasetClause ∪ { from named $xsp:ds }
WhereClause ∪ where { graph $xsp:ds NGP }
SolutionModifier

 return

(3) for $xsp:result at $xsp:result pos in $xsp:results//sr:result return
(4) let $v := $xsp:result/sr:binding[@name = $v]/∗ for each $v ∈ Vars ∪ { $VarName }
(5) return (ExprSingle2 , xsp:deleteNG($xsp:ds))

where NGP is the graph pattern { [] :value $VarName }.

• otherwise:

optng(Q) =

optng

for $VarName OptTypeDeclaration OptPositionalVar in optng(ExprSingle1)
return
for Vars DatasetClause WhereClause SolutionModifier
return optng(ExprSingle2)

Let Q be an XSPARQL expression of form

(1) for AttrSpec1 as $Var1 , . . . ,AttrSpecn as $Varn RelationList SQLWhereClause
(2) return
(3) for Vars DatasetClause WhereClause SolutionModifier
(4) return ExprSingle

(Q8)

then

• in case ExprSingle does not contain any occurrences of (Q8), we have that:

optng(Q) =

(1) let $xsp:ds :=

xsp:createNG

tr

 for AttrSpec1 as $Var1 , . . . ,AttrSpecn as $Varn

RelationList SQLWhereClause
return xsp:evalCT(NGP)

 return

105

5.3. Optimisations of Nested for Expressions 106

(2) let $xsp:results :=

xsp:sparqlCall

select Vars ∪ { $Var1 , . . . , $Varn }
DatasetClause ∪ { from named $xsp:ds }
WhereClause ∪ where { graph $xsp:ds NGP }
SolutionModifier

 return

(3) for $xsp:result at $xsp:result pos in $xsp:results//sr:result return
(4) let $v := $xsp:result/sr:binding[@name = $v]/∗ for each $v ∈ Vars ∪ { $Var1 , . . . , $Varn }
(5) return (ExprSingle, xsp:deleteNG($xsp:ds))

where NGP is the graph pattern { [] :Var1 $Var1 ; . . . ; :Varn $Varn }.

• otherwise:

optng(Q) =

optng

for AttrSpec1 as $Var1 , . . . ,AttrSpecn as $Varn RelationList SQLWhereClause
return
for Vars DatasetClause WhereClause SolutionModifier
return optng(ExprSingle)

Proposition 5.5. Let Q be an XSPARQL expression of form (Q7) or (Q8) and dynEnv the dynamic
environment of Q, then dynEnv ` Q ⇒ Val if and only if dynEnv ` optng(Q)⇒ Val .

Proof: We start by showing the proof for the base case, where ExprSingle1 and ExprSingle2 of (Q7)
do not contain any occurrences of (Q7).

Base Case. (⇒) Let us start by showing that if dynEnv ` Q ⇒ Val then dynEnv ` optng(Q) ⇒ Val .
We now show the proof tree for each of the XQuery core expressions in the optng rewriting.

let expression of line (1). Considering NGP = { [] :value $VarName }, we have

dynEnv ` xsp:createNG

 for $VarName OptTypeDeclaration
OptPositionalVar in ExprSingle1
return xsp:evalTemplate(NGP)

⇒ DS

dynEnvng
1 ` Expr⇒ Res

dynEnv `

let $xsp:ds :=

xsp:createNG

 for $VarName OptTypeDeclaration
OptPositionalVar in ExprSingle1
return xsp:evalTemplate(NGP)

return Expr

⇒ Res

where

dynEnvng
1 = dynEnv + varValue(xsp:ds⇒ DS) . (T6)

let expression of line (2). As a shortcut representation, consider the dataset clause DatasetClauseng =

DatasetClause ∪ { from named $xsp:ds } and the graph pattern WhereClauseng = WhereClause ∪
where { graph $xsp:ds { [] :value $VarName } }.

106

5.3. Optimisations of Nested for Expressions 107

dynEnvng
1 ` xsp:sparqlCall

 select Vars ∪ { $VarName }
DatasetClauseng WhereClauseng

SolutionModifier

⇒ Ωng

dynEnvng
2 ` Expr⇒ Res

dynEnvng
1 `

let $xsp:results :=

xsp:sparqlCall

 select Vars ∪ { $VarName }
DatasetClauseng WhereClauseng

SolutionModifier

return Expr

⇒ Res

where dynEnvng
2 = dynEnvng

1 + varValue
(
xsp:results⇒ Ωng

)
.

for expression of line (3):

dynEnvng
2 ` $xsp:results//sr:result⇒ µi

dynEnvng
3 ` Expr⇒ Res i . .

.

dynEnvng
2 `

for $xsp:result at $xsp:result pos

in $xsp:results//sr:result

return Expr
⇒ Res1 , · · · ,Resn

where dynEnvng
3 = dynEnvng

2 + varValue

(
xsp:result⇒ µi ;

xsp:result pos⇒ i

)
.

let expressions of lines (4)–(5). Here we consider all the let expressions represented by line (4),
where $v ∈ Vars:

dynEnvng
3 ` $xsp:result/sr:binding[@name = $v]/∗ ⇒ V

dynEnvng
4 ` Expr⇒ Res

dynEnvng
3 `

let $v := $xsp:result/sr:binding[@name = $v]/∗
return ExprSingle2

⇒ Res

where dynEnvng
4 = dynEnvng

3 + varValue(v ⇒ V).

Let Ω in
xs be the solution sequence returned by the evaluation of the inner SparqlForClause of Q.

Furthermore let dynEnvexpr
i be the dynamic environment such that dynEnvexpr

i ` ExprSingle ⇒ Val .
dynEnvexpr

i results from extending dynEnv with bindings for the outer variable $VarName and with
variable bindings from a solution mapping µin

xs ∈ Ω in
xs where µin

xs(VarName) = $VarName, i.e. the value
for the join variable in the solution mapping µin

xs is the same as assigned to $VarName.
The new merged dataset, DatasetClauseng , is created based on DatasetClause and the newly created

named graph NG . Since the URI that identifies the newly created named graph NG is distinct from any
URI of named graphs present in DatasetClause, the triples included in NG will never be a solution for Whe-
reClause, and will be matched only by the graph pattern “where { graph $xsp:ds { [] :value $VarName } }”.
Let C be the expression context where dynEnv is included, µC the XSPARQL instance mapping

of C and Pout and P in the graph patterns obtained from replacing the variables in WhereClause
and “where { graph $xsp:ds { [] :value $VarName } }” according to µC , respectively.
Furthermore, let Ωout

ng = eval(DatasetClauseng ,Pout) and Ω in
ng = eval

(
DatasetClauseng ,P in

)
. Accord-

ing to SPARQL semantics, the pattern solution that results from evaluating WhereClause, Ωng = Ωout
ng ./

Ω in
ng consists of all the solution mappings µout ∈ Ωout

ng and µin ∈ Ω in
ng such that µout and µin are compatible.

Similar to the proof of Proposition 5.4, we are only considering order by solution modifiers, these only
change the order of the solution sequences and thus can be safely ignored for this proof.

The evaluation of the outer XQuery for clause (lines (1)–(2) of Q) performed over dynEnv is translated,
by the optng(Q) function, into the xsp:sparqlCall from line (2), which is evaluated over dynEnvng

1 .

107

5.3. Optimisations of Nested for Expressions 108

However, as we can see from (T6), dynEnvng
1 is based on dynEnv by adding the value for the xsp:ds

variable and, since this variable belongs to the xsp: reserved namespace, it is not allowed to appear in
the WhereClause and we have that the results of evaluating the xsp:sparqlCall function over dynEnv or
dynEnvng

1 will be the same.
The inner SparqlForClause (lines (3)–(4) of Q) is evaluated over some dynamic environment dynEnvexpr ,

is incorporated by the optng(Q) into the xsp:sparqlCall from line (2), which is evaluated over dynEnvng
1 .

Considering that dynEnvng
1 is less restrictive than dynEnvexpr , i.e. dynEnvng

1 contains less bindings
for variables than dynEnvexpr, the evaluation of the inner SparqlForClause over dynEnvng

1 will contain
all the solution mappings from Ω in

xs and specifically µin . As µout and µin are compatible we have
that dynEnv ` ng(expr)⇒ Val .

(⇐) Next we will show that if dynEnv ` optng(Q) ⇒ Val then dynEnv ` Q ⇒ Val . Let us turn to the
evaluation of dynEnv ` Q ⇒ Val .

XQuery for clause from lines (1)–(2). Here Expr corresponds to the SparqlForClause from lines (3)–(4)
of Q.

dynEnv.globalPosition = (Pos1 , · · · ,Posm)

dynEnv ` ExprSingle1 ⇒ Vi

dynEnvxs
i ` Expr⇒ Value i . .

.

dynEnv `
for $VarName OptTypeDeclaration
OptPositionalVar in ExprSingle1

return Expr
⇒ Value i , . . . ,Valuen

we have for each Vi :

dynEnvxs
i = dynEnv + globalPosition((Pos1 , · · · ,Posm , i)) + varValue(VarName ⇒ Vi) . (T7)

SparqlForClause of lines (2)–(4):

dynEnv.globalPosition = (Pos1 , · · · ,Posm)

dynEnvxs
i ` fs:dataset(DatasetClause)⇒ DS

dynEnvxs
i ` fs:sparql

(
DS,WhereClause,
SolutionModifier

)
⇒ µj

dynEnvxs
j ` ExprSingle2 ⇒ Value j . .

.

dynEnvxs
i `

for Vars DatasetClause
WhereClause SolutionModifier
return ExprSingle2

⇒ Value1 · · ·Valuem

where, considering Vars = $Var1 . . . $Varn , we have for each µj :

dynEnvxs
j =

dynEnvxs
i + activeDataset(DS) + globalPosition((Pos1 , · · · ,Posm , j))

+ varValue

 Var1 ⇒ fs:value
(
µj ,Var1

)
;

· · · ;
Varn ⇒ fs:value

(
µj ,Varn

)
 .

As we have seen in the (⇒) direction, we have that Ωout
ng = Ωout

xs and so we have that µout
ng ∈ Ωout

xs .
Let Ωout

ng and Ω in
ng be the solution sequences returned by the evaluation of the new WhereClauseng and

WhereClause, respectively. As we have seen Ωng contains all the solution mappings µ = µout
ng ./ µin

ng ,
where µout

ng ∈ Ωout
ng and µin

ng ∈ Ω in
ng , such that µout

ng and µin
ng are compatible. Again, consider µout

ng and µin
ng

the pattern solutions where Val is deduced from.
Let C be the expression context where dynEnv is included and µC the XSPARQL instance mapping of C.

Furthermore let P in be the graph pattern obtained from replacing the variables inWhereClausein according

108

5.3. Optimisations of Nested for Expressions 109

to µC . Since we know that vars
(
WhereClausein

)
⊆ vars

(
P in

)
, all solutions mappings returned by

evaluatingWhereClausein under XSPARQL semantics are included in the pattern solution of evaluating P in

under SPARQL semantics i.e. Ω in
xs � Ω in

ng . We obtain two cases: (i) µin
ng ∈ Ω in

xs ; or (ii) µin
ng 6∈ Ω in

xs .
In (i) we immediately get that dynEnv ` Q ⇒ Val . For (ii), consider µxs

C1
the XSPARQL instance of

the inner SparqlForClause (created based on dynEnvxs
1). As we can see from (T7), dynEnvxs

1 (and thus
also µxs

C1
) includes the bindings for variables from each solution mapping µi ∈ Ωout

xs . Thus, according
to the XSPARQL BGP matching (cf. Definition 4.11), Ω in

xs will contain all the solution mappings that
are compatible with any solution mapping µi ∈ Ωout

xs and specifically those compatible with µout
ng . Since

we know that µin
ng is compatible with µout

ng , we have that µin
ng must belong to Ω in

xs , thus we can deduce
that dynEnv ` Q ⇒ Val .

Inductive Step. Let us assume that, for some arbitrary dynEnvi, dynEnvi ` ExprSingle1 ⇒ Val i if
and only if dynEnvi ` optng(ExprSingle1)⇒ Val i . According to the optng rewriting, there must exist a
dynEnvj that is the extension of dynEnvi with Val i and thus dynEnvj ` ExprSingle2 ⇒ Val if and only
if dynEnvj ` optng(ExprSingle2)⇒ Val . Consequently, we have that dynEnv ` Q⇒ Val if and only if
dynEnv ` optng(Q)⇒ Val . 2

5.3.3. Nested Queries in XMarkRDF

From the initial set of 20 queries there are 5 queries (q8–q12) that contain nested expressions. They are
described informally in the XMark suite as follows:

(q8) “List the names of persons and the number of items they bought;”
(q9) “List the names of persons and the names of the items they bought in Europe;”
(q10) “List all persons according to their interest;”
(q11) “List the number of items currently on sale whose price does not exceed 0.02% of the seller’s income;”

and
(q12) “For each richer-than-average person, list the number of items currently on sale whose price does

not exceed 0.02% of the person’s income.”

Figures 5.3a to 5.3c present XMark query q9, its translated XSPARQL version in XMarkRDB and
XMarkRDF, respectively. Query q9, as presented in Figure 5.3d, is ready to be evaluated by the
SPARQL2XQuery system over the XMarkRDFS2XQ dataset.14

The different rewritings presented in Section 5.3 can be applied to the four nested queries q8–q11.
Query q12 also consists of a nested expression, however the most accurate translation of this query into
XSPARQL results in the dependent variable not being strictly bound since it occurs only in the filter of
the inner query. As such, we cannot apply the different rewritings to this query.
XMarkRDF query q9 is presented in Figure 5.3c. This query is close to queries q8, q10, and q11 and

consists of a nested expression: the inner for expression of the query (lines 9–13) is executed once for
each person matched by the outer expression (lines 6–7), which means that one SPARQL call will be
made for each person separately. Thus, the number of SPARQL calls performed in the inner expression
directly depends on the size of the dataset (cf. Table 5.1 for details). Queries q8, q9, and q11 evaluates
the inner expression for each person, while q10 evaluates the inner expression for each category. Each
dataset contains approximately 25 times more persons than categories. The rewriting strategies presented
in Section 5.3 reduce the number of SPARQL calls to two: one to get all the people (similar to the
direct rewriting version), and one additional SPARQL call for retrieving all the information about all the
14Please note that this query follows the syntax presented by Groppe et al. (2008) however, we only had access to

the implementation of the translation from SPARQL to XQuery and hence manually replicated the complete query
translation.

109

5.3. Optimisations of Nested for Expressions 110

1 declare ordering unordered;
2 declare variable $xml external;
3
4 let $auction := doc($xml) return
5 let $ca := $auction/site/closed_auctions/closed_auction
6 return let $ei := $auction/site/regions/europe/item
7 for $p in $auction/site/people/person
8 let $a := for $t in $ca
9 where $p/@id = $t/buyer/@person return

10 let $n := for $t2 in $ei
11 where $t/itemref/@item = $t2/@id
12 return $t2
13 return <item>{$n/name/text()}</item>
14 return <person name="{$p/name/text()}">{$a}</person>

(a) Query q9 in XQuery (XMark)

1 prefix : <http://xsparql.deri.org/data/>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3 declare ordering unordered;
4 declare variable $rdf external;
5
6 for person.personid as $person, person.name as $name
7 from person
8 return <person name="{$name}">{
9 for closed_auctions.closed_auction_id as $ca,

closed_auctions.itemref as $itemRef
10 from closed_auctions
11 where closed_auctions.buyer = $person
12 return <item>{
13 for item.name as $itemname
14 from item, region
15 where item.region = region.regionid and region.name

= ’europe’ and
16 item.itemid = $itemRef
17 return $itemname
18 }</item>
19 }</person>

(b) Query q9 in XSPARQL (XMarkRDB)

1 prefix : <http://xsparql.deri.org/data/>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3 declare ordering unordered;
4 declare variable $rdf external;
5
6 for $person $name from $rdf
7 where { $person foaf:name $name }
8 return <person name="{$name}">{
9 for * from $rdf where { $ca :buyer $person .

10 optional { $ca :itemRef $itemRef .
11 $itemRef :locatedIn [:name "europe"].
12 $itemRef :name $itemname } }
13 return <item>{$itemname}</item>
14 }</person>

(c) Query q9 in XSPARQL (XMarkRDF)

1 declare namespace ac="http://xsparql.deri.org/data/";
2 declare namespace foaf="http://xmlns.com/foaf/0.1/";
3 declare variable $rdf external;
4
5 for ($n, $m) in
6 SELECT $person $name FROM $rdf
7 WHERE { $person foaf:name $name . }
8 return
9 <person name="{$n}">{ for ($item) in

10 SELECT $itemname WHERE { $ca ac:buyer $person .
11 optional { $ca ac:itemRef $itemRef .
12 $itemRef ac:locatedIn [ac:name "europe"] .
13 $itemRef ac:name $itemname } .
14 } return <item>{$itemname}</item>
15 }</person>

(d) Query q9 in SPARQL2XQuery (XMarkRDFS2XQ)

Figure 5.3.: Variants of benchmark query q9

<person name="Alagu Nyrup">
<item>monument </item>
<item>herring hush </item>
</person>

(a) Query q9 – bought items grouped by person

<item name="monument ">Alagu Nyrup</item>
<item name="herring hush ">Alagu Nyrup</

item>

(b) Query q′9 – flat list of items and buyer

Figure 5.4.: Example output excerpts of queries q9 and q′9

auctions in the dataset. Although the query remains exponential, the practical evaluation will show that
reducing the number of SPARQL calls drastically improves query execution times.
As mentioned in Section 5.3.2, for the SPARQL based rewritings, we want the query output to be

computable directly in SPARQL without any further processing, i.e. we do not want to use XQuery
for further processing of the SPARQL results and the query should be expressible in SPARQL without
features from SPARQL 1.1. Since the original nested queries q8–q11 group the output results (while
optionally applying some aggregation function), we need to include modified versions of these benchmark
queries for the evaluation of the SPARQL based rewritings. In these modified queries, denoted q′8–q′11,
we changed the return format of the queries to consist of a flattened representation of the output of the
original query. An example of the output for queries q9 and q′9 is presented in Figure 5.4. All queries q′i
and q′′i follow a similar strategy for reformatting the output: the queries resulting from applying optsr
are named q′8–q′11, while the queries that consist of an outer for expression – to which optng was applied –
are q′′8–q′′11.

110

5.3. Optimisations of Nested for Expressions 111

Table 5.5.: Query response times (in seconds) of different optimisations for the 2MB datasets. Optimisation
not applicable (n/a).

XS rdf XS rdb S2XQ XS rdf
nl XS rdb

nl S2XQnl XS rdf
sr S2XQsr XS rdf

ng

q8 293.62 1.27 1.28 5.37 1.74 1.82 n/a n/a n/a
q9 292.84 1.56 11.57 5.37 2.81 12.35 n/a n/a n/a
q10 16.92 1.62 309.21 5.94 2.30 88.73 n/a n/a n/a
q11 295.19 2.33 102.42 11.43 2.56 97.01 n/a n/a n/a

q′8 291.99 n/a 1.23 6.03 n/a 1.79 3.43 1.23 n/a
q′9 292.49 n/a 11.49 5.38 n/a 12.34 3.56 8.59 n/a
q′10 16.86 n/a 307.42 5.94 n/a 87.68 5.07 — n/a
q′11 295.68 n/a 101.54 12.27 n/a 96.54 5.88 120.42 n/a

q′′8 293.64 n/a 60.77 5.11 n/a 1.54 n/a n/a 4.76
q′′9 292.58 n/a — 4.91 n/a 9.83 n/a n/a 4.99
q′′10 6.78 n/a 417.97 5.19 n/a 115.95 n/a n/a 5.27
q′′11 296.12 n/a 91.03 12.29 n/a 95.17 n/a n/a 8.59

5.3.4. Evaluation of the Proposed Optimisations

In this section we present an experimental evaluation of the different rewritings presented in Section 5.3.
For this evaluation we also rely on the XMarkRDF benchmark suite (presented in Section 5.2) and
compare, when possible, the effects of the different rewritings on the SPARQL2XQuery system (Groppe
et al., 2008).
For the evaluation we extend the run configurations presented in Section 5.2 with the following:

XS rdf
Z : using the XSPARQL implementation over the XMarkRDF datasets (translated data and queries)

with nested expresion optimisation optZ for Z ∈ { nl, ng, sr };
XS rdb

nl : using the XSPARQL implementation over the XMarkRDB datasets (translated data and queries)
with nested expresion optimisation optnl ;

S2XQZ : using the SPARQL2XQuery implementation over the translation of the XMarkRDF datasets
into the required XML format (XMarkRDFS2XQ) with nested expresion optimisation optZ for Z ∈
{ nl, sr }.

The experimental setup remains the same as presented in Section 5.2.1. We applied the nested-loop
join rewriting from Section 5.3.1 to the XMarkRDB and XMarkRDF translated queries, which are
denoted as XS rdb

nl and XS rdf
nl , respectively. The same optimisations were applied to the SPARQL2XQuery

translation to XQuery, denoted S2XQnl in the results. The strategies of rewriting to a single SPARQL
query, as presented in Section 5.3.2, were also applied to the XSPARQL XMarkRDF and SPARQL2XQuery
queries and are denoted as XS rdf

sr and S2XQsr , respectively. The Named Graph rewriting was applied to
the XSPARQL XMarkRDF queries and is denoted XS rdf

ng .
The comparison of the response times of the different rewriting functions presented in Section 5.3 is

shown graphically in Figures 5.5 and 5.6. The response times of these queries for the 2MB are presented
in Table 5.5 as a reference, where n/a indicates that the combination of query and optimisation is not
applicable.
As we can see from Table 5.5 and Figures 5.5 and 5.6, the optnl optimisation provides significant

reduction in the query evaluation times when applied to the nested queries with an inner SparqlForClause.
For queries q8, q9, and q11 the difference in response times is one order of magnitude. However, applying a
similar rewriting to relational data deteriorates the response times of the query. This hints that collecting

111

5.3. Optimisations of Nested for Expressions 112

1 2 5 10 20 50 100

100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XSrdb XSrdb
nl

S2XQ S2XQnl

(a) Query q8

1 2 5 10 20 50 100

100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XSrdb XSrdb
nl

S2XQ S2XQnl

(b) Query q9

1 2 5 10 20 50 100

100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XS
rdf
sr

S2XQ

S2XQnl S2XQsr

(c) Query q′8

1 2 5 10 20 50 100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XS
rdf
sr

S2XQ

S2XQnl S2XQsr

(d) Query q′9

1 2 5 10 20 50 100

100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XS
rdf
ng

S2XQ

S2XQnl

(e) Query q′′8

1 2 5 10 20 50 100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XS
rdf
ng

S2XQ

S2XQnl

(f) Query q′′9

Figure 5.5.: Query response times for (variants of) q8 and q9 on all XMarkRDF datasets

the data and performing the join in the rewritten XQuery is slower than the nested calls to the relational
database. There are two possible causes for this discrepancy of behaviours from the different backends.
One possible explanation for the speed improvement in SPARQL is that the overhead resides on the
loading of data by the ARQ engine. Since this overhead is not presented in the relational database
the queries would not benefit from the optimised rewritings. The other explanation is that the cost of
evaluating one unbound query and building the necessary structures for representing the returned data is
greater than the cost of executing nested queries. Further investigation into this would be required to
determine the source of the overhead.

The improvement in the execution time for query q10 is less drastic. This can be explained by the fact
that the outer expression of q10 iterates over “categories”, which, as presented in Table 5.1, increases at a

112

5.3. Optimisations of Nested for Expressions 113

1 2 5 10 20 50 100
100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XSrdb XSrdb
nl

S2XQ S2XQnl

(a) Query q10

1 2 5 10 20 50 100
100

101

102

103

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XSrdb XSrdb
nl

S2XQ S2XQnl

(b) Query q11

1 2 5 10 20 50 100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XS
rdf
sr

S2XQ

S2XQnl

(c) Query q′10

1 2 5 10 20 50 100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XS
rdf
sr

S2XQ

S2XQnl S2XQsr

(d) Query q′11

1 2 5 10 20 50 100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XS
rdf
ng

S2XQ

S2XQnl

(e) Query q′′10

1 2 5 10 20 50 100

101

102

Dataset size in MB (log scale)

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

XSrdf XS
rdf
nl

XS
rdf
ng

S2XQ

S2XQnl

(f) Query q′′11

Figure 5.6.: Query response times for (variants of) q10 and q11 on all XMarkRDF datasets

much smaller rate than “persons” do in the outer expressions of queries q8, q9, and q11.
However, for the S2XQ runs this optimisation provides virtually no improvement in the query response

times for queries q8 and q9 and their variants. In queries q10, q11, q′10, and q′11 we can observe an
improvement in response times. This can be attributed to the fact that the rewriting for queries q10

and q11 and their variants are not as suitable for optimisation by the XQuery engine when compared to
queries q8 and q9. For these cases our rewriting strategy is capable of performing the optimisation task
for the XQuery engine.

For the XS rdf run, it is possible to see in Figures 5.5c and 5.5d that optsr (presented in Section 5.3.2)
is generally more efficient in terms of response times than the XQuery based. This can be justified by the
the smaller amount of information that is necessary to transfer from SPARQL to the XQuery engine.

113

5.4. Related Work 114

1 prefix : <http://example.org/bands#>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3

4 construct { _:{fn:replace($band, "http://dbpedia.org/resource/","")} foaf:name $name ;
foaf:member $member }

5 from <file:bands.ttl>
6 where { $band a mo:MusicGroup; foaf:name $name; foaf:member $member }

Query 5.3: Transformation between RDF representations in XSPARQL

1 prefix : <http://example.org/bands#>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3

4 CONSTRUCT { $b foaf:name $name ; foaf:member $member }
5 FROM <file:usecaseData.ttl>
6 WHERE
7 {
8 { SELECT DISTINCT $band $name (BNODE() as $b)
9 WHERE { $band foaf:name $name }

10 }
11 $band foaf:member $member
12 }

Query 5.4: Transformation between RDF representations in SPARQL 1.1

This effectively reduces the overhead of using an external SPARQL engine for the evaluation of queries.
Considering the S2XQsr run, optsr produces no improvement in the query response times and in some
cases (q′10 and q′11 from Table 5.5) even deteriorates considerably the response times when compared
to S2XQ . This further supports our previous claims that the XQuery engine is not capable of optimising
the rewritten code from complex SPARQL queries.

Furthermore, the S2XQsr runs could only evaluate the smaller dataset sizes for query q8: its response
times deteriorated considerably with the larger dataset sizes, as opposed to the XS rdf

sr runs that behaved
consistently similar to XS rdf

nl . This indicates that S2XQ is not as efficient as the ARQ-based native
SPARQL engine runs XS rdf

sr and XS rdf
nl for larger datasets.

We can draw similar conclusions for the optng when comparing the query evaluation times of the optsr
rewriting. However, the response times for this approach are deteriorated by the the overhead of creating,
inserting and deleting the RDF Named Graph. This slowdown makes queries q′′8 , q′′10 and q′′11 of the of
the optnl rewriting outperform this optimisation.

5.4. Related Work

In this related work section we present a comparison of different approaches for nesting in SPARQL,
including the proposal from the new version of SPARQL, SPARQL 1.1.
The new version of SPARQL was presented in Section 3.3 and introduces many new features that we

already support in XSPARQL. Most notably: (i) construction of values in select expressions; (ii) variable
assignment; (iii) remote endpoint querying; and (iv) subqueries (or query nesting). The value construction
and variable assignment features behave similar to the features in XSPARQL. However, the XSPARQL
language provides a convenient syntax for mapping between different RDF vocabularies, e.g. by generating
blank node labels, a task that can otherwise be cumbersome even in SPARQL 1.1.

114

5.5. Conclusion 115

Example 5.3 (Translation between RDF vocabularies). Query 5.3 presents a simple transformation
between different RDF vocabularies: from using URIs to identify bands to blank nodes, where we
create a blank node that identifies each band and replicate its members. A more involved but
equivalent query written in SPARQL 1.1 is presented in Query 5.4.

Subqueries (along with the special form of subquery that is the remote endpoint query) still presents
noteworthy differences between our approach in XSPARQL and the approach proposed in SPARQL 1.1.
These differences, also briefly highlighted in Section 5.1.1, are mostly related to the evaluation method
of the different languages, while SPARQL follows a bottom up approach, XQuery and thus XSPARQL
follow a top-down approach. In SPARQL, the subqueries are evaluated and the produced bindings are
then merged with the bindings from the outer query and such subqueries must be executed over the same
dataset as the outer query, i.e. from and from named clauses are not allowed in subqueries. However, this
evaluation method prevents the reuse of variables declared in the inner query. The different evaluation
models cater for different and complementary use cases. While the method followed by SQL and SPARQL
is suitable for parallel and distributed computing, the model followed by XQuery (and thus XSPARQL),
allowing to inject values into the inner expressions, can be a necessary feature.

Also related to our nested queries optimisation, Angles and Gutiérrez (2010) presented initial work on
an extension of SPARQL that caters for nested queries and presented preliminary equivalences between
types of nested queries with the aim of determining if query unnesting can be successfully applicable. The
same authors then extended this work in Angles and Gutiérrez (2011), where they consider different forms
of nesting, namely nesting in from clauses, nesting in graph patterns, and nesting in filter expressions. In
XSPARQL, we easily support the nesting in from clauses by assigning the result of a construct query to
a variable and reusing this variable in a from clause. Nesting in graph patterns can also be simulated in
XSPARQL by using the standard XQuery nesting of expressions, in this case nesting SparqlForClauses.
Regarding nesting in filter expressions, although possible to implement in XSPARQL, this would require
processing of the results from the SPARQL query in XSPARQL.

The presented approaches for query rewriting applied to XSPARQL nested queries is similar to already
known optimisations from the relational databases realm and also presented for XQuery queries by May
et al. (2003). This work proposes unnesting equivalences that, while maintaining the element order,
provide significant performance gains. For the original XMark nested queries q8 and q11, we can consider
using the equivalences described for the “Grouping and Aggregation” unnesting equivalences, whereas q9

and q10 rely on the “Grouping” equivalences. Hence, the nested-loop rewriting of the queries we present
replicates the unnested query plans for these optimisations.

5.5. Conclusion

In this chapter we presented our implementation of the XSPARQL language presented in Chapter 4. Our
implementation attempts to reuse off-the-shelf components, where we translate each XSPARQL query
into an XQuery containing interleaved calls to a SQL and/or SPARQL engine. The benchmark evaluation
of our implementation has shown that nested queries incur the highest evaluation overhead and thus we
presented different rewritings that aim at reducing this overhead.
The presented optimisations are based on reordering the expressions in the XQuery rewriting to

minimise the number of calls to the SPARQL endpoint or based on performing a more complex SPARQL
query that takes care of joining the variables. The benchmarks that were carried out to determine the
impact of our optimisations have shown encouraging results for nested expressions whose inner expressions
access RDF data, hinting at a large potential for optimisations in XSPARQL. However, similar rewritings
do not produce the excepted improvements for nested expressions that access relational data. This

115

5.5. Conclusion 116

indicates that different optimisations need to be considered for accessing relational data.
Among the rewriting strategies presented in this chapter and on our test data, pushing joins into a

SPARQL engine appeared the most promising strategy. Our benchmark results showed that our optimisa-
tions are not only specific to XSPARQL having also improved the response times of the SPARQL2XQuery
system to which we compared XSPARQL.
Also according to our benchmarks, encoding SPARQL in XQuery seems a viable option – assuming

that we have access to the RDF dataset beforehand – that would allow to compile XSPARQL to pure
XQuery without the use of a separate SPARQL engine.

116

6. An Extension of RDF and SPARQL
towards Meta-Information

In this chapter, we present an extension of the RDF model to support meta-information in the form of
annotations attached to RDF triples. On a high-level, we attach this meta-information to an RDF triple
according to a predetermined annotation domain: temporal, fuzzy, provenance, and possibly others (as we
will see in the next chapter). We specify the semantics of this extension by conservatively extending the
RDFS semantics and provide a deductive system for Annotated RDFS. Furthermore, we define a query
language that extends SPARQL to query this meta-information and include advanced features such as
aggregates, nested queries and variable assignments, which are part of the SPARQL 1.1 specification.

Meta-information about relational tuples was investigated as an important aspect of the relational model.
For instance, maintaing temporal information for representing the validity of the triple or provenance
information to determine the origin of tuples. Similarly, meta-information in RDF is similar importance.
Temporal information was acknowledged in the W3C RDF specification (P. Hayes, 2004) but deliberately
left out, stating:

“There are several aspects of meaning in RDF which are ignored by this semantics; in particular,
it treats URI references as simple names, ignoring aspects of meaning encoded in particular
URI forms and does not provide any analysis of time-varying data or of changes to URI
references.”

The W3C provenance working group is also investigating how to define a vocabulary that allows for
provenance information to be interchanged and also to attach provenance information to specific RDF
resources (Belhajjame et al., 2012).

For the context of this thesis, we are particularly interested in the role that meta-information can play
in a data integration system, for example by allowing to resolve conflicts in the integrated information.
This is acknowledged by Halevy, Rajaraman et al. (2006), who identify the inclusion of uncertain and
provenance information during data integration as a challenge that needs to be overcome.

Meta-Information in Legacy Data Models

Shortly after the introduction of the relational model research began to focus on extending it towards
temporal information (Wiederhold et al., 1975; Snodgrass, 1990; Abiteboul, Hull et al., 1995; Snodgrass,
1999). Temporal information is commonly attached to relational tuples in order to represent valid time:
the time period for which the information that a tuple represents is considered valid. Another form of
temporal information that can be attached to tuples is the so-called transaction time, where information
regarding when a specific tuple was inserted into the relational database is stored. This form of temporal
information is important specifically for defining operations like transactions and rollbacks of information
in a database management system, e.g. reverting the contents of the database to a specific time. In
the present chapter we are concerned only with validity time. Regarding query languages, a temporal
extension of the SQL query language, named TSQL2, was also presented by Snodgrass et al. (1994). This
extension aims at being compatible with the SQL query language and introduces datatypes and keywords
to the language that allow to query the temporal aspects of the database.

117

6.1. RDF(S) with Annotations 118

Similar extensions have also been proposed for XML (Amagasa et al., 2000; Rizzolo and Vaisman, 2008).
Amagasa et al. (2000) propose an extension of the XDM where edges are labelled with a time validity and
consider a hierarchical time structure: the time validity of all the children of a node must be contained
within the time validity of the current node and among siblings there cannot exist time intersection.
Targeted at modelling transaction time, a similar approach is followed by Rizzolo and Vaisman (2008).
Furthermore, the authors present TXPath, an extension to the XPath query language to support the new
temporal XML data.
However temporal information is not the only kind of meta-information we can represent and other

extensions to the relational model also allow to represent ambiguous or approximate data in the form of
fuzzy information. An overview of fuzzy databases is provided by Ma and Yan (2008), and also for fuzzy
meta-information, extensions were proposed for XML (Ma and Yan, 2007).
Other extensions to querying XML, also related to the XSPARQL language, include the SXPath

language (Oro et al., 2010), which focuses on information extraction from HTML pages and thus provides
spatial extensions of the XPath language that allow to locate elements in the rendered HTML page.

Meta-Information in RDF

Several extensions of RDF were proposed in order to deal with time (Gutiérrez, Hurtado and Vaisman,
2007; Pugliese et al., 2008; Tappolet and A. Bernstein, 2009), truth or imprecise information (Mazzieri
and Dragoni, 2008; Straccia, 2009), trust (Hartig, 2009; Schenk, 2008), and combinations of the previous
extensions (Dividino et al., 2009). All of these proposals share a common approach: extending the RDF
language by attaching meta-information about the RDF graph or about individual triples.

The basis of Annotated RDFS, allowing to represent the kinds of meta-information we have described,
were first established by Udrea et al. (2006); Udrea et al. (2010), where the authors introduce RDF triples
annotated with values taken from an annotation domain, defined as a finite partial order. This annotation
domain may contain information regarding the temporal validity of the triple or the level of uncertainty
of the triple. Notably, the inference capabilities presented in their work are limited to a small subset of
RDFS.1

In this chapter we introduce a richer, not necessarily finite, structure that is backwards-compatible with
RDF and RDFS. Our proposed inference system, in the form of an extension of the RDFS rules, provides
support for more inference rules when compared to Udrea et al. (2010) and also a more fine-grained
propagation of annotation values through the inferred triples. Furthermore we introduce an extension
of SPARQL (Prud’hommeaux and Seaborne, 2008), the W3C-standardised query language for RDF
(cf. Section 3.3), that allows us to query this extended representation of RDF triples. Although the
respective RDF graphs, datasets, and queries are domain-specific, i.e. the annotations included in these
graphs and queries must correspond to a specific domain, the proposed extension of the RDFS rules and
SPARQL query language is domain-independent, i.e. we can define this as an extension that covers all
domains.

6.1. RDF(S) with Annotations

For extending our running example we use the temporal domain, which allows us to annotate the RDF
data with temporal information. For instance, we can annotate the band members’ triples to reflect
their active years with the band. A possible temporal query that can be easily performed over data
represented in this format is “What were the members of a band at a certain time?” The use of other

1To distinguish our work from the original Annotated RDF by Udrea et al., we call our framework Annotated RDFS.
However, when referring to specific graphs we will keep the original Annotated RDF name.

118

6.1. RDF(S) with Annotations 119

1 @prefix ex: <http://example.org/bands#> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
3 @prefix dbpedia: <http://dbpedia.org/resource/> .
4 @prefix mo: <http://purl.org/ontology/mo/> .
5 @prefix dc: <http://purl.org/dc/elements/1.1/> .
6

7 dbpedia:Nightwish a mo:MusicGroup "[1996,2012]" .
8 dbpedia:Nightwish foaf:name "Nightwish" .
9 dbpedia:Nightwish foaf:member dbpedia:Marco_Hietala "[2001,2012]" .

10 dbpedia:Nightwish foaf:member dbpedia:Tarja_Turunen "[1996,2005]" .
11 dbpedia:Marco_Hietala foaf:name "Marco Hietala"@en "[1966,2012]" .
12 dbpedia:Marco_Hietala a mo:MusicArtist "[1984,2012]" .
13 dbpedia:Tarja_Turunen foaf:name "Tarja Turunen"@en "[1977,2012]" .
14 dbpedia:Tarja_Turunen a mo:MusicArtist .
15 ex:album208 a mo:Record "[2000,2012]" .
16 ex:album208 mo:title "Wishmaster" .
17 ex:album208 foaf:maker dbpedia:Nightwish .
18 ex:album208 mo:track _:song566 .
19 ex:album208 mo:track _:song506 .
20 _:song566 a mo:Track .
21 _:song566 dc:title "Wishmaster" .
22 _:song506 a mo:Track .
23 _:song506 dc:title "FantasMic" .

Data 6.1: Temporal Annotated RDFS

domains would allow to represent different views on the data, for example in the fuzzy domain, we can
represent information regarding part-time members of bands.

Data 6.1 represents an extension of our use case data from Data 2.5 annotated with information from
the temporal domain, which intuitively means that the annotated triple is valid in dates contained in the
annotation interval (the exact meaning of the annotations will be explained later). In Data 6.1, we are
representing the annotated triples using N-Quads (Cyganiak et al., 2009), a format that allows to attach
a forth element to an RDF triple.2 However, in examples and definitions of the rest of this chapter we
will use a representation of the form (s, p, o) : λ, which is considered equivalent to its N-Quad counterpart.

6.1.1. Syntax

Our approach is to extend triples with annotations, where an annotation is taken from a specific domain.
This extension follows a similar approach to the annotated logic programming framework (Kifer and
Subrahmanian, 1992).

Definition 6.1 (Annotated RDF triple and graph). An annotated triple is an expression τ : λ, where τ is
an RDF triple and λ is an annotation value (defined below). An annotated graph is a finite set of annotated
triples. Furthermore we call an annotated graph G a normalised annotated graph iff 6 ∃τ : λ1, τ : λ2 ∈ G
s.t. λ1 6= λ2.

The intended semantics of annotated triples depends of course on the meaning we associate to the
annotation values. For instance, in a temporal setting (Gutiérrez, Hurtado and Vaisman, 2007),

(dbpedia:Nightwish, foaf:member, dbpedia:Marco Hietala) : [2001, 2012]

has the intended meaning “Marco Hietala was a member of Nightwish during the period from 2001

to 2012”, while in the fuzzy setting (Straccia, 2009), we can represent part-time members of a band:

(dbpedia:Nightwish, foaf:member, dbpedia:Troy Donockley) : 0.7

2A similar approach is followed for extending SPARQL’s syntax.

119

6.1. RDF(S) with Annotations 120

with the intended meaning “Troy Donockley is a member of Nightwish to a degree not less than 0.7”.3

6.1.2. Annotation Domain Specification

To start with, let us consider a non-empty set L, where the elements in L are our annotation values.
For example, in a fuzzy setting, L = [0, 1], while in a typical temporal setting, L may be time points
or time intervals. In our annotation framework, we extend the notion of interpretation (presented in
Definition 2.6) to map statements to elements of the annotation domain. But first let us define an
annotation domain:

Definition 6.2 (Annotation Domain). We say that an annotation domain for RDFS is an idempotent,
commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉 ,

where, >,⊥ are specific annotation values and ⊕ is >-annihilating (Buneman and Kostylev, 2010). That
is, for λ, λi ∈ L:

1. ⊕ is idempotent, commutative, associative;
2. ⊗ is commutative and associative;
3. ⊥⊕ λ = λ, >⊗ λ = λ, ⊥⊗ λ = ⊥, and >⊕ λ = >;
4. ⊗ is distributive over ⊕, i.e. λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3).

Please note that there is a natural partial order on any idempotent semi-ring: an annotation domain D =

〈L,⊕,⊗,⊥,>〉 induces a partial order � over L defined as:

λ1 � λ2 if and only if λ1 ⊕ λ2 = λ2 .

The > and ⊥ respective represent the highest and lowest element in the partial order. This partial
order � is used to express redundant information: for instance, for temporal intervals, an annotated
triple (s, p, o) : [2000, 2006] includes (s, p, o) : [2003, 2004], since [2003, 2004] ⊆ [2000, 2006] (here, ⊆ plays
the role of �).

In previous work (Straccia et al., 2010; Lopes, Polleres et al., 2010), an annotation domain was assumed
to be a more specific structure, namely a residuated bounded lattice. In Buneman and Kostylev (2010) it
was shown that we may use a slightly weaker structure than residuated lattices for annotation domains.

We use ⊕ to combine information about the same statement. For instance, in temporal lo-
gic, from τ : [2000, 2006] and τ : [2003, 2008], we infer τ : [2000, 2008], as [2000, 2008] = [2000, 2006] ∪
[2003, 2008] (where ∪ plays the role of ⊕). In the fuzzy context, from τ : 0.7 and τ : 0.6, we infer τ : 0.7,
since 0.7 = max(0.7, 0.6) (here, max plays the role of ⊕).

We use ⊗ to model the “conjunction” of information, where ⊗ is a generalisation of boolean conjunction
to the many-valued case. In fact, ⊗ satisfies also that:

1. ⊗ is bounded: i.e. λ1 ⊗ λ2 � λ1.
2. ⊗ is �-monotone, i.e. for λ1 � λ2, λ⊗ λ1 � λ⊗ λ2

For instance, on interval-valued temporal logic, from (a, sc, b) : [2000, 2006] and (b, sc, c) : [2003, 2008], we
will infer (a, sc, c) : [2003, 2006], as [2003, 2006] = [2000, 2006] ∩ [2003, 2008] (where ∩ plays the role of ⊗).
In the fuzzy context, one may chose any triangular norm (t-norm) (Klement et al., 2000), e.g. product,
and, thus, from (a, sc, b) : 0.7 and (b, sc, c) : 0.6, we will infer (a, sc, c) : 0.42, as 0.42 = 0.7 · 0.6 (here, ·
plays the role of ⊗).

3The membership degree was chosen as an example, Troy has collaborated with Nightwish on different albums and live
concerts.

120

6.1. RDF(S) with Annotations 121

The distributivity condition guarantees that we obtain the same annotation λ1⊗(λ2⊕λ3) = (λ1⊗λ2)⊕
(λ1⊗λ3) of the triple (a, sc, c) that can be inferred from triples (a, sc, b) : λ1, (b, sc, c) : λ2 and (b, sc, c) : λ3.
Finally, note that, conceptually, in order to build an annotation domain, one has to:

1. determine the set of annotation values L (typically a countable set4), identifying the top and bottom
elements;

2. define suitable operations ⊗ and ⊕ that acts as “conjunction” and “disjunction” functions, to support
the intended inference over schema axioms, such as

“from (a, sc, b) : λ and (b, sc, c) : λ′ infer (a, sc, c) : λ⊗ λ′”

and

“from τ : λ and τ : λ′ infer τ : λ⊕ λ′”

Another desirable feature is to use annotated and non-annotated triples in parallel, possibly even in the
same dataset. In Zimmermann et al. (2012), we presented several approaches for combining annotated
and non-annotated triples, such as assuming a default annotation for any non-annotated triple or creating
a new compound domain. For simplicity, and since we are considering the issue of compound domains as
out of scope for this thesis, we follow the approach of assuming a default annotation for non-annotated
triples. This default annotation can be specified on a per-domain basis however, if unspecified, we assume
the > element from the domain as the default annotation.

6.1.3. Semantics

For this section, we fix an annotation domain D = 〈L,⊕,⊗,⊥,>〉. Similar to Section 2.4.2 we rely on
the ρdf fragment of RDFS and do not consider datatype interpretations.

Definition 6.3 (Annotated Map). An annotated map is a function θ : UBL → UBL preserving
URIs and literals, i.e. θ(t) = t, for all t ∈ UL. Given an annotated graph G, we define θ(G) =

{ (θ(s) , θ(p) , θ(o)) : λ′ | (s, p, o) : λ ∈ G }, where λ′ ∈ L and λ′ � λ. Similarly to the classical case, we
speak of an annotated map θ from G1 to G2, and write θ : G1 → G2, if θ is such that ∀τ : λ2 ∈
G2,∃τ : λ1 ∈ G1 such that λ2 � λ1.5

Informally, an interpretation I will assign to a triple τ an element of the annotation domain λ ∈ L:

Definition 6.4 (Annotated Interpretation, extends Definition 2.6). An annotated interpretation I over
a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L, P [[·]], C[[·]], ·I〉

where ∆R,∆P ,∆C ,∆L are interpretation domains of I and P [[·]], C[[·]], ·I are interpretation functions
of I. They have to satisfy:

1. ∆R is a nonempty finite set of resources, called the domain or universe of I;

2. ∆P is a finite set of property names (not necessarily disjoint from ∆R);

3. ∆C ⊆ ∆R is a distinguished subset of ∆R identifying if a resource denotes a class of resources;

4. ∆L ⊆ ∆R, the set of literal values, ∆L contains all plain literals in L ∩ V ;

5. P [[·]] maps each property name p ∈ ∆P into a function P [[p]] : ∆R × ∆R → L, i.e. assigns an
annotation value to each pair of resources;

4Note that one may use XML decimals in [0, 1] in place of real numbers for the fuzzy domain.
5As a shorthand notation, from herein we will use G2 � G1 to denote ∀τ : λ2 ∈ G2, ∃τ : λ1 ∈ G1 such that λ2 � λ1.

121

6.1. RDF(S) with Annotations 122

6. C[[·]] maps each class c ∈ ∆C into a function C[[c]] : ∆R → L, i.e. assigns an annotation value
representing class membership in c to every resource;

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P and such that ·I is the identity for plain
literals and assigns an element in ∆R to each element in L.

Similar to the classical case we provide a single notion of interpretation that covers Simple, RDF, and
RDFS (ρdf) entailment. Furthermore, we extend the definition of model:

Definition 6.5 (Model, extends Definition 2.7). An interpretation I is a model of an annotated ground
graph G, denoted I |= G, if and only if I is an interpretation over the vocabulary ρdf ∪ universe(G) that
satisfies the following conditions, where A : B 7→ ∆R and IA is the extension of I with A:

Simple:

1. (s, p, o) : λ ∈ G implies pIA ∈ ∆P and P [[pIA]](sIA , oIA) � λ;

Subproperty:

1. P [[spI]](p, q)⊗ P [[spI]](q, r) � P [[spI]](p, r);

2. P [[pI]](x, y)⊗ P [[spI]](p, q) � P [[qI]](x, y);

Subclass:

1. P [[scI]](c, d)⊗ P [[scI]](d, e) � P [[scI]](c, e);

2. C[[cI]](x)⊗ P [[scI]](c, d) � C[[dI]](x);

Typing I:

1. C[[c]](x) = P [[typeI]](x, c);

2. P [[domI]](p, c)⊗ P [[p]](x, y) � C[[c]](x);

3. P [[rangeI]](p, c)⊗ P [[p]](x, y) � C[[c]](y);

Typing II:

1. For each e ∈ ρdf, eI ∈ ∆P ;

2. P [[spI]](p, q) is defined only for p, q ∈ ∆P ;

3. C[[scI]](c, d) is defined only for c, d ∈ ∆C ;

4. P [[domI]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C ;

5. P [[rangeI]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C ;

6. P [[typeI]](s, c) is defined only for c ∈ ∆C .

Intuitively, a triple (s, p, o) : λ is satisfied by I if (s, o) belongs to the extension of p to a “wider” extent
than λ. Note that the major differences from the classical setting reside on items 5 and 6.
Finally, entailment among annotated ground graphs G and H is as usual. Now, G |= H, where G

and H may contain blank nodes, if and only if for any grounding G′ of G there is a grounding H ′ of H
such that G′ |= H ′.
Please note that we always have that G |= τ : ⊥, however, triples of the form τ : ⊥ are uninteresting

and, thus, in the following we do not consider them as part of the language.

6.1.4. Examples of Annotation Domains

Next we specify some domains in Annotated RDFS, namely the classical domain, fuzzy (Straccia, 2009),
temporal (Gutiérrez, Hurtado and Vaisman, 2007), and provenance.

122

6.1. RDF(S) with Annotations 123

The Classical Domain

The classical RDF setting corresponds to the case in which the annotation values are L = { 0, 1 }. Thus,
the classical domain can be specified as D01 = 〈{ 0, 1 } ,max,min, 0, 1〉. In this case, Annotated RDFS
turns out to be the same as standard RDFS.

The Temporal Domain

For our representation of the temporal domain we aim at using non-discrete time as it is necessary to
model temporal intervals with any precision. However, for presentation purposes we will show the dates
as years only. To start with, time points are elements of the value space Q∪ { −∞,+∞} and a temporal
interval is a non-empty interval [α1, α2], where αi are time points. An empty interval is denoted as ∅.
We define the partial order on intervals as I1 6 I2 if and only if I1 ⊆ I2. The intuition here is that if a
triple is true at time points in I2 and I1 6 I2 then, in particular, it is true at any time point in I1 6= ∅.
Now, apparently the set of intervals would be a candidate for L, however, in order to represent

the upper bound interval of τ : [2001, 2005] and τ : [2008, 2009] we rather need the union of intervals,
denoted { [2001, 2005], [2008, 2009] }, meaning that a triple is true both in the former as well as in the
latter interval. Now, we define L as:

L = { t | t is a finite set of disjoint temporal intervals } ∪ { ⊥,> } ,

where ⊥ = {∅},> = {[−∞,+∞]}. Therefore, a temporal term is an element t ∈ L, i.e. a set of pairwise
disjoint time intervals. We allow the following variations:

(i) [α] as a shorthand for [α, α];
(ii) τ : α as a shorthand of τ : {[α]}; and
(iii) τ : [α, α′] as a shorthand of τ : {[α, α′]}.

Furthermore, on L we define the following partial order:

t1 � t2 if and only if ∀I1 ∈ t1∃I2 ∈ t2, such that I1 6 I2 .

Similarly as for time intervals, the intuition for � is that if a triple is true during the time points in all
the intervals in t2 and t1 � t2, then, in particular, the triple is true at any time point in intervals of t1.
Essentially, if t1 � t2 then a temporal triple τ2 : t2 is true to a larger “temporal extent” than the temporal
triple τ1 : t1.

The partial order � induces the following join (⊕) operation on L. Intuitively, if a triple is true at t1 and
also true at t2 then it will be true also for time points specified by t1 ⊕ t2 (a kind of union of time points).
As an example, if τ : {[2002, 2005], [2008, 2010]} and τ : {[2004, 2006], [2009, 2012]} are true then we expect
that this is the same as saying that τ : {[2002, 2006], [2008, 2012]} is true. The join operator will be defined
in such a way that {[2002, 2005], [2008, 2010]} ⊕ {[2004, 2006], [2009, 2012]} = {[2002, 2006], [2008, 2012]}.
Operationally, this means that t1 ⊕ t2 will be obtained as follows: (i) take the union of the sets of
intervals t = t1 ∪ t2; and (ii) join overlapping intervals in t until no more overlapping intervals can be
obtained. Formally,

t1 ⊕ t2 = infimum { t | t � ti, i = 1, 2 } .

It remains to define the ⊗ over sets of intervals. Intuitively, we would like to support inferences such that
from the triples (a, sc, b) : {[2002, 2005], [2008, 2010]} and (b, sc, c) : {[2004, 2006], [2009, 2012]}, we can in-
fer (a, sc, c) : {[2004, 2005], [2009, 2010]}, where {[2002, 2005], [2008, 2010]}⊗ {[2004, 2006], [2009, 2012]} =

{[2004, 2005], [2009, 2010]}. We get it by means of

t1 ⊗ t2 = supremum { t | t � ti, i = 1, 2 } .

123

6.1. RDF(S) with Annotations 124

Example 6.1 (Temporal domain ⊗). Using the following triples regarding another member of the
Nightwish band

(:NightwishMember, sc, mo:MusicArtist) : [1992, 2012]

(dbpedia:Troy Donockley, type, :NightwishMember) : [1996, 1999] ,

we can infer that
(dbpedia:Troy Donockley, type, mo:MusicArtist) : [1996, 1999] ,

where {[1992, 2012]} ⊗ {[1996, 1999]} = {[1996, 1999]}.

The Fuzzy Domain

To model fuzzy RDFS (Straccia, 2009) we may define the annotation domain asD[0,1] = 〈[0, 1],max,⊗, 0, 1〉
where ⊗ is any continuous t-norm on [0, 1].

Example 6.2 (Fuzzy domain ⊗). Adapting our running example to the fuzzy domain we can state
the following: Nightwish collaborators are partial members of the band (50%), and since Troy is a
Nightwish collaborator:

(:NightwishCollaborator, sc, :NightwishMember) : 0.5

(dbpedia:Troy Donockley, type, :NightwishCollaborator) : 0.7

Then, e.g. under the product t-norm ⊗, we can infer the following triple:

(dbpedia:Troy Donockley, type, :NightwishMember) : 0.35

The Provenance domain

Typically, provenance is identified by a URI, usually the URI of the document in which the triples are
defined or possibly a URI identifying a named graph. However, provenance of inferred triples is an issue
that has been little tackled in the literature (Delbru et al., 2008; Flouris et al., 2009). The intuition behind
our approach is similar to the one of Delbru et al. (2008) and Flouris et al. (2009) where provenance of an
inferred triple is defined as the aggregation of provenances of documents that allow to infer that triple.

We start from a countably infinite set of atomic provenances P, which in practice can be represented
by URIs. We consider the propositional formulae made from symbols in P (atomic propositions), logical
or (∨) and logical and (∧), for which we have the standard entailment |=. A provenance value is an
equivalent class for the logical equivalence relation, i.e. the set of annotation values is the quotient set
of P by the logical equivalence. The order relation is |=, ⊗ and ⊕ are ∧ and ∨, respectively. We set > to
true and ⊥ to false.

Example 6.3 (Provenance domain ⊗). Consider the following triples (numbered for easier reference
below):

(dbpedia:Marco Hietala, mo:member of, :NightwishMember) : dbpedia (6.1)

(dbpedia:Marco Hietala, type, foaf:Person) : dbpedia (6.2)

(dbpedia:Nightwish, type, mo:MusicGroup) : dbpedia (6.3)

(foaf:Person, sc, foaf:Agent) : foaf (6.4)

(mo:member of, dom, foaf:Person) : mo (6.5)

124

6.1. RDF(S) with Annotations 125

(mo:member of, range, mo:MusicGroup) : mo (6.6)

We can deduce that dbpedia:Marco Hietala is a foaf:Agent in two different ways: (a) using state-
ments (6.1), (6.4), and (6.5); or (b) using the statements (6.2) and (6.4). So, it is possible to infer
the following annotated triple:

(dbpedia:Marco Hietala, type, foaf:Agent) : (dbpedia ∧ foaf ∧ mo) ∨ (foaf ∧ mo)

However, since (dbpedia ∧ foaf ∧ mo) ∨ (foaf ∧ mo) is logically equivalent to foaf ∧ mo, the aggregated
inference can be collapsed into:

(dbpedia:Marco Hietala, type, Agent) : foaf ∧ mo

6.1.5. Deductive system

An important feature of our framework is that we are able to provide a deductive system in the style
of the one for classical RDFS. Moreover, the schemata of the rules are the same for any annotation
domain (only support for the domain dependent ⊗ and ⊕ operations has to be provided). The rules of
our deductive system, as in Section 2.4.3, are arranged in groups that capture the semantic conditions of
models, where A,B,C,X, and Y are meta-variables representing elements in UBL and D,E represent
elements in UL. The rule set contains two rules, (1a) and (1b), that are the same as for the crisp case,
while rules (2a) to (5b) are the annotated rules homologous to the crisp ones.

1. Simple:

(a) G
G′ for an annotated map θ : G′ → G (b) G

G′ for G
′ � G

2. Subproperty:

(a)
(A, sp, B) : λ1,(B, sp, C) : λ2

(A, sp, C) : λ1 ⊗ λ2
(b)

(D, sp, E) : λ1,(X,D, Y) : λ2

(X,E, Y) : λ1 ⊗ λ2

3. Subclass:

(a)
(A, sc, B) : λ1,(B, sc, C) : λ2

(A, sc, C) : λ1 ⊗ λ2
(b)

(A, sc, B) : λ1,(X, type, A) : λ2

(X, type, B) : λ1 ⊗ λ2

4. Typing:

(a)
(D, dom, B) : λ1,(X,D, Y) : λ2

(X, type, B) : λ1 ⊗ λ2
(b)

(D, range, B) : λ1,(X,D, Y) : λ2

(Y, type, B) : λ1 ⊗ λ2

5. Implicit Typing:

(a)
(A, dom, B) : λ1,(D, sp, A) : λ2,(X,D, Y) : λ3

(X, type, B) : λ1 ⊗ λ2 ⊗ λ3

(b)
(A, range, B) : λ1,(D, sp, A) : λ2,(X,D, Y) : λ3

(Y, type, B) : λ1 ⊗ λ2 ⊗ λ3

Please note we assume that a rule is not applied if the consequence is of the form τ : ⊥ (see Section 6.1.3).
Like for the classical case, the closure is defined as cl(G) = { τ : λ | G `∗ τ : λ }, where `∗ is as `

without rule (1a). Note again that the size of the closure of G is polynomial in |G| and can be computed
in polynomial time, provided that the computational complexity of operations ⊗ and ⊕ are polynomially
bounded (from a computational complexity point of view, it is as for the classical case, plus the cost of
the operations ⊗ and ⊕ in L).

Furthermore note that cl(G) is not guaranteed to be a normalised annotated RDF graph. In order to
ensure a normalised graph we can apply the following rule, denoted generalisation rule:

(X,A, Y) : λ1, (X,A, Y) : λ2

(X,A, Y) : λ1 ⊕ λ2
,

125

6.1. RDF(S) with Annotations 126

where each application of this rule removes the premises from the graph. Let us show an example of the
application of the generalisation rule.

Example 6.4 (Generalisation operation). Consider the following triples along with our running
example from Data 6.1:

(foaf:name, dom, foaf:Person) : [−∞,+∞]a

(foaf:Person, sc, foaf:Agent) : [−∞,+∞]

(mo:MusicArtist, sc, foaf:Agent) : [−∞,+∞] ,

we infer the following triples:

(dbpedia:Marco Hietala, type, foaf:Agent) : [1984, 2012]

(dbpedia:Marco Hietala, type, foaf:Agent) : [1966, 2012] .

The application of the “Generalisation” rule will collapse the triples:

(dbpedia:Marco Hietala, type, foaf:Agent) : [1966, 2012] ,

since [1984, 2012]⊕ [1966, 2012] = [1966, 2012].
aWe assume this triple is valid to reduce the number of triples shown, the domain of foaf:name is in fact owl:Thing.

Proposition 6.1 (Soundness and completeness). For two annotated graphs G and G′, the proof system `
is sound and complete for |=, that is G ` G′ if and only if G |= G′.

Proof: [Extends (Muñoz et al., 2009)] (⇒) Let I = 〈∆R,∆P ,∆C ,∆L, P [[·]], C[[·]], ·I〉 be an interpretation
such that I |= G i.e. I satisfies all the conditions of Definition 6.5. Furthermore let τ : λ be the result from
an instantiation of a rule 2− 5, such that R

τ : λ
, where R ⊆ G and let G′ = G ∪ { τ : λ }, then I |= G′.

1. Simple:
(a) We show that if G′ → G then G |= G′. Let θ be an annotated map such that θ(G′) � G.

Consider the function A′ : B→ ∆R such that

A′(x) =

{
A(θ(x)) if θ(x) ∈ B

θ(x)
I

if θ(x) 6∈ B
.

Note that: a) if x ∈ B and θ(x) ∈ B we get that θ(x)
IA = A(θ(x)) = A′(x) = xIA′ ; b) if x ∈ B

and θ(x) 6∈ B we get that θ(x)
IA = θ(x)

I
= A′(x) = xIA′ ; c) if x 6∈ B we get that θ(x) = x

and θ(x)
IA = xI = A′(x) = xIA′ . Thus we have that θ(x)

IA = xIA′ for all x ∈ UB.
Let (s, p, o) : λ ∈ G′, then (θ(s) , θ(p) , θ(o)) : λ = (θ(s) , p, θ(o)) : λ ∈ G. Since I |= G we
have that pI ∈ ∆P and P [[θ(s)

IA , θ(s)
IA]] � λ and P [[θ(s)

IA′ , θ(s)
IA′]] � λ. Thus I satisfies

condition (1) from Definition 6.5 for G′ (with function A′) and satisfies all other conditions of
Definition 6.5, so I |= G′.

(b) if G′ � G then G′ → G and thus G |= G′.
2. Subproperty:

(a) Let I |= (A, sp, B) : λ1 and I |= (B, sp, C) : λ2. It follows that P [[spI]]
(
AI , BI

)
� λ1

and P [[spI]]
(
BI , CI

)
� λ2. According to condition “Subproperty 1.” from Definition 6.5,

we have that P [[spI]]
(
AI , BI

)
⊗ P [[spI]]

(
BI , CI

)
� P [[spI]]

(
AI , CI

)
and thus λ1 ⊗ λ2 �

P [[spI]]
(
AI , CI

)
. Therefore I |= (A, sp, C) : λ1 ⊗ λ2.

(b) Let I |= (D, sp, E) : λ1 and I |= (X,D, Y) : λ2. It follows that P [[spI]]
(
DI , EI

)
� λ1

and P [[DI]]
(
XI , Y I

)
� λ2. According to condition “Subproperty 2.” from Definition 6.5,

we have that P [[spI]]
(
DI , EI

)
⊗ P [[DI]]

(
XI , Y I

)
� P [[EI]]

(
XI , Y I

)
and thus λ1 ⊗ λ2 �

P [[EI]]
(
XI , Y I

)
. Therefore I |= (X,E, Y) : λ1 ⊗ λ2.

126

6.1. RDF(S) with Annotations 127

3. Subclass:
(a) Let I |= (A, sc, B) : λ1 and I |= (B, sc, C) : λ2. It follows that P [[scI]]

(
AI , BI

)
� λ1

and P [[scI]]
(
BI , CI

)
� λ2. According to condition “Subclass 1.” from Definition 6.5, we have

that P [[scI]]
(
AI , BI

)
⊗P [[scI]]

(
BI , CI

)
� P [[scI]]

(
AI , CI

)
and thus λ1⊗λ2 � P [[scI]]

(
AI , CI

)
.

Therefore I |= (A, sc, C) : λ1 ⊗ λ2.
(b) Let I |= (A, sc, B) : λ1 and I |= (X, type, A) : λ2. It follows that P [[scI]]

(
AI , BI

)
� λ1

and P [[typeI]]
(
XI , AI

)
� λ2. From condition “Typing I, 1.” (Definition 6.5), we have

that C [[AI]]
(
XI
)
� λ2. According to condition “Subclass 2.” from Definition 6.5, we

have that P [[scI]]
(
AI , BI

)
⊗ C [[AI]]

(
XI
)
� C [[BI]]

(
XI
)
and thus λ1 ⊗ λ2 � C [[BI]]

(
XI
)

and, again from condition “Typing I, 1.”, λ1 ⊗ λ2 � P [[typeI]]
(
XI , BI

)
. Therefore I |=

(X, type, B) : λ1 ⊗ λ2.
4. Typing:

(a) Let I |= (D, dom, B) : λ1 and I |= (X,D, Y) : λ2. It follows that P [[domI]]
(
DI , BI

)
� λ1

and P [[DI]]
(
XI , Y I

)
� λ2. From condition “Typing I, 2.” (Definition 6.5), we have

that P [[domI]]
(
DI , BI

)
⊗ P [[DI]]

(
XI , Y I

)
� C [[BI]]

(
XI
)
and thus λ1 ⊗ λ2 � C [[BI]]

(
XI
)
.

From condition “Typing I, 1.” (Definition 6.5), we have that λ1 ⊗ λ2 � P [[typeI]]
(
XI , BI

)
.

Therefore I |= (X, type, B) : λ1 ⊗ λ2.
(b) Let I |= (D, range, B) : λ1 and I |= (X,D, Y) : λ2. It follows that P [[rangeI]]

(
DI , BI

)
�

λ1 and P [[DI]]
(
XI , Y I

)
� λ2. From condition “Typing I, 3.” (Definition 6.5), we have

that P [[rangeI]]
(
DI , BI

)
⊗ P [[DI]]

(
XI , Y I

)
� C [[BI]]

(
Y I
)
and thus λ1 ⊗ λ2 � C [[BI]]

(
Y I
)
.

From condition “Typing I, 1.” (Definition 6.5), we have that λ1 ⊗ λ2 � P [[typeI]]
(
Y I , BI

)
.

Therefore I |= (Y, type, B) : λ1 ⊗ λ2.
5. Implicit Typing:

(a) Let I |= (A, dom, B) : λ1, I |= (D, sp, A) : λ2, and I |= (X,D, Y) : λ3. It follows
that P [[domI]]

(
AI , BI

)
� λ1, P [[spI]]

(
DI , AI

)
� λ2, and P [[DI]]

(
XI , Y I

)
� λ3. Accord-

ing to condition “Subproperty 2.” from Definition 6.5, we have that P [[spI]]
(
DI , AI

)
⊗

P [[DI]]
(
XI , Y I

)
� P [[AI]]

(
XI , Y I

)
and thus λ1⊗λ2 � P [[AI]]

(
XI , Y I

)
. From condition “Typ-

ing I, 2.” (Definition 6.5), we have that P [[domI]]
(
AI , BI

)
⊗ P [[AI]]

(
XI , Y I

)
� C [[BI]]

(
XI
)

and thus λ1 ⊗ λ2 ⊗ λ3 � C [[BI]]
(
XI
)
. From condition “Typing I, 1.” (Definition 6.5), we have

that λ1 ⊗ λ2 ⊗ λ3 � P [[typeI]]
(
XI , BI

)
. Therefore I |= (X, type, B) : λ1 ⊗ λ2 ⊗ λ3.

(b) Let I |= (A, range, B) : λ1, I |= (D, sp, A) : λ2, and I |= (X,D, Y) : λ3. It follows
that P [[rangeI]]

(
AI , BI

)
� λ1, P [[spI]]

(
DI , AI

)
� λ2, and P [[DI]]

(
XI , Y I

)
� λ3. Accord-

ing to condition “Subproperty 2.” from Definition 6.5, we have that P [[spI]]
(
DI , AI

)
⊗

P [[DI]]
(
XI , Y I

)
� P [[AI]]

(
XI , Y I

)
and thus λ1⊗λ2 � P [[AI]]

(
XI , Y I

)
. From condition “Typ-

ing I, 3.” (Definition 6.5), we have that P [[rangeI]]
(
AI , BI

)
⊗ P [[AI]]

(
XI , Y I

)
� C [[BI]]

(
XI
)

and thus λ1 ⊗ λ2 ⊗ λ3 � C [[BI]]
(
XI
)
. From condition “Typing I, 1.” (Definition 6.5), we have

that λ1 ⊗ λ2 ⊗ λ3 � P [[typeI]]
(
XI , BI

)
. Therefore I |= (X, type, B) : λ1 ⊗ λ2 ⊗ λ3.

(⇐) Given an annotated graph G, let I = 〈∆R,∆P ,∆C ,∆L, P [[·]], C[[·]], ·I〉 be an interpretation defined
as follows:
• ∆R = universe(G) ∪ ρdf;
• ∆P = { p ∈ voc(G) | (s, p, o) : λ ∈ cl(G) }∪
ρdf ∪ { p ∈ universe(G) | (p, sp, x) : λ, (y, sp, p) : λ, (p, dom, z) : λ or (p, range, v) : λ ∈ G };

• ∆C = { c ∈ universe(G) | (x, type, c) : λ ∈ G }∪
{ c ∈ universe(G) | (c, sc, x) : λ, (y, sc, c) : λ, (z, dom, c) : λ or (v, range, c) : λ ∈ G };

• ∆L = L ∩ universe(G);
• P [[·]] : ∆P → 2∆R×∆R is an interpretation function such that:

– if p ∈ U ∩∆P and (x, p, y) : λ ∈ cl(G) then P [[p]](x, y) � λ;

127

6.1. RDF(S) with Annotations 128

– if p ∈ B∩∆P and (p, sp, p′) : λ1, (x, p
′, y) : λ2 ∈ cl(G) then P [[p]](x, y) � λ1⊗λ2 such that λ1⊗

λ2 6= ⊥.
• C[[·]] : ∆C → L is an interpretation function such that (x, type, c) : λ ∈ cl(G) ,C [[c]](x) � λ;
• ·I is the identity function over universe(G) ∪ ρdf.

We have that I |= G if I satisfies all the conditions from Definition 6.5:
Simple:

(a) First note that from the construction of cl(G), universe(cl(G)) = universe(G) ∪ ρdf.
Let (s, p, o) : λ ∈ G then, from the construction of I, we have that pI = p ∈ ∆P

and P [[p]]
(
sI , oI

)
= λ and thus I satisfies condition (i) for G.

(b) We now show that if G |= G′ then there is an annotated map G′ → cl(G). From
the construction of I we have that I |= G and since G |= G′, I |= G′. Since I
satisfies condition (i) there exists a function A : B → universe(G) ∪ ρdf such that for
each (s, p, o) : λ ∈ G′, p ∈ ∆P and P [[pI]]

(
sIA , oIA

)
= λ. Since p ∈ U, we have that pI =

pIA = p and thus P [[pI]]
(
sIA , oIA

)
= P [[p]]

(
sIA , oIA

)
= λ for each (s, p, o) : λ ∈ cl(G).

Since P [[pI]]
(
sIA , oIA

)
= λ, we have that (sIA , pIA , oIA) : λ ∈ cl(G) for each (s, p, o) : λ ∈ G′.

Thus IA : G′ → cl(G) is an annotated map G′ → cl(G).
Subproperty:

(a) Let P [[spI]]
(
AI , BI

)
� λ1 and P [[spI]]

(
BI , CI

)
� λ2. From the construction of I we have

that (A, sp, B) : λ1, (B, sp, C) : λ2 ∈ cl(G) and A,B,C ∈ ∆P . Since cl(G) is closed under
application of rule (2a) we have that (A, sp, C) : λ1 ⊗ λ2 ∈ cl(G) and thus P [[spI]]

(
AI , BI

)
�

λ1 ⊗ λ2.
(b) Let P [[DI]]

(
XI , Y I

)
� λ1 and P [[spI]]

(
DI , EI

)
� λ2, thus (D, sp, E) : λ2 ∈ cl(G) and D,E ∈

∆P . We must consider the following cases:
• if D ∈ U then, from the construction of I we have that (X,D, Y) : λ1 ∈ cl(G).
If E ∈ U and since cl(G) is closed under the application of rule (2b), we also have
that (X,E, Y) : λ1 ⊗ λ2 ∈ cl(G). Therefore P [[EI]]

(
XI , Y I

)
� λ1 ⊗ λ2. If E ∈ B,

then (X,D, Y) : λ1, (D, sp, E) : λ2 ∈ cl(G), and from the construction of I we have
that P [[EI]]

(
XI , Y I

)
� λ1 ⊗ λ2.

• ifD ∈ B by the construction of I there existsD′ such that (D′, sp, D) : λ3, (X,D
′, Y) : λ4 ∈

cl(G) and D′ ∈ ∆P . Since cl(G) is closed under the application of rule (2a), we also have
that (D′, sp, E) : λ2 ⊗ λ3 ∈ cl(G). If E ∈ U as (D′, sp, E) : λ2 ⊗ λ3, (X,D

′, Y) : λ4 ∈
cl(G) and since cl(G) is closed under the application of rule (2b), we also have
that (X,E, Y) : λ2 ⊗ λ3 ⊗ λ4 ∈ cl(G). Therefore, from the construction of I, we have
that P [[EI]]

(
XI , Y I

)
� λ2⊗λ3⊗λ4. If E ∈ B, then (X,D, Y) : λ1, (D, sp, E) : λ2 ∈ cl(G),

and from the construction of I we have that P [[EI]]
(
XI , Y I

)
� λ1 ⊗ λ2.

Subclass:
(a) Let P [[scI]]

(
AI , BI

)
� λ1 and P [[scI]]

(
BI , CI

)
� λ2. From the construction of I we have

that (A, sc, B) : λ1, (B, sc, C) : λ2 ∈ cl(G) and A,B,C ∈ ∆C . Since cl(G) is closed under
application of rule (3a) we have that (A, sc, C) : λ1 ⊗ λ2 ∈ cl(G) and thus P [[scI]]

(
AI , BI

)
�

λ1 ⊗ λ2.
(b) Let C [[AI]]

(
XI
)
� λ1 and P [[scI]]

(
AI , BI

)
� λ2. From condition “Typing I, 1.”

(Definition 6.5), we have that P [[typeI]]
(
XI , AI

)
= λ2 and thus I |= (X, type, A) : λ2.

Since cl(G) is closed under application of rule (3b) we have that (X, type, B) : λ1 ⊗ λ2.
Then P [[typeI]]

(
XI , BI

)
� λ1 ⊗ λ2 and thus C [[BI]]

(
XI
)
� λ1 ⊗ λ2.

Typing I:
(a) Let P [[typeI]](X,C) � λ1, by construction of I we have that C ∈ ∆C and (X, type, C) : λ1 ∈

cl(G). Also by the construction of C[[·]] we have that C [[C I]](X) � λ1. On the other hand,

128

6.1. RDF(S) with Annotations 129

if C ∈ ∆C and C [[C I]](X) � λ1, by construction of C[[·]] we have that (X, type, C) : λ1 ∈ cl(G)

and so P [[typeI]](X,C) � λ1.
(b) Let P [[domI]](D,B) � λ1 and P [[D]](X,Y) � λ2. By construction of I we have

that D ∈ ∆P and B ∈ ∆C . Since cl(G) is closed under application of rule (4a) we have
that (X, type, B) : λ1 ⊗ λ2 ∈ cl(G). Then P [[type]]

(
XI , BI

)
� λ1 ⊗ λ2 and C [[BI]]

(
XI
)
�

λ1 ⊗ λ2.
(c) Let P [[rangeI]](D,B) � λ1 and P [[D]](X,Y) � λ2. By construction of I we have

that D ∈ ∆P and B ∈ ∆C . Since cl(G) is closed under application of rule (4b) we have
that (Y, type, B) : λ1 ⊗ λ2 ∈ cl(G). Then P [[type]]

(
Y I , BI

)
� λ1 ⊗ λ2 and C [[BI]]

(
Y I
)
�

λ1 ⊗ λ2.
Typing II: The definition of ∆R and ∆P satisfy all of these conditions.

2

6.1.6. Query Answering

Informally, queries are as for the classical case where triples are replaced with annotated triples in which
annotation variables (taken from an appropriate alphabet and denoted Λ) may occur. We allow built-in
triples of the form (s, p, o), where p is a built-in predicate taken from a reserved vocabulary and having a
fixed interpretation on the annotation domain D, such as (λ,�, l) stating that the value of λ has to be �
than the value l ∈ L. We generalise the built-ins to any n-ary predicate p, where p’s arguments may be
annotation variables, ρdf variables, domain values of D, values from UL, and p has a fixed interpretation.
We will assume that the evaluation of the predicate can be decided in finite time. As for the crisp case,
for convenience, we write “functional predicates” as assignments of the form x :=f (z̄) and assume that
the function f (z̄) is safe. Furthermore, we also assume that any non functional built-in predicate p(z̄)

should be safe as well.
For instance, informally for a given time interval [t1, t2], we may define x :=length([t1, t2]) as true if

and only if the value of x is t2 − t1.

Example 6.5 (Annotated query). Considering our dataset from Data 6.1 as input and the query
asking for artists that were members of the Nightwish band between 2000 and 2010 and the temporal
term at which this was true:

q(x,Λ)← (dbpedia:Nightwish, foaf:member, x) : Λ′,Λ:=(Λ′ ∧ [2000, 2010])

will get the following answers:

〈dbpedia:Marco Hietala, [2001, 2010]〉
〈dbpedia:Tarja Turunen, [2000, 2005]〉 .

Formally, an annotated query is of the form

q(x̄, Λ̄)← ∃ȳ∃Λ′.ϕ(x̄, Λ̄, ȳ, Λ̄′)

in which ϕ(x̄, Λ̄, ȳ, Λ̄′) is a conjunction (as for the crisp case, we use ‘,’ as conjunction symbol) of
annotated triples and built-in predicates, x̄ and Λ̄ are the distinguished variables, ȳ and Λ̄′ are the
non-distinguished variables (existential quantified variables), and x̄, Λ̄, ȳ and Λ̄′ are pairwise disjoint.
Variables in Λ̄ and Λ̄′ can only appear in annotations or built-in predicates and furthermore, the query
head must contain at least one variable.
Given an annotated graph G, a query q(x̄, Λ̄) ← ∃ȳ∃Λ′.ϕ(x̄, Λ̄, ȳ, Λ̄′), a vector t̄ of terms in uni-

verse(G) and a vector λ̄ of annotated terms in L, we say that q(t̄, λ̄) is entailed by G, denoted G |= q(t̄, λ̄),
if and only if in any model I of G, there is a vector t̄′ of terms in universe(G) and a vector λ̄′ of annotation

129

6.1. RDF(S) with Annotations 130

values in L such that I is a model of ϕ(t̄, λ̄, t̄′, λ̄′). If G |= q(t̄, λ̄) then 〈t̄, λ̄〉 is called an answer to q.
The answer set of q w.r.t. G is (� extends to vectors point-wise)

ans(G, q) =
{
〈t̄, λ̄〉 | G |= q(t̄, λ̄), λ̄ 6= ⊥̄ and for any λ̄′ 6= λ̄ such that G |= q(t̄, λ̄′), λ̄′ � λ̄ holds

}
.

That is, for any tuple t̄, the vector of annotation values λ̄ is as large as possible. This is to avoid that
redundant/subsumed answers occur in the answer set. The following can be shown:

Proposition 6.2. Given a graph G, 〈t̄, λ̄〉 is an answer to q if and only if ∃ȳ∃Λ′.ϕ(t̄, λ̄, ȳ, Λ̄′) is true
in the closure of G and λ is �-maximal.6

Queries with Aggregates

Next we extend the query language by allowing so-called aggregates to occur in a query. Essentially,
aggregates may be like the usual SQL aggregate functions such as SUM, AVG, MAX, MIN. But, we have also
domain specific aggregates such as ⊕ and ⊗. The following examples present some queries that can be
expressed with the use of built-in queries and aggregates.

Example 6.6 (Assignment query). Using a built-in aggregate we can pose a query that, for each
band member, retrieves his maximal time of employment for any band in the following way:

q(x,maxL)← (y, foaf:member, x) : λ,maxL :=maxlength(λ) .

Here, the maxlength built-in predicate returns, given a set of temporal intervals, the maximal interval
in the set.

Example 6.7 (Aggregation query). Suppose we are looking for artists that are members of some
mo:MusicGroup for a certain time period and we would like to know the average length of their
membership. Then such a query will be expressed as

q(x, avgL)← (y, foaf:member, x) : λ,GroupedBy(x) , avgL :=AVG[length(λ)] .

Essentially, we group by the artist, compute for each artist the time he was a member of the
mo:MusicGroup (by means of the built-in function length), and finally compute the average value for
each group. That is, g = {〈t, t1〉, . . . , 〈t, tn〉} is a group of tuples with the same value t for artist x,
and value ti for y, where each length of membership for ti is li (computed as length(·)), then the
value of avgL for the group g is (

∑
i li)/n.

Formally, let @ be an aggregate function with @ ∈ {SUM, AVG, MAX, MIN, COUNT,⊕,⊗} then a query with
aggregates is of the form

q
(
x̄, Λ̄, α

)
← ∃ȳ∃Λ′.ϕ

(
x̄, Λ̄, ȳ, Λ̄′

)
,

GroupedBy(w̄) ,

α :=@[f (z̄)]

where w̄ are variables in x̄, ȳ or Λ̄, each variable in x̄ and Λ̄ must occur in w̄ and any variable in z̄ occurs
in ȳ or Λ̄′. From a semantics point of view, we say that I is a model of (satisfies) q(t̄, λ̄, a), denoted
I |= q(t̄, λ̄, a) if and only if a = @[a1, . . . , ak], where g = {〈t̄, λ̄, t̄′1, λ̄′1〉, . . . , 〈t̄, λ̄, t̄′k, λ̄′k〉} is a group of k
tuples with identical projection on the variables in w̄, ϕ(t̄, λ̄, t̄′r, λ̄

′
r) is true in I and ar = f(¯̄t) where ¯̄t

6∃ȳ∃Λ′.ϕ(t̄, λ̄, ȳ, Λ̄′) is true in the closure of G if and only if for some t̄′, λ̄′ for all triples in ϕ(t̄, λ̄, t̄′, λ̄′) there is a triple
in cl(G) that subsumes it and the built-in predicates are true, where an annotated triple τ : λ1 subsumes τ : λ2 if and
only if λ2 � λ1.

130

6.2. AnQL: Annotated SPARQL 131

is the projection of 〈t̄′r, λ̄′r〉 on the variables z̄. Now, the notion of G |= q(t̄, λ̄, a) is as usual, any model
of G is a model of q(t̄, λ̄, a).
Eventually, we further allow to order answers according to some ordering functions.

Example 6.8 (Ordering query). Consider Example 6.7. We additionally would like to order the
artists according to the average length of membership to a band. Then such a query will be expressed
as:

q(x, avgL)← (y, foaf:member, x) : λ,GroupedBy(x) ,

avgL :=AVG[length(λ)],OrderBy(avgL) .

Formally, a query with ordering is of the form

q(x̄, Λ̄, z) ← ∃ȳ∃Λ′.ϕ(x̄, Λ̄, ȳ, Λ̄′),OrderBy(z)

or, in case grouping is allowed as well, it is of the form

q(x̄, Λ̄, z, α) ← ∃ȳ∃Λ′.ϕ(x̄, Λ̄, ȳ, Λ̄′),

GroupedBy(w̄),

α :=@[f(z̄)],

OrderBy(z)

From a semantics point of view, the notion of G |= q(t̄, λ̄, z, a) is as before, but the notion of answer set
has to be enforced with the fact that the answers are now ordered according to the assignment of the
variable z. Of course, we require that the set of values over which z ranges can be ordered (like string,
integers, reals). In case the variable z is an annotation variable, the order is induced by �.

6.2. AnQL: Annotated SPARQL

The query language introduced so far allows for conjunctive queries. Languages like SQL and SPARQL al-
low to pose more complex queries including built-in predicates to filter solutions and advanced features such
as negation or aggregates. In this section we will present an extension of the SPARQL (Prud’hommeaux
and Seaborne, 2008) query language, called AnQL, that enables querying annotated graphs.
For the rest of this section we fix a specific annotation domain, D = 〈L,⊕,⊗,⊥,>〉, as defined in

Section 6.1.2.

6.2.1. Syntax

A simple AnQL query is defined – analogously to a SPARQL query in Section 3.3 – as a quadruple Q =

(P,G, V,A) with the differences that:

(1) G is an annotated RDF graph;
(2) we allow annotated graph patterns as presented in Definition 6.6; and
(3) A is the set of annotation variables taken from an infinite set A (distinct from V).

We now introduce the definition of Annotated Graph Patterns:

Definition 6.6 (Annotated Graph Patterns). Let U, B, L, and V be defined as before. Furthermore,
let λ be an annotation value from L or an annotation variable from A, we call λ an annotation label.
An annotated graph pattern in AnQL is defined (similar to SPARQL) inductively as follows:

• for a triple pattern τ , τ : λ (called an annotated triple pattern) is an annotated graph pattern;

131

6.2. AnQL: Annotated SPARQL 132

• a set of annotated triple patterns, called a Basic Annotated Pattern (BAP), is an annotated graph
pattern;
• if P and P ′ are annotated graph patterns, then (P and P ′), (P optional P ′), (P union P ′) are
annotated graph patterns;
• if P is an annotated graph pattern and R is a filter expression, then (P filter R) is an annotated
graph pattern.

We further denote by avars(P) the set of annotation variables present in a graph pattern P and vars(P)

is extended to include also the annotation variables.

The optional operator in the annotated case may cause the values of annotation variables outside the
optional to change depending if the optional pattern is matched. This is presented in Example 6.9.
Please note that in query examples we will use a simple extension of the SPARQL syntax that caters for
a fourth element in triple patterns and, for convenience, we will use the notation µ = { x1/t1, . . . , xn/tn }
to indicate that µ(xi) = ti, i.e. variable xi is assigned to term ti.

Example 6.9 (AnQL optional). Suppose we are looking for Nightwish members during some time
period and optionally the instrument they played. This query can be posed as follows:

SELECT $p $l $i WHERE {
dbpedia:Nightwish foaf:member $p $l .
OPTIONAL { $p mo:instrument $i $l } }

Take our example dataset from Data 6.1 extended with the following triples that indicate the
instrument:

(dbpedia:Marco Hietala, mo:instrument, :bass) : [2005, 2009]

we will get the following answers:

µ1 = { $p/dbpedia:Tarja Turunen, $l/[1996, 2005] }
µ2 = { $p/dbpedia:Marco Hietala, $l/[2001, 2012] }
µ3 = { $p/dbpedia:Marco Hietala, $l/[2005, 2009], $i/:bass } .

The first two answers (µ1 and µ2) correspond to the answers in which the optional pattern is not
satisfied, so we get the annotation values of [1996, 2005] and [2001, 2012], respectively, corresponding
to the time that Tarja and Marco were members of Nightwish. In the third answer, the optional

pattern is also matched and, in this case, the annotation value is restricted to the time when Marco
is a member of Nightwish and we have information regarding the instrument he played.

Note that – as we will see – this first query will return as a binding for the annotation variable $l the
periods where an instrument was played. A different query can be written that returns the periods of
time an artist was a member of a band.

Example 6.10 (AnQL optional with filter). The following query returns the Nightwish members
during some time period that optionally played an instrument at some point during this time:

SELECT $p $l $i WHERE {
dbpedia:Nightwish foaf:member $p $l .
OPTIONAL { $p mo:instrument $i $l2 .

FILTER ($l2 � $l) } }

132

6.2. AnQL: Annotated SPARQL 133

Using the input data from Example 6.9, we obtain the following answers:

µ1 = { $p/dbpedia:Tarja Turunen, $l/[1996, 2005] }
µ2 = { $p/dbpedia:Marco Hietala, $l/[2001, 2012] }
µ3 = { $p/dbpedia:Marco Hietala, $l/[2001, 2012], $i/:bass } .

In this example the filter behaves as in SPARQL by removing from the answer set the mappings
that do not make the filter expression true.

This query also exposes the issue of unsafe filters, noted in Angles and Gutiérrez (2008b) and we presented
the semantics to deal with this issue in Definition 3.12.

6.2.2. Semantics

We can now define the semantics of AnQL queries by extending the notion of SPARQL BGP matching.
Just as matching BGPs against RDF graphs is at the core of SPARQL semantics, matching BAPs against
annotated RDF graphs is the heart of the evaluation semantics of AnQL.

We extend the notion of substitution to include a substitution of annotation variables in which we do
not allow any assignment of an annotation variable to ⊥ (of the domain D). An annotation value of ⊥,
although it is a valid answer for any triple, does not provide any additional information and thus is of
minor interest. Furthermore this would contribute to increasing the number of answers unnecessarily.

Definition 6.7 (BAP evaluation). Let P be a BAP and G an annotated RDF graph. We define
evaluation [[P]]G as the list of substitutions that are solutions of P , i.e. [[P]]G = { µ | G |= µ(P) },
where G |= µ(P) means that any annotated triple in µ(P) is entailed by G.

We can define the notion of solutions for BAP as the equivalent notion of answer sets for annotated
conjunctive queries. As for SPARQL, we have:

Proposition 6.3. Given an annotated graph G and a BAP P , the solutions of P are the same as
the answers of the annotated query q(vars(P)) ← P (where vars(P) is the vector of variables in P),
i.e. ans(G, q) = [[P]]G.

For the extension of the SPARQL relational algebra to the annotated case we introduce – inspired by the
definitions in (Pérez et al., 2009) – definitions of compatibility and union of substitutions:

Definition 6.8 (⊗-compatibility). Two substitutions µ1 and µ2 are ⊗-compatible if and only if:

(i) µ1 and µ2 are compatible for all the non-annotation variables, i.e. µ1(x) = µ2(x) for any non-
annotation variable x ∈ dom(µ1) ∩ dom(µ2); and

(ii) µ1 (λ)⊗ µ2 (λ) 6= ⊥ for any annotation variable λ ∈ dom(µ1) ∩ dom(µ2).

This definition of compatible solutions is the same for non-annotated variables. For the case of shared
annotation variables, consider as an example the temporal domain and two solutions µ1 and µ2 that
share an annotation variable x. For µ1 and µ2 to be considered compatible the value their values for x
must overlap:

• if µ1(x) = [2001, 2005] and µ2(x) = [2003, 2009], then [2001, 2005] ⊗ [2003, 2009] = [2003, 2005]

and µ1 and µ2 will be considered compatible;
• on the other hand, if µ1(x) = [2001, 2003] and µ2(x) = [2005, 2009] then µ1 and µ2 will are not

compatible.

Definition 6.9 (⊗-union of substitutions). Given two ⊗-compatible substitutions µ1 and µ2, the ⊗-union
of µ1 and µ2, denoted µ1 ⊗ µ2, is as µ1 ∪ µ2, with the exception that any annotation variable λ ∈
dom(µ1) ∩ dom(µ2) is mapped to µ1 (λ)⊗ µ2 (λ).

133

6.2. AnQL: Annotated SPARQL 134

We now present the notion of evaluation for generic AnQL graph patterns. This consists of an extension
of Definition 3.11:

Definition 6.10 (Evaluation, extends (Pérez et al., 2009, Definition 2)). Let P be a BAP, P1, P2

annotated graph patterns, G an annotated graph and R a filter expression, then the evaluation [[·]]G, is
recursively defined as:

• [[P]]G = { µ | dom(µ) = vars(P) and G |= µ(P) }
• [[P1 and P2]]G = { µ1 ⊗ µ2 | µ1 ∈ [[P1]]G, µ2 ∈ [[P2]]G, µ1 and µ2 ⊗-compatible }
• [[P1 union P2]]G = [[P1]]G ∪ [[P2]]G
• [[P1 filter R]]G = {µ | µ ∈ [[P1]]G and Rµ is true}
• [[P1 optional P2[R]]]G = {µ | µ meets one of the following conditions:

1. µ = µ1 ⊗ µ2 if µ1 ∈ [[P1]]G, µ2 ∈ [[P2]]G, µ1 and µ2 ⊗-compatible, and Rµ is true
2. µ = µ1 ∈ [[P1]]G and ∀µ2 ∈ [[P2]]G such that µ1 and µ2 ⊗-compatible, R(µ1 ⊗ µ2) is true, and

for all annotation variables λ ∈ dom(µ1) ∩ dom(µ2), µ2 (λ) ≺ µ1 (λ)

3. µ = µ1 ∈ [[P1]]G and ∀µ2 ∈ [[P2]]G such that µ1 and µ2 ⊗-compatible, R(µ1 ⊗ µ2) is false }

Let R be a filter expression and x, y ∈ A ∪ L, in addition to the filter expressions presented in
Definition 3.11 we further allow the expressions presented next. The valuation of R on a substitution µ,
denoted Rµ, is true if:7

(9) R = (x � y) with x, y ∈ dom(µ) ∪ L ∧ µ(x) � µ(y);
(10) R = p(z̄) with p(z̄)µ = true if and only if p(µ(z̄)) = true, where p is a built-in predicate.
Otherwise Rµ is false.

Please note that the cases for the evaluation of optional are compliant with the SPARQL specifica-
tion (Prud’hommeaux and Seaborne, 2008), covering the notion of unsafe filters as presented by Angles
and Gutiérrez (2008b). However, there are some peculiarities inherent to the annotated case. More
specifically case 2.) introduces the side effect that annotation variables that are compatible between the
mappings may have different values in the answer depending if the optional is matched or not. This is
the behaviour demonstrated in Example 6.9.
In the filter expressions above, a built-in predicate p is any n-ary predicate p, where p’s arguments

may be variables (annotation and non-annotation ones), domain values of D, or values from UL; p has a
fixed interpretation and we assume that the evaluation of the predicate can be decided in finite time.
Annotation domains may define their own built-in predicates that range over annotation values as in

the following query:

Example 6.11 (AnQL query). Consider our example dataset from Data 6.1 and that we want to
know which band dbpedia:Marco Hietala was a member of before 2005. This query can be expressed
in the following way:

SELECT $band WHERE {
$band foaf:member dbpedia:Marco_Hietala $l .
FILTER(before($l, [2005])) }

For practical convenience, we retain in [[·]]G only “domain maximal answers”. That is, let us define µ′ ≺ µ
if and only if:

(i) µ′ 6= µ;

7We consider a simple evaluation of filter expressions where the “error” result is ignored, see Prud’hommeaux and Seaborne
(2008, Section 11.3) for details.

134

6.2. AnQL: Annotated SPARQL 135

(ii) dom(µ′) = dom(µ);
(iii) µ′(x) = µ(x) for any non-annotation variable x; and
(iv) µ′(λ) � µ(λ) for all annotation variable λ.

Then, for any µ ∈ [[P]]G we remove any µ′ ∈ [[P]]G such that µ′ ≺ µ.

6.2.3. Further Extensions of AnQL

In this section we will present extensions of Definition 6.10 to include features from the SPARQL 1.1
specification, such as variable assignments, aggregates, and solution modifiers.

Definition 6.11 (Assignment in AnQL). Let P be an annotated graph pattern and G an annotated graph,
the evaluation of an ASSIGN statement is defined as:

[[P ASSIGN f(z̄) AS z]]G = { µ | µ1 ∈ [[P]]G, µ = µ1[z/f(µ1(z̄))] }

where

µ[z/t] =

{
µ ∪ {z/t} if z 6∈ dom(µ)

(µ \ {z/t′}) ∪ {z/t} otherwise .

Essentially, we assign to the variable z the value f(µ1(z̄)), which is the evaluation of the function f(z̄)

with respect to a substitution µ1 ∈ [[P]]G.

Example 6.12 (Assignment in AnQL). Using a built-in function we can retrieve for each artist the
length of membership for any band:

SELECT $x $y $z WHERE {
$y foaf:member $x $l .
ASSIGN length($l) AS $z }

Here, the length built-in predicate returns, given a set of temporal intervals, the overall total length
of the intervals.

We also introduce the ORDERBY clause where the evaluation of a [[P ORDERBY $x]]G statement is defined
as the ordering of the solutions – for any µ ∈ [[P]]G – according to the values of µ($x). Ordering for
non-annotation variables follows the rules in Prud’hommeaux and Seaborne (2008, Section 9.1). Similar
to ordering in the query answering setting, we require that the set of values over which x ranges can be
ordered. We can further extend the evaluation of AnQL queries with aggregate functions

@ ∈ {SUM, AVG, MAX, MIN, COUNT,⊕,⊗}

as follows:

Definition 6.12 (Grouping in AnQL). The evaluation of a GROUPBY statement is defined as:8

[[P GROUPBY(w̄) @̄f̄(z̄) AS ᾱ]]G = { µ | µ′ in [[P]]G, µ = µ′|w̄[αi/@ifi(µ
′(z̄i))] }DISTINCT

where the variables αi 6∈ var(P), z̄i ∈ var(P) and none of the GROUPBY variables w̄ are included in the
aggregation function variables z̄i. Here, we denote by µ|w̄ the restriction of variables in µ to variables
in w̄. Using this notation, we can also straightforwardly introduce projection, i.e. sub-SELECTs as an
algebraic operator in the language covering another new feature of SPARQL 1.1:

[[SELECT V̄ {P}]]G = { µ | µ′ in [[P]]G, µ = µ′|v̄ } .

8In the expression, @̄f̄(z̄) AS ᾱ is a concise representation of n aggregations of the form @ifi(z̄i) AS αi and {. . .}DISTINCT

represents a duplicate removal operation.

135

6.3. AnQL Issues and Pitfalls 136

Please note that the aggregator functions have a domain of definition and thus can only be applied
to values of their respective domain. For example, SUM and AVG can only be used on numeric values,
while MAX, MIN are applicable to any total order. The COUNT aggregator can be used for any finite set of
values. The last two aggregation functions, namely ⊕ and ⊗, are defined by the annotation domain and
thus can be used on any annotation variable.

Example 6.13 (Grouping in AnQL). Suppose we want to know, for each artist, the average length
of their membership with different bands. Then such a query will be expressed as:

SELECT $x $avgL WHERE {
$y foaf:member $x $l .
GROUPBY($x)
AVG(length($l)) AS $avgL }

Essentially, we group by the artists, compute for each artist the time he was a member of a band
(by means of the built-in function length), and compute the average value for each group. That is,
if g = {〈t, t1〉, . . . , 〈t, tn〉} is a group of tuples with the same value t for artist x, and value ti for y,
where each length of membership for ti is li (computed as length(·)), then the value of avgL for the
group g is (

∑
i li)/n.

6.3. AnQL Issues and Pitfalls

In this section we discuss some practical issues related to (i) the use of filters (Section 6.3.1); (ii) union
of annotation values in the query (Section 6.3.2); and (iii) the representation of the temporal domain
(Section 6.3.3).

6.3.1. Constraints vs Filters

Please note that filters do not act as constraints over the query. Consider the following example:

Example 6.14 (Constraints in AnQL). Given the data from our dataset example and the following
query:

SELECT $l1 $l2 WHERE {
dbpedia:Nightwish foaf:member $p $l1 .
dbpedia:Nightwish foaf:member dbpedia:Marco_Hietala $l2 . }

with an additional constraint that requires $l1 to be “before” $l2 , we could expect the answer

{$l1/[1996, 2005], $l2/[2006, 2012]} .

This answer matches the following triples of our dataset:

(dbpedia:Nightwish, foaf:member, dbpedia:Marco Hietala) : [2001, 2012]

(dbpedia:Nightwish, foaf:member, dbpedia:Tarja Turunen) : [1996, 2005]

and satisfies the proposed constraint.

However, we require maximality of the annotation values in the answers, which in general do not exist in
presence of constraints. For this reason, we do not allow general constraints.

136

6.3. AnQL Issues and Pitfalls 137

6.3.2. Union of Annotations

The SPARQL union operator may also introduce some discussion when considering shared annotations
between graph patterns.

Example 6.15 (Union of temporal annotations). Take for example the following query and our
dataset from Data 6.1 as input.

SELECT $l WHERE {
{ dbpedia:Nightwish foaf:member dbpedia:Marco_Hietala $l . }
UNION
{ dbpedia:Tarot_(band) foaf:member dbpedia:Marco_Hietala $l . } }

Considering the temporal domain, the intuitive meaning of the query is “retrieve all time periods
when Marco Hietala was a member of Nightwish or Tarot”. In the case of union patterns the two
instances of the variable $l are treated as two different variables. If the intended query would rather
require treating both instances of the variable $l as the same, for instance to retrieve the time periods
when Marco was a member of either Nightwish or Tarot but assuming we may not have information
for one of the patterns, the query should rather look like:

SELECT $l WHERE {
{ dbpedia:Nightwish foaf:member dbpedia:Marco_Hietala $l1 . }
UNION
{ dbpedia:Tarot_(band) foaf:member dbpedia:Marco_Hietala $l2 . }
ASSIGN $l1 ∨ $l2 as $l }

where ∨ represents the domain specific built-in predicate for union of annotations.

6.3.3. Temporal Issues

Let us highlight some specific issues inherent to the temporal domain. Considering queries using Allen’s
temporal relations (Allen, 1983) (before, after, overlaps, etc.) as allowed by Tappolet and A. Bernstein
(2009), we can pose queries like “find persons who were members of Nightwish before Troy”. This query
raises some ambiguity when considering that persons may have been members of the same band at
different time intervals.

Example 6.16 (τSPARQL query). Consider our dataset triples from Data 6.1 extended with the
following triple:

(dbpedia:Nightwish, foaf:member, dbpedia:Troy Donockley) : {[1996, 1999], [2006, 2008]}

Tappolet and A. Bernstein (2009) consider this triple as two triples with disjoint intervals as
annotations. For the following query in their language τSPARQL:

SELECT ?p WHERE {
[?s1,?e1] dbpedia:Nightwish foaf:member ?p .
[?s2,?e2] dbpedia:Nightwish foaf:member dbpedia:Troy_Donockley .
[?s1,?e1] time:intervalBefore [?s2,?e2] }

we would get dbpedia:Tarja Turunen as an answer although Troy was also a member of Nightwish
when Tarja started. This is one possible interpretation of “before” over a set of intervals. In AnQL
we could add different domain specific built-in predicates, representing different interpretations of
“before”. For instance, we could define binary built-ins:

137

6.4. Implementation Notes 138

Annotated
RDF

Annotated
RDF

ReasonerAccess
Control

FuzzyTemporal

Prove-
nance

Domains

Custom
Rules

ρdf

Rules

AnQL

AnQL
Query

Annotated RDFS

Annotated
RDF

Figure 6.1.: Annotated RDFS implementation architecture

(i) beforeAny($A1 , $A2), which is true if there exists any interval in annotation $A1 before an
interval in $A2 ; or

(ii) respectively, a different built-in beforeAll($A1 , $A2), which is only true if all intervals in
annotation $A1 are before any interval in $A2 .

Using the latter, an AnQL query would look as follows:

SELECT $p WHERE {
dbpedia:Nightwish foaf:member $p $l1 .
dbpedia:Nightwish foaf:member dbpedia:Tarja_Turunen $l2 .
FILTER(beforeAll($l1,$l2)) }

This latter query gives no result, which might comply with people’s understanding of “before” in
some cases, while we also have the choice to adopt the behaviour of Tappolet and A. Bernstein (2009)
by use of beforeAny instead.

6.4. Implementation Notes

Our prototype implementation is split into two distinct modules: one that implements the Annotated
RDFS inferencing and the second module is an implementation of the AnQL query language that relies on
the first module to retrieve the data. Our prototype implementation is based on SWI-Prolog’s Semantic
Web library (Wielemaker et al., 2008) and we present the architecture of the implementation in Figure 6.1.

For the syntax of the annotated RDF dataset we do not rely on any special serialisation but instead
reuse other existing proposals e.g. using reification (Gutiérrez, Hurtado and Vaisman, 2007) or N-
Quads (Cyganiak et al., 2009). Our engine parses the input RDF datasets into an internal representation,
where each triple is represented using the rdf/4 predicate, the arguments represent the subject, predicate,
object, and annotation value of the triple.

The “Reasoner” module consists of a bottom-up engine that calculates the closure of a given “Annotated
RDF” graph (or dataset). The variable components correspond to the specification of the given annotation
domain (“Domains”); and the ruleset describing the inference rules and the way the annotation values
should be propagated (“Rules”). The annotation domains are specified by the appropriate semi-ring
operations and describe the default annotations for non-annotated triples.

138

6.5. Related Work 139

Rules are specified using a high-level language to specify domain independent rules that abstracts away
peculiarities of the underlying representation syntax:

Example 6.17 (RDFS subclass implementation rule). In our implementation, the following rule
provides subclass inference in the RDFS ruleset:

rdf(O, rdf:type, C2, V) <==
rdf(O, rdf:type, C1, V1),
rdf(C1, rdfs:subClassOf, C2, V2),
infimum(V1, V2, V).

The Rules and Domains are independent of each other: it is possible to combine arbitrary rulesets and
domains (see above).

The AnQL module also implemented in Prolog relies on the SPARQL implementation provided by the
ClioPatria Semantic Web Server.9 For the AnQL implementation, the domain specification needs to be
extended with the grammar rules to parse an annotation value and any built-in functions specific to the
domain.

Implementation of Specific Domains

For example, for the fuzzy domain the default value is considered to be 1 and the ⊗ and ⊕ operations are
the min and max operations, respectively. The AnQL grammar rules consist simply of calling the parser
predicate that parses a decimal value.

As for the temporal domain, we represent triple annotations as ordered lists of disjoint time intervals.
This implies some additional care in the construction of the ⊗ and ⊕ operations. For the representation
of −∞ and +∞ we use the inf and sup Prolog atoms, respectively. Concrete time points are represented as
integers and we use a standard constraint solver over finite domains (CLPFD) in the ⊗ and ⊕ operations.
The default value for non-annotated triples is [inf,sup]. The ⊗ operation is implemented as the recursive
intersection of all elements of the annotation values, i.e. temporal intervals. The ⊕ operation is handled
by constructing CLPFD expressions that evaluate the union of all temporal intervals. Again, the AnQL
grammar rules take care of adapting the parser to the specific domain and we have defined the domain
built-in operations described in Section 6.3.3.

6.5. Related Work

Adding annotations to logical statements was already proposed in the logic programming realm by Kifer
and Subrahmanian (1992) who took a similar approach, where atomic formulas are annotated with a value
taken from a lattice of annotation values, an annotation variable or a complex annotation, i.e. a function
applied to annotation values or variables. Similarly, we can relate our work to annotated relational
databases, especially Green et al. (2007) who provides a similar framework for relational algebra. After
presenting a generic structure for annotations, they focus more specifically on the provenance domain.
Annotated RDF was first presented by Udrea et al. (2006); Udrea et al. (2010), where the authors

define triples annotated with values taken from a finite partial order. In their work, triples are of the form
(s, p :λ, o), where the property, rather than the triple is annotated and furthermore represent RDF as a
set of nodes and edges rather than extending the model theoretic semantics followed by the W3C. In our
work, we rely on a richer, not necessarily finite, structure and provide additional inference capabilities
when compared to Udrea et al. (2010), such as a more involved propagation of annotation values through

9http://www.swi-prolog.org/web/ClioPatria/, retrieved on 2012/04/10.

139

http://www.swi-prolog.org/web/ClioPatria/

6.5. Related Work 140

schema triples. Essentially, Udrea et al. do not provide an operation to combine annotations in RDFS
inferences. The query language presented by Udrea et al. (2010) consists of conjunctive queries and, while
SPARQL’s BGPs are compared to their conjunctive queries, they do not consider extending SPARQL with
the possibility of querying annotations. Furthermore, optional, union and filter SPARQL queries are
not considered, which results in a subset of SPARQL that can be directly translated into their previously
presented conjunctive query system.
In our initial approach the structure for representing annotations was defined as a residuated lat-

tice (Straccia et al., 2010; Lopes, Polleres et al., 2010), which was later extended to the more general
semiring structure by Buneman and Kostylev (2010). Furthermore, Buneman and Kostylev (2010) also
show that once the RDFS inferences of an RDF graph have been computed for a specific domain, it is
possible to reuse these inferences if the graph is annotated with a different domain. Based on this result,
the authors define a universal domain, which is possible to transform to other domains by applying the
corresponding transformations.

For the Semantic Web, several extensions of RDF were proposed in order to deal with specific domains
such as truth of imprecise information (Mazzieri and Dragoni, 2008; Mazzieri and Dragoni, 2005; Mazzieri,
2004; Straccia, 2009; Lv et al., 2008), time (Gutiérrez, Hurtado and Vaisman, 2007; Pugliese et al., 2008;
Tappolet and A. Bernstein, 2009), trust (Hartig, 2009; Schenk, 2008) and provenance (Dividino et al.,
2009). These approaches are detailed in the following paragraphs.

Straccia (2009) presents Fuzzy RDF in a general setting where triples are annotated with a degree of truth
in [0, 1]. For instance, “Rome is a big city to degree 0.8” can be represented with (Rome, type, BigCity) : 0.8;
the annotation domain is [0, 1]. For the query language, it formalises conjunctive queries. Other similar
approaches for Fuzzy RDF (Mazzieri and Dragoni, 2008; Mazzieri and Dragoni, 2005; Mazzieri, 2004)
provide the syntax and semantics, along with RDF and RDFS interpretations of the annotated triples.
Mazzieri (2004) describes an implementation strategy that relies on translating the Fuzzy triples into
plain RDF triples by using reification. However these works focus mostly on the representation format
and the query answering problem is not addressed.

Gutiérrez, Hurtado and Vaisman (2007) present the definitions of Temporal RDF, including reduction
of the semantics of Temporal RDF graphs to RDF graphs and a sound and complete inference system.
They show that entailment of Temporal graphs does not yield extra complexity beyond RDF entailment.
Our Annotated RDFS framework encompasses this work by defining the temporal domain. The authors
present conjunctive queries with built-in predicates as the query language for Temporal RDF, although
they do not consider full SPARQL. Gutiérrez, Hurtado and Vaisman (2007) describe some further features
such as a “Now” time point (which is a defined time point in the domain) and anonymous time points,
allowing to state that a triple is true at some point. Adding anonymous time points would require us
to extend the semi-ring by appropriate operators, e.g. [2004, T] ⊕ [T, 2008] = [2004, 2008] (where T is
an anonymous time point). Pugliese et al. (2008) presents an optimised indexing schema for Temporal
RDF, along with the notion of normalised Temporal RDF graph, and a query language for these graphs
based on SPARQL. The indexing scheme consists of clustering the RDF data based on their temporal
distance, for which several metrics are given. For the query language they only define conjunctive queries,
thus ignoring some of the more advanced features of SPARQL. Tappolet and A. Bernstein (2009) present
another approach to the implementation of Temporal RDF, where each temporal interval is represented
as a named graph (Carroll, Bizer et al., 2005) containing all triples valid in that time period. Information
about temporal intervals, such as their relative relations, start and end points, is asserted in the default
graph. The τ -SPARQL query language allows to query the temporal RDF representation using an
extended SPARQL syntax that can match the graph pattern against the snapshot of a temporal graph at
any given time point and allows to query the start and endpoints of a temporal interval, whose values
can then be used in other parts of the query.

140

6.5. Related Work 141

SPARQL extensions towards querying trust have been presented by Hartig (2009), introducing a trust
aware query language, tSPARQL, that includes a new constructor to access the trust value of a graph
pattern. This value can then be used in other statements such as FILTERs or ORDER. Although focusing on
trust, the approach is close to our general framework, introducing concepts similar to the ones presented
in this chapter. However, a general framework was not presented. Also in the setting of trust management,
Schenk (2008) defines a bilattice structure to model trust relying on the dimensions of knowledge and
truth. The defined knowledge about trust in information sources can then be used to compute the trust
of an inferred statement. An extension towards OWL is presented but there is no query language defined.
Finally, this approach is used to resolve inconsistencies in ontologies arising from connecting multiple
data sources.

Regarding provenance, in Delbru et al. (2008), the authors do not formalise the semantics and properties
of the aggregation operation (simply denoted by ∧) nor the exact rules that should be applied to correctly
reason with provenance. Query answering is not tackled either. Flouris et al. (2009) provides more insight
into the formalisation and details the rules by reusing (tacitly) Muñoz et al. (2007). They also provide
a formalisation of a simple query language. However, the semantics they define is based on a strong
restriction of ρdf (which is already a restriction of RDFS). As an example, they define the answers to
the query ($x , type, $y , $c) as the tuples (X,Y,C) such that there is a triple (X, type, Y, C) which can
be inferred from only the application of rules (3a) and (3b) from the deductive system presented in
Section 2.4.3. This means that a domain or range assertion would not provide additional answers to that
type of query. Provenance also relates to the Named Graphs formalism (Carroll, Bizer et al., 2005) where
one can identify distinct graphs with a URI. The name can be seen as an atomic provenance annotation.
However, Named Graphs do not provide operations to combine the provenances. Yet, the formalism could
be used as a possible syntactic solution for representing annotated triples.
Dividino et al. (2009) also present a generic extension of RDF to represent meta information, mostly

focused on provenance and uncertainty. Such meta information is stored using named graphs and their
extended semantics of RDF, denoted RDF+, assumes a predefined vocabulary to be interpreted as meta
information. However they do not provide an extension of the RDFS inference rules or any operations for
combining meta information. The authors also provide an extension of the SPARQL query language,
considering an additional expression that enables querying the RDF meta information.
Bonatti, Hogan et al. (2011) provide a framework for a specific combination of annotations (authorit-

ativeness, rank, blacklisting, and provenance) within RDFS and (a variant of) OWL 2 RL. This work
is orthogonal to ours, in that it does not focus on aspects of query answering, or providing a generic
framework for combinations of annotations, but rather on scalable and efficient algorithms for materialising
inferences for the specific combined annotations under consideration.
Different extensions of RDF and SPARQL focused on modelling spatial and temporal data were

presented, namely stRDF (Koubarakis and Kyzirakos, 2010) and SPARQL-ST (Perry et al., 2011).
SPARQL-ST focuses on extending the SPARQL query language relying on previous proposals such as
Temporal RDF (Gutiérrez, Hurtado and Vaisman, 2007) and proposes a modelling of two dimensional
geometries to represent the spatial coordinates in plain RDF. The extension of SPARQL is done by
defining spatial and temporal variables and graph patterns and new filters and built-in conditions that
operate over the temporal and spatial variables. Possible spatial filters allow to determine wether specific
relations (e.g. equal, contains) hold between different geometries or to determine the distance between the
geometries. Filtering the temporal variables is based on the Allen interval relations (Allen, 1983). stRDF
and stSPARQL focus especially on representing sensor data, introducing triple annotations capable of
representing moving trajectories of sensors and geometric areas where the sensors are deployed. Spatial
data is represented by allowing RDF objects to be of a custom representation for geometries, whereas
the temporal data is represented as an annotation over RDF triples. The stSPARQL query language

141

6.6. Conclusion 142

consists of an extension of SPARQL to consider the fourth element to query the temporal annotations,
while spatial querying is based on filter expressions.

6.6. Conclusion

In this chapter we have presented a generalised RDF annotation framework that conservatively extends
the RDFS semantics, along with an extension of the SPARQL query language to query annotated data.
The framework presented here is generic enough to cover other proposals for RDF annotations and
their query languages. Our approach extends the classical case of RDFS reasoning with features of
different annotation domains, such as temporality, fuzzyness, or provenance. Furthermore, we presented
a semantics for an extension of the SPARQL query language, AnQL, that enables querying RDF with
annotations.
In the proposed data integration setting, this RDF extension can be used as a target data model,

allowing to represent meta-information about the integrated data and thus allowing to resolve conflicts
arising from the data integration process. In the next chapter we present a complete use case scenario
where the defined language and data model are used to integrate data from different enterprise sources
that may be protected by access control information. We also introduce the access control annotation
domain that allows us to represent such annotated data and to enable sharing and querying only restricted
sets of triples, on a per-user basis.

142

Part III.

An Integrated Use case

143

7. A Secure RDF Data Integration
Framework

In this chapter we go back to the use case presented in Chapter 1, where we briefly mentioned the
several software applications that enterprises use to manage their business: interactions with clients in a
Customer Relationship Management (CRM) application, employee information in a Human Resources
(HR) application, project documentation and company policies in a Document Management System
(DMS) and records of time spent working on projects in a Timesheet System (TS). Heterogeneity of the
data formats from the different software applications is not the only problem. In fact, as much of the
information within the enterprise is highly sensitive, its integration could result in information leakage to
unauthorised individuals.

In this chapter we build on the languages presented in the previous chapters to automatically extract
data and access control information from the underlying databases and represent them as Annotated RDF
graphs, providing a holistic view of data across the enterprise. This approach introduces a mechanism to
enforce access control policies on the RDF graph along with a flexible and automatic way to represent
and propagate the original access control policies.
In this chapter we define an annotation domain that models access control permissions as Annotated

RDFS, specify the high-level system architecture required to enforce access control by relying on SPARQL,
and illustrate how domain specific rules can be used to manage the access control annotations. First we
present some common access control related terms that we use in this chapter:

Resources denote the information to be protected;
Users represent individuals requesting access to resources;
Groups are collections of users with common features (e.g. contributors, supervisors, and management);
Roles are commonly used to assign access rights to a set of individuals and groups, for example by

department (e.g. human resources, sales and marketing) or task (e.g. insurance claim processing,
reporting and invoicing).

7.1. The Access Control Annotation Domain

In this section we formalise our access control annotation domain, following the definitions presented
in Section 6.1.2. We start by defining the entities and annotation values and then present the ⊗ and ⊕
domain operations. Finally, we briefly describe the implementation of the presented annotation domain.

7.1.1. Entities and Annotations

For the modelling of the access control domain consider, in addition to the previously presented sets of
URIs U, blank nodes B, and literals L, a set of credential elements C. The elements of C are used to
represent users, roles, and groups. To cater for attribute based access control, we consider a set at of
pairs of form k = v, to be considered as attribute-value pairs, where k, v ∈ L. For example “age = 30” or
“institute = DERI” are elements of T. We allow shortcuts to represent intervals of integers, for example

144

7.1. The Access Control Annotation Domain 145

“age = [25, 30]” to indicate that all entities with attribute age between 25 and 30 are allowed access to
the triple.
Considering an element e ∈ CT, e and ¬e are access control elements, where e is called a positive

element and ¬e is called a negative element.1 An access control statement S consists of a set of access
control elements and we further consider that S is in consistent iff for any element e ∈ CT, only one
among e and ¬e may appear in S. This restriction avoids conflicts, where a statement is attempting to
both grant and deny access to a triple. Furthermore, we can define a partial order between statements
as S1 6 S2 iff S1 ⊆ S2 that can be used to eliminate redundant access permissions: if a user is granted
access by statement S2, he will also be granted access by statement S1 (and thus S2 can be removed).
Finally, an Access Control List (ACL) consists of a set of access control statements and an ACL is
considered consistent iff each statement it contains is consistent and not redundant. In our domain
representation, only consistent ACLs are considered as annotation values. Intuitively, an annotation value
specifies which entities have read permission to the triple, or are denied access when the annotation is
preceded by ¬.

Example 7.1 (Access Control List). We are considering the following set of entities C =

{jb, js, st, it}, where jb and js are employee usernames and st and it are shorthand for softwareTester

and informationTechnology , respectively. The following annotated triple:

τ : [[it], [st,¬js]]

states that the entities identified with it or st (except if the js credential is also present) have read
access to the triple τ .

An ACL A can be considered as a non-recursive Datalog with negation (nr-datalog¬) program, where
access control statement s ∈ A corresponds to the body of a rule in the Datalog program. The head of
the Datalog rules is a reserved literal access 6∈ CT and the evaluation of the Datalog program determines
the access permission to a triple for a specific set of credentials.

The set of user credentials is assumed to be provided by an external authentication service and consists
of elements of CT, which equate to a non-empty ACL representing the entities associated with the user.
We further assume that this ACL consists of only one positive statement, i.e. the ACL will contain only
one statement with all the entities associated with the user and does not contain any negative elements.

Example 7.2 (Datalog Representation of an ACL). Consider the annotation example presented in
Example 7.1. The nr-datalog¬ program corresponding to the ACL [[it], [st,¬js]] is:

access← it.

access← st,¬js.

The set of credentials of the user session, provided by the external authentication system eg. [[jb, it]],
are considered the facts in the nr-datalog¬ program.

Further domain specific information, for example hierarchies between the access control entities, can
be encoded as extra rules within the nr-datalog¬ program. These extra rules can be used to provide
implicit credentials to a user, allowing the access control to be specified based on credentials that the
authentication system does not necessarily assign to a user.

1Here we are using ¬e to represent strong negation. In our access control domain representation, ¬e indicates that e will
be specifically denied access.

145

7.1. The Access Control Annotation Domain 146

Example 7.3 (Credential Hierarchies). Considering that the entity emp represents all the employees
within a specific company, and that jb and js correspond to employee usernames (as presented in
Example 7.1), the following rules can be added to the nr-datalog¬ program from Example 7.2:

emp← js.

emp← jb.

These rules ensure that both jb and js are given access when the credential emp is required in an
annotation value.

7.1.2. Annotation Domain

We now turn to the annotation domain operations ⊗ and ⊕ that, as presented in Section 6.1, allow
for the combination of annotation values when performing RDFS inference. A naive implementation of
these domain operations may produce ACLs that are not consistent (and would not be considered valid
annotation values). To avoid such invalid ACLs, we rely on a normalisation step that ensures the result
is a valid annotation value by checking for redundant statements and applying a conflict resolution policy
(described below) if necessary.

Definition 7.1 (Normalise). Let A be an ACL. We define the reduction of A into its consistent form,
denoted norm(A), as:

norm(A) = { normalise(si) | si ∈ A and 6 ∃sj ∈ A, i 6= j such that si 6 sj }

where the normalisation of a statement s, denoted normalise(s) consists of applying the conflict resolution
policy described below.

We say that an access statement contains a conflict if it contains a positive and negative access control
element of the same entity, e.g. [jb,¬jb]. There are different ways to resolve conflicts in the annotation
statements: apply a (i) brave conflict resolution (allow access); or (ii) safe conflict resolution (deny access).
This is achieved during the normalisation step, represented by the normalise function, by removing the
appropriate element: ¬jb for brave or jb for safe conflict resolution. In our current modelling, we are
assuming safe conflict resolution.
The ⊕ operation for the access control domain consists of the union of the annotations and then

performing the normalisation operation. The intuitive behaviour is that of creating a new nr-datalog¬

program that consists of the union of the rules of the programs of both original annotations. Formally,

A1 ⊕ac A2 = norm(A1 ∪A2) .

In turn, the ⊗ operation consists of merging the rules belonging to both annotation programs and
then performing the normalisation and conflict resolution. This corresponds to further restricting the
statements from both annotations to only those entities that are provided access by both annotations.
Formally, the ⊗ operations corresponds to:

A1 ⊗ac A2 = norm({ s1 ∪ s2 | s1 ∈ A1 and s2 ∈ A2 }) ,

where s1∪s2 represents the set theoretical union. Unlike the ⊕ac operation, the ⊗ac may produce conflicts
in the annotation statements.

Example 7.4 (Domain Operations). Consider the annotations A1 = [[jb], [js], [¬it]] and A2 = [[it]].
The ⊗ operation is used when inferring new triples, and thus the resulting annotation should provide

146

7.1. The Access Control Annotation Domain 147

access to the resulting triple only to entities that are allowed to access all the premisses:

A1 ⊗ac A2 = [[jb, it], [js, it], [¬it]] .

Please note that the aforementioned conflict resolution mechanism has simplified [¬it, it] into [¬it].
On the other hand the ⊕ operation is used to combine annotations when the same triple is deduced
from different inference steps. Thus, combining annotations with the ⊕ operations should result in
providing access to all the entities with are allowed to access the premises:

A1 ⊕ac A2 = [[jb], [js], [¬it], [it]] .

Lastly, the smallest and largest annotation value in the access control domain ⊥ac and >ac, respectively
correspond to an empty nr-datalog¬ program and another that provides access to all entities e ∈
CT: ⊥ac = [] and >ac = { [e], [¬e] | e ∈ CT }. The ⊥ac annotation value element indicates that the
annotated triple is not accessible to any entity, since no annotation statements will provide access to the
triple, and an annotation value of >ac states that the triple is considered public, since any credential
contained in the user session will provide access to the triple.

Definition 7.2 (Access Control Annotation Domain). Let F be the set of annotation values over CT,
i.e. consistent ACLs. The access control annotation domain is formally defined as:

Dac = 〈F,⊕ac,⊗ac,⊥ac,>ac〉 .

For our access control domain model, the ⊥ac is considered the default annotation for any non-annotated
triple, which implicitly denies access to the triple.

This modelling of the access control domain can be extended to consider other permissions, like update,
and delete simply by extending the annotation to an n-tuple of propositional formulæ2 〈P,Q, . . .〉, where
P specifies the formula for read permission, Q for update permission, etc. This extension allows to use
the defined domain operations simply extended to operate over the corresponding components of the
tuple. A create permission has a different behaviour as it would not be attached to any specific triple but
rather as a graph-wide permission and thus is not considered in this modelling. In this chapter, we are
focusing only on read permissions in the description of the domain and thus restrict the modelling to a
single propositional formula. It is worth noting that the support for create and update of RDF is only
included in the forthcoming W3C SPARQL 1.1 Recommendation (Harris and Seaborne, 2012).

7.1.3. Domain Implementation

According to the prototype described in Section 6.4, the implementation of the access control annotation
domain consists of a Prolog module that is imported by the reasoner. This module defines the domain
operations ⊗ac and ⊕ac, represented as the predicates infimum/3 and supremum/3, respectively. The
annotation values are represented simply by using lists, in this case lists of lists, following the definitions
presented in the previous section.
The implementation of the ⊕ac operation involves concatenating the list representation of both

annotations and then performing the normalisation operation. As for the ⊗ac operation, we follow
a similar procedure to the ⊕ac operation, with the additional step of applying one of the previously
presented brave and safe conflict resolution methods. The evaluation of the nr-datalog¬ program can be
performed based on the representation of the annotation values, by checking if the list of credentials of a
user is a superset of any of the positive literals of the statements of our annotation values and also that it
does not contain any of the negative literals of the statement.

2One formula, two formulæ.

147

7.2. An Access Control Aware Data Integration Architecture 148

1 @prefix : <http://urq.deri.org/enterprise#> .
2

3 :westportCars rdf:type :Company "[[jb]]".
4 :westportCars :netIncome 1000000 .
5 :joeBloggs :worksFor :westportCars .
6 :joeBloggs :salary 80000 "[[jb]]".
7 :johnSmith :worksFor :westportCars .
8 :johnSmith :salary 40000 "[[js]].

Data 7.1: Access Control Annotated RDFS

An example of RDF data annotated with Access Control information, where the salary information is
only available to the respective employee, is presented in Data 7.1. In this figure we are representing the
RDF triples and annotation element using the N-Quads RDF serialisation (Cyganiak et al., 2009). Using
AnQL, the extension of the SPARQL query language described in Section 6.2, it is possible to perform
queries that take into consideration the access control annotations. An example of an AnQL query over
this data is presented in the following example:

Example 7.5 (AnQL Query Example). This query specifies that we are interested in the salary of
employees that someone with the permissions [[jb, st, it]] is allowed to access.

SELECT * WHERE { ?p :salary ?s "[[jb, st, it]]" }

The answers for this query (when matched against Data 7.1) under SPARQL semantics, i.e. if the
annotation would be omitted, would be:

{ { $p → :joeBloggs, $s → 80000 } , { $p → :johnSmith, $s → 40000 } } .

However, with the inclusion of domain annotations, an AnQL query engine must also perform the
following check: [[jb, st, it]] satisfies the nr-datalog¬ program λ, where λ is the program represented
by the annotation of each matched triple, thus yielding only the following answer:

{ { $p → :joeBloggs, $s → 80000 } } .

7.2. An Access Control Aware Data Integration Architecture

This section describes the minimal set of components necessary for a data integration and access control
enforcement framework. It provides an overview of our implementation of each component (based on the
languages and models described in this thesis) and presents an experimental evaluation of our prototype,
which focuses on: (i) the RDB2RDF data integration; (ii) the reasoning engine; and (iii) the query engine.
The aim of this evaluation is simply to show the feasibility of our approach and, although we present
different dataset sizes, at this point we are not looking at improving scalability and thus do not propose
any kind of optimisations.

We start by presenting a combination of the XSPARQL and AnQL languages, that allows us to query
the heterogeneous sources and create the target Annotated RDF graph.

7.2.1. Combining XSPARQL and AnQL

Next we present the combination of the XSPARQL language, as presented in Chapter 4, with the
AnQL query language described in Chapter 6. This combination caters for the creation and querying of

148

7.2. An Access Control Aware Data Integration Architecture 149

ReasonerAccess
Control

Domains

Custom
Rules

ρdf

Rules
AnQL

Annotated
RDF

Access Control Enforcement

Data Integration

Query Rewriter

Authentication

CRMHR DMS

Figure 7.1.: RDF Data Integration and Access Control Enforcement Framework

Annotated RDF graphs using the XSPARQL language. For the purposes of this thesis, namely the data
integration use case, we are mostly interested in creating the Annotated RDF data.

In XSPARQL we extend the syntax of SparqlForClauses and ConstructClauses to cater for the fourth
element (as presented in Chapter 6), thus allowing us to create and query the Annotated RDF graphs,
respectively. Considering this extended expression syntax, the semantics of SparqlForClauses, presented in
Section 4.2, can be changed to follow the AnQL semantics instead of the SPARQL semantics. Conversely,
in the XSPARQL implementation (described in Section 5.1) we can replace the ARQ SPARQL engine
with our own AnQL prototype implementation (cf. Section 6.4).

For the creation of RDF graphs, the current implementation of the XSPARQL language (described
in Section 5.1.2) relies on creating a string representation of the RDF graph in Turtle notation. For
the creation of Annotated RDF graphs, we similarly extend this string representation to cater for an
Annotated RDF graph according to the N-Quads representation (Cyganiak et al., 2009).

Following the N-Quads specification, we represent the annotation value as an RDF literal, which also
allows us to implement the extension of XSPARQL independently of the annotation domain. We also
introduce a new generic type, which we call AnnotationLiteral, which will be the type of any annotation
values and variables. In XSPARQL we follow the restriction that annotation variables and non-annotation
variables should be distinct in the query and this newly introduced type ensures that we can enforce this
restriction in nested XSPARQL queries. Similar to AnQL, we assume the sharing of variables is possible
only by using domain specific functions that handle the appropriate type conversions.
The combination of XSPARQL and Annotated RDFS also introduces inferencing capabilities into

XSPARQL by reusing the annotated inference rules presented in Section 6.1.5. Notably the classical
domain (cf. Section 6.1.4) caters for the classical RDFS inferences. A proper formalisation of this
combination is beyond the scope of this thesis, however a possible starting point is the SPARQL 1.1
Entailment Regimes specification (Glimm and Ogbuji, 2012), which introduces other entailment regimes
(beyond simple RDF entailment) into the upcoming SPARQL 1.1 specification.

7.2.2. Access Control Enforcement Framework

An overview of the proposed framework is depicted in Figure 7.1, which is composed of two main modules:
Data Integration and Access Control Enforcement. The Data Integration module is responsible for the
conversion of existing relational data and access control policies to RDF. Whereas the Access Control

149

7.2. An Access Control Aware Data Integration Architecture 150

Enforcement module caters for the management of access rights and enables authenticated users to
query their RDF data. Noticeably, one component we do not tackle in this chapter is the authentication
component, which can be achieved by relying on WebId (Sporny et al., 2011) and self-signed certificates.
The enforcement of the access control is performed by relying on the query rewriter component, that
expands a provided SPARQL query with the credentials of the authenticated user.

Data Integration

The Data Integration module is responsible for the extraction of data and associated access rights
from the underlying relational databases. The information extracted is subsequently transformed into
Annotated RDF using the combination of XSPARQL and AnQL described in Section 7.2.1. Ideally, the
data integration step would be carried out in conjunction with a domain expert, for example to assist in
defining an R2RML (Das, Sundara et al., 2012) mapping or XSPARQL query that extracts and converts
the relational data into RDF. This chapter focusses primarily on retrieving data from relational databases
as the enterprise systems we worked with stored their data in relational format.3

Example 7.6 (XSPARQL+AnQL). The sample query below demonstrates how information about
a project can be extracted from an enterprise timesheet system.

@prefix : <http://urq.deri.org/enterprise#>

for p.Proj_Code, p.Proj_Desc, rp.Res_Code
from Projects p, ResPrj rp
where p.Proj_Code = rp.Proj_Code
construct {

:{$p.Proj_Code} a :Project {fn:concat("[[",$rp.Res_Code,"]]")};
:Client {$p.Cust_Code} {fn:concat("[[",$rp.Res_Code,"]]")} }

The query consists of a SQLForClause clause that extracts the data from the two underlying relations
and the ConstructClause in turn is used to generate N-Quads from the results of the database query.

Access Control Enforcement

This component is based on our implementation of the Annotated RDFS framework (presented in
Figure 6.1) where the annotation domain is fixed to access control. The integrated data retrieved from
the original relational databases is stored as Annotated RDF.

Reasoner. For this component we consider two distinct forms of inference: (a) data inference, where
new triples are deduced from existing ones (such as the RDFS rules); and (b) access rights inference,
where new permissions are deduced from existing ones. In our prototype, the reasoning component is
implemented by the extension of the RDFS inference rules presented in Section 6.1.3.

In many LOB applications, two forms of hierarchies are considered: (i) hierarchies between entities in
the access control annotations; and (ii) hierarchies between common resources in the data. Hierarchies of
form (i) were considered in Section 7.1.1 by adding rules to the nr-datalog¬ program that evaluates the
annotations. As for (ii), permissions granted to a resource should inherited by all of the resources children.
Such inheritance chain can be broken by explicitly specifying permissions at a lower level in the tree.

Considering our access control domain modelling and the use-case of extracting data (and permissions)
from their original sources, one option is to incorporate this business logic into the extraction process. In
this case, the extraction query must have information on how to propagate the access permissions and
apply them to all the necessary triples. Another option is to use domain specific rules, which our reasoner

3The data and queries presented in this chapter were developed and executed in collaboration with a DERI industry
partner. Any data presented here was anonymised.

150

7.2. An Access Control Aware Data Integration Architecture 151

is capable of processing, in order to propagate the access permissions or to ensure any domain specific
policies. Such rules can be written in a similar way to the Annotated RDFS rules, described in Section 6.4,
giving us access to the existing data and annotations and allowing us to create new Annotated RDF
triples or update existing ones.

Example 7.7 (Domain Specific Rule). Consider, in an enterprise scenario, that an existing policy
states that if an employee is given access to a Company record, as per the following triple (C, type,
:Company), that employee should be given access to all triples regarding that company. Such a policy
can be enforced by using the following rule:

(C, type, :Company) : λ1, (C,P,O) : λ2

(C,P,O) : λ1 ⊕ac λ2
,

where C,P,O and λ1, λ2 are variables. Applying this rule to the sample dataset presented in
Figure 7.1, would cause the access permission of the triple (:westportCars, type, :Company) : [[jb]] to be
propagated to the second triple, yielding the following new annotated triple:

(:westportCars, :netIncome, 1000000) : [[jb]] .

Query Rewriter

It is possible to use AnQL directly to query RDF data annotated with access control information, as
presented in Example 7.5. However, allowing the end user to perform AnQL queries is not secure since
one could bypass the access control due to the lack of enforcement of the supplied credentials.

Our proposed solution for the enforcement of the access control is based on query rewriting. The user
is allowed to write SPARQL queries and the system transparently extends each triple pattern of the
provided query with the user credentials as annotation value, thus generating an AnQL query. This
generated AnQL query is then executed against the Annotated RDF graph, which guarantees that the
user can only access the triples based on the credentials provided. This query rewriting step relies
on information provided by the external authentication system: a user session represents information
regarding an authenticated user in the system and contains, among others, the user credentials. The user
credentials should be represented as an annotation control element and thus can be easily added into any
SPARQL BGP to obtain an AnQL BAP.

7.2.3. Experimental Evaluation

The benchmark system is a virtual machine, running a 64-bit edition of Windows Server 2008 R2
Enterprise, located on a shared server. The virtual machine has an Intel(R) Xeon(R) CPU X5650 @
2.67GHz, with 4 shared processing cores and 5GB of dedicated memory. For the evaluation we extract
both the data and the access rights from two separate software application databases using XSPARQL.
The different datasets (DS1, DS2, DS3, and DS4) use the same databases, tables, and XSPARQL queries
and differ only on the number of records that are retrieved from the databases. Table 7.2 provides a
summary of each dataset, stating the number of database records queried, the number of triples generated,
and the size of the N-Quads representation of the triples. Furthermore, Table 7.2 includes the run time
of the data extraction process and the run time of importing the data into our Prolog implementation.
Figure 7.2 provides a high level overview of the times for each of the datasets.
Based on this simple experiment we have hints that the extraction process and the loading of triples

into Prolog behave linearly but more data intensive tests are still required. As the inferencing times are
highly dependent on both the rules and the data further experimentation is required in this area.
As for the evaluation of the AnQL engine we used the following queries, denoted Q1, Q2, and Q3:

151

7.3. Related Work 152

Table 7.1.: Access Control dataset description

DS1 DS2 DS3 DS4

database records 8854 16934 33095 65417
triples 44775 88300 175345 349430
file size (MB) 6.1 12.1 23.7 47.6

Table 7.2.: Access Control dataset generation and load times

DS1 DS2 DS3 DS4

RDB2RDF (sec) 26 42 82 153
Import (sec) 2.69 4.74 9.17 18.94

Q1: we retrieved all data

SELECT * WHERE { ?s ?p ?o ?λ1 }

Q2: we queried the data for a specific user

SELECT * WHERE { ?s ?p ?o "[[jb]]" }

Q3: we queried the data for a specific role

SELECT * WHERE { ?s ?p ?o "[[:administrators]]" }

The evaluation results of these three queries over the different datasets is presented in Table 7.3 and
depicted in Figure 7.2. These results calculated as an average of 3 response times and show an overhead
for the evaluation of annotations Q2 and Q3.

7.3. Related Work

The topic of access control has been long studied in relational databases and the approach of enforcing
the access policies by query rewriting was also considered for the Quel query language by Stonebraker
and Wong (1974). However, the presented system does not rely on annotating the relational data but
rather access control is specified using constraints over the user credentials, which are then included in
the rewritten query. An overview of common issues, existing models and languages for access control is
provided by di Vimercati et al. (2005).

For the Semantic Web, well known policy languages such as KAoS (Bradshaw et al., 1997), Rei (Kagal
and Finin, 2003) and PROTUNE (Bonatti, De Coi et al., 2009). Although such languages enable policy
specification using RDF and OWL, in their current form they do not support reasoning based on RDF
data. These policy languages are complimentary to our work as they can be mapped to our annotations
using rules.
Dietzold and Auer (2006) describe the requirements an RDF store needs from a Semantic Wiki

perspective. Apart from the necessary requirements on efficiency and scalability, the authors refer the
need for access control on a triple level and the need to integrate the structure of the organisation in
the access control methods. The described system relies on a query engine (SPARQL is mentioned but
no details are given) and a rule processor to decide the access control enforcement at query time. The
system we propose in this chapter caters for both of these requirements and also integrates the access
control into the annotation query language.

Hollenbach et al. (2009) present the possibility of maintaing metadata on the RDF data to enforce access
control and discuss, as possible extensions of their model, some of the work presented here, e.g. using

152

7.4. Conclusion 153

Table 7.3.: Query execution time in seconds for the different Access Control datasets.

DS1 DS2 DS3 DS4

Q1 0.06 0.14 0.28 0.42
Q2 0.14 0.27 0.59 0.86
Q3 0.16 0.27 0.54 1.11

DS1 DS2 DS3 DS4

101

102

103

104

Dataset sizes

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

Load

Inference

RDB2RDF

(a) Dataset load times

DS1 DS2 DS3 DS4

10−1

100

Dataset sizes

T
im

e
in

se
co
nd

s
(l
og

sc
al
e)

Q1

Q2

Q3

(b) Query execution times

Figure 7.2.: Load and query execution times for the different Access Control datasets

rules for specifying access control. Providing access control on a resource level is also left as an open
question, one we are tackling by the specification of rules. The extension of SPARQL is not considered.
Similar access control annotations are considered attached to axioms in an ontology by Knechtel and

Stuckenschmidt (2010) and Baader et al. (2009) and are used to allow access to subsets of the ontology to
specific users and also apply such annotations to the problem of determining the minimal set of axioms
that are necessary to support a certain conclusion. Although the setting is different to the one presented
in this chapter, some of the algorithms for efficient annotation calculation may be ported to our modelling.
Some work on extending query languages was presented by Abel et al. (2007), however this work

pre-dates the SPARQL query language. In a similar fashion to the work proposed in this chapter, their
policy enforcement is also done by a query rewriting step, however their query rewriting does not consists
of including the user credentials but rather replicating the access policies within the query. They also
consider access control policies that both grant and restrict access to data.

7.4. Conclusion

In this chapter we proposed an Access Control model, which can be used to protect RDF data and
demonstrate how a combination of Annotated RDFS and SPARQL can be used to control access to
integrated enterprise data. This model is based on the Annotated RDFS framework presented in
Chapter 6 and attaches the access control information on a triple basis, i.e. each RDF triple can contain
different annotation values. This solution provides a flexible representation method for the access control
annotations, based on propositional formulæ to define which entities have access to the triple. However,
when considering large number of triples, challenges arise with respect to optimal access control policy
administration. To tackle this issue we propose permission management through specifying domain-specific
inference rules for the annotation domain. We also suggest a possible implementation structure for a
framework to enforce the access control based on rewriting a SPARQL query into an AnQL query.

153

Part IV.

Conclusion

154

8. Conclusions

In this thesis we presented a novel query language, called XSPARQL, that combines the SQL, XQuery,
and SPARQL query languages in order to provide transformations between relational, XML, and RDF
data. We also presented extensions of the RDF data model, called Annotated RDFS, and of the SPARQL
query language, called AnQL, that cater for fine-grained meta-information, which we consider necessary to
accurately represent integrated data. We included initial optimisation strategies for a particular category
of XSPARQL queries, namely those containing nested for expressions that improved the evaluation times
for transformations between the different data models.
The main hypothesis of this thesis, presented in Section 1.3, states that:

Efficient data integration over heterogeneous data sources can be achieved by:
(i) a query language that allows to access data adhering to different formats in
the original sources (without the need for data transformation); (ii) a set of
optimisations that allow for efficient query evaluation in such a query language;
and (iii) an interchange representation format with support for meta-information,
allowing to represent temporal, uncertain, provenance, or even access-control
information.

The core chapters of this thesis present the components that validate this hypothesis:

Chapter 4 introduced the XSPARQL query language, which allows us to easily bridge the heterogeneous
data sources and perform transformations between data adhering to different models. This language
combines the syntax and semantics of different query languages: it is based on the syntax of the
XQuery language and defines new expressions that access the heterogeneous data models. The result
is an expressive language that enables writing arbitrary transformations between data adhering to
the different models and thus can be used in several data integration scenarios. In this chapter, we
have introduced several examples for such transformations and have also shown that XSPARQL can
be used to implement the new W3C specification for converting relational data to RDF: RDB2RDF.

Chapter 5 describes our implementation of the XSPARQL language, along with an experimental evalu-
ation of this language using a newly proposed benchmark suite. This evaluation has revealed the
queries that incur a greater penalty for accessing the heterogeneous sources: nested for expressions
in which the inner clause accesses an RDF source. For these cases we have proposed different
optimisations, for which we also presented a benchmark evaluation with the obtained performance
increases. The different optimisations rely on applying techniques from SQL or XQuery for nested
expressions, such as performing query unnesting or, when possible, pushing the query into a single
format.

Chapter 6 presents our proposed extension of the RDF data model where it is possible to annotate RDF
triples with meta-information from a specific domain. The domains we defined in this chapter allow
for attaching temporal information to a triple specifying time periods when the triple is considered
valid, fuzzy information that specifies a degree to which the triple is considered valid, or provenance
information that can be used to determine which data sources contributed to the generation of the

155

8.1. Critical Assessment 156

triple. We proposed a general extension that is able to encapsulate all of these domains and also
extends the RDFS inference rules and SPARQL query language in a domain-independent fashion.

Although RDF is being increasingly used for representing integrated data, as we have argued in this
thesis, RDF alone is not enough. The proposed extension of RDF caters for necessary dimensions of the
integration process. Especially the presented Access Control domain, has not been tackled before to such
granularity. As highlighted in Halevy, Ashish et al. (2005) this is a much needed feature:

When retrieving information from diverse sources, ensuring security, e.g. ensuring that only
authorised users get access to the information they seek, continues to be an underserved area.

The Linked Open Data community has so far focused on freely available data, emphasising the “Open”
part. However, in order for RDF to become widely adopted in enterprise environments, it requires
mechanisms to secure and protect data.

Chapter 7 presented an approach that is a stepping stone towards such a system: we defined a new
annotation domain where RDF triples can be annotated with information regarding which entities
are allowed to access it. In Chapter 7 we used XSPARQL to access the different underlying sources,
transform the data into Annotated RDF with access control information, and introduced some
possible AnQL queries over this annotated data. The presented framework also defines a rewriting
step in which SPARQL queries can be automatically expanded into AnQL queries to provide secure
access to the RDF data.

8.1. Critical Assessment

Even after this thesis, the problem of data integration is not yet solved! The presented XSPARQL trans-
formation language enables existing data warehousing and mediator approaches to integrate information
via a query and transformation language. However, no one-size-fits-all solution exists today nor is it
likely to exist in the near future. As Halevy, Ashish et al. (2005) state:

(...) the greatest cost in an ETL model is the human cost of setup and administration: under-
standing the query requirements, understanding the data sources, building and maintaining
the complex processes that clean and integrate the data.

For an enterprise scenario, a proper analysis of the benefits and drawbacks of each approach needs to
be carried out. One problem is that applications for data integration rapidly become outdated; e.g. as
enterprise software applications evolve, the data integration applications need to be updated accordingly.
Although a similar drawback is still present when the integration is performed via a query language, a
clear evaluation semantics can improve the data integration task not only by enabling optimisations but
also in the subsequent adaptation of the query to changes in the underlying data sources.

In our optimisations chapter (Chapter 5) we also asserted that we need different kinds of optimisations
for different data models. We have observed this fact when we tried to apply the optimisations for
SPARQL nested expressions to SQL nested expressions. It is possible that this is a simple implementation
issue and that different implementations of the XSPARQL language would not present these results.
Further investigation would be required to determine why these optimisations do not cary over across
different data models. Most likely this discrepancy is due to the support structures in place in the
database management system, ranging from the persistent storing of data to the indexing provided over
the stored data. Such structures allow for the efficient evaluation of nested simple queries, as opposed to
our optimised implementation that collects and joins the data in XQuery. For the nested queries over
RDF data, each iteration incurs the increased cost of loading the dataset alongside the normal query
evaluation.

156

8.2. Future Directions 157

8.2. Future Directions

Some possible future directions for the work presented in this thesis include improvements to the data
lifting direction and the definition of a core declarative model for the XSPARQL language that caters for
accessing the relational, XML, and (Annotated) RDF data. Another necessary, yet challenging future
topic is to devise an update language over the different data models. Finally, a declarative description of
data sources would allow an XSPARQL-based integration framework to be built. These topics are now
briefly described.

Data Lifting

The roots of the XSPARQL language have come from the need to transform existing RDF data into
(arbitrary) XML and, as such we have focused on the lowering direction. The wider community adoption
of the XSPARQL language has also highlighted interest in the lifting direction (which is reflected in
this thesis). For this features, several extensions can be made to the language with respect to the
implementation, moving beyond our current representation for RDF graphs (based on strings) into a
more integrated approach – for example, relying on representations for RDF graphs from existing RDF
stores – would allow a more direct translation to be implemented, e.g. inserting the generated RDF graph
directly into the store.
Regarding the language, new approaches for lifting can be devised, for instance, support for the

construction of nested predicate-object pairs when the subject has already been determined. Furthermore,
it remains to be determined if optimisations for the lifting process are necessary.

Declarative Model

In Chapter 5 we have shown that nested queries can be evaluated efficiently by applying different
rewriting strategies for XSPARQL queries. However, all of these rewriting strategies were ad-hoc whereas
the definition of a declarative algebra model would help to correctly and systematically study further
optimisations for XSPARQL. This declarative model must include a representative subset of the XSPARQL
language with known complexity bounds, while still allowing queries over heterogeneous sources to be
performed.
Possible starting points for such a declarative model are in the work by Koch (2006), where some

complexity results for a non-recursive core fragment of XQuery are presented. Another possible approach
is to explore the long standing mapping from relational algebra to Datalog, where more recent work
by Grust, Mayr et al. (2010) presents translations of XQuery to SQL. Relatedly, Polleres (2007); Angles
and Gutiérrez (2008b) present translations from SPARQL to Relational Algebra. These works seem to
indicate valid starting points for further research on equivalences and optimisations in our language.
Using the declarative model, it is also possible to check the equivalence between any proposed

optimisations and also, in a similar approach to Levy et al. (1996), allow to assign a cost function to each
source in order to be able to calculate (near) optimal query plans.

Update Language

Another important feature for a data integration language is the capability to perform updates over the
original sources. This is also acknowledged by Halevy, Ashish et al. (2005):

However, there’s more to data than reads. What about updates? A virtual database update
model is often not the best fit for enterprise integration scenarios.

The current XSPARQL language specification already allows to query data contained in relational, XML,
and RDF datastores. However, updating data in these datastores is still not possible. We plan to extend

157

8.2. Future Directions 158

the XSPARQL language to a full data manipulation language allowing for the update, insert, and delete
of data contained in RDF triplestores. Analogously to our combination of query languages, we will aim at
combining common data manipulation languages for XML and RDF, such as SPARQL Update (Gearon
et al., 2012) and XQuery Update (Robie et al., 2011).
However, such an update language over integrated data is not a trivial task, since updates over the

integrated data need to be reflected in the original sources.

Query Language Abstraction

The proposed query language and future declarative model can form the basis for a more complex data
integration system. One possible approach is to devise a declarative representation for data sources, along
with rules that specify how to integrate their data. Based on this declarative abstraction, it is possible to
provided automated mappings from the source descriptions and transformation rules into XSPARQL
queries, thus implementing the data integration process in a straightforward fashion.

For the declarative description of the data sources we can attempt to leverage existing vocabularies and
ontologies that describe existing data sources, for example providing an abstraction layer over existing
sensor readings, relational databases, or social web feeds.

158

Bibliography

Abel, F., Coi, J. L. D., Henze, N., Koesling, A. W., Krause, D. and Olmedilla, D. (2007). Enabling
Advanced and Context-Dependent Access Control in RDF Stores. In K. Aberer, K.-S. Choi, N. F.
Noy, D. Allemang, K.-I. Lee, L. J. B. Nixon, . . . P. Cudré-Mauroux (Eds.), The Semantic Web,
6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 +
ASWC 2007, Busan, Korea, November 11-15, 2007 (Vol. 4825, pp. 1–14). Springer.

Abiteboul, S. (1997). Querying Semi-Structured Data. In F. N. Afrati and P. G. Kolaitis (Eds.), Database
Theory - ICDT ’97, 6th International Conference, Delphi, Greece, January 8-10, 1997, Proceedings
(Vol. 1186, pp. 1–18). Springer.

Abiteboul, S., Benjelloun, O. and Milo, T. (2002). Web services and data integration. In T. W. Ling, U.
Dayal, E. Bertino, W. K. Ng and A. Goh (Eds.), 3rd International Conference on Web Information
Systems Engineering (WISE 2002), 12-14 December 2002, Singapore, Proceedings (pp. 3–6). IEEE
Computer Society.

Abiteboul, S., Buneman, P. and Suciu, D. (1999). Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann.

Abiteboul, S., Hull, R. and Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

Adida, B. and Birbeck, M. (Eds.). (2008). RDFa Primer – Bridging the Human and Data Webs. W3C.
Retrieved March 27, 2012, from http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014/

Afanasiev, L. and Marx, M. (2008). An Analysis of XQuery Benchmarks. Information Systems, 33 (2),
155–181.

Agrawal, P., Benjelloun, O., Sarma, A. D., Hayworth, C., Nabar, S. U., Sugihara, T. and Widom, J. (2006).
Trio: A System for Data, Uncertainty, and Lineage. In U. Dayal, K.-Y. Whang, D. B. Lomet, G.
Alonso, G. M. Lohman, M. L. Kersten, . . . Y.-K. Kim (Eds.), Proceedings of the 32nd International
Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006 (pp. 1151–1154). ACM.

Akhtar, W., Kopecky, J., Krennwallner, T. and Polleres, A. (2008). XSPARQL: Traveling between the
XML and RDF worlds – and avoiding the XSLT pilgrimage. In Proceedings of the 5th European
Semantic Web Conference (ESWC2008) (pp. 432–447). Tenerife, Spain: Springer.

Allen, J. F. (1983). Maintaining Knowledge about Temporal Intervals. Communications of the ACM,
26 (11), 832–843.

Amagasa, T., Yoshikawa, M. and Uemura, S. (2000). A Data Model for Temporal XML Documents. In
M. T. Ibrahim, J. Küng and N. Revell (Eds.), Database and Expert Systems Applications, 11th
International Conference, DEXA 2000, London, UK, September 4-8, 2000, Proceedings (Vol. 1873,
pp. 334–344). Springer.

Angles, R. and Gutiérrez, C. (2008a). Survey of Graph Database Models. ACM Computing Surveys,
40 (1).

Angles, R. and Gutiérrez, C. (2008b). The Expressive Power of SPARQL. In A. P. Sheth, S. Staab,
M. Dean, M. Paolucci, D. Maynard, T. W. Finin and K. Thirunarayan (Eds.), The Semantic Web -
ISWC 2008, 7th International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October
26-30, 2008. Proceedings (Vol. 5318, pp. 114–129). Springer.

159

http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014/

Bibliography 160

Angles, R. and Gutiérrez, C. (2010). SQL Nested Queries in SPARQL. In A. H. F. Laender and
L. V. S. Lakshmanan (Eds.), Proceedings of the 4th Alberto Mendelzon International Workshop
on Foundations of Data Management, Buenos Aires, Argentina, May 17-20, 2010 (Vol. 619).
CEUR-WS.org.

Angles, R. and Gutiérrez, C. (2011). Subqueries in SPARQL. In P. Barceló and V. Tannen (Eds.), Pro-
ceedings of the 5th Alberto Mendelzon International Workshop on Foundations of Data Management,
Santiago, Chile, May 9-12, 2011 (Vol. 749). CEUR-WS.org.

Arenas, M., Gutiérrez, C. and Pérez, J. (2009). On the Semantics of SPARQL. In R. D. Virgilio, F.
Giunchiglia and L. Tanca (Eds.), (pp. 281–307). Springer.

Arenas, M., Kantere, V., Kementsietsidis, A., Kiringa, I., Miller, R. J. and Mylopoulos, J. (2003). The
Hyperion Project: From Data Integration to Data Coordination. SIGMOD Record, 32 (3), 53–58.

Arenas, M., Prud’hommeaux, E. and Sequeda, J. (Eds.). (2012). A Direct Mapping of Relational Data to
RDF. W3C Recommendation. Retrieved September 27, 2012, from http://www.w3.org/TR/2012/REC-

rdb-direct-mapping-20120927/

Auer, S., Dietzold, S., Lehmann, J., Hellmann, S. and Aumueller, D. (2009). Triplify – Light-Weight
Linked Data Publication from Relational Databases. In J. Quemada, G. León, Y. S. Maarek and
W. Nejdl (Eds.), Proceedings of the 18th International Conference on World Wide Web, WWW
2009, Madrid, Spain, April 20-24, 2009 (pp. 621–630). ACM.

Baader, F., Knechtel, M. and Peñaloza, R. (2009). A Generic Approach for Large-Scale Ontological
Reasoning in the Presence of Access Restrictions to the Ontology’s Axioms. In A. Bernstein, D. R.
Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta and K. Thirunarayan (Eds.), The Semantic
Web - ISWC 2009, 8th International Semantic Web Conference (Vol. 5823, pp. 49–64). Lecture
Notes in Computer Science. Springer.

Baru, C. K., Gupta, A., Ludäscher, B., Marciano, R., Papakonstantinou, Y., Velikhov, P. and Chu, V.
(1999). XML-Based Information Mediation with MIX. In A. Delis, C. Faloutsos and S. Ghandehariz-
adeh (Eds.), SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management
of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA (pp. 597–599). ACM Press.

Battle, S. (2006). Gloze: XML to RDF and back again. In Proceedings of the First Jena User Conference.

Beckett, D. (Ed.). (2004). RDF/XML Syntax Specification (Revised). W3C. Retrieved March 27, 2012,
from http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

Beckett, D. and Broekstra, J. (Eds.). (2008). SPARQL Query Results XML Format. W3C. Retrieved
March 27, 2012, from http://www.w3.org/TR/2008/REC-rdf-sparql-XMLres-20080115/

Beckett, D. (2010). RDF Syntaxes 2.0. In Proceedings of the W3C Workshop on RDF Next Steps. Palo
Alto, CA, USA. Retrieved March 27, 2012, from http://www.w3.org/2009/12/rdf-ws/papers/ws11

Beckett, D. and Berners-Lee, T. (2011). Turtle - Terse RDF Triple Language. W3C Team Submission.
Retrieved March 27, 2012, from http://www.w3.org/TeamSubmission/2011/SUBM-turtle-20110328/

Belhajjame, K., Deus, H., Garijo, D., Klyne, G., Missier, P., Soiland-Reyes, S. and Zednik, S. (2012).
PROV Model Primer. W3C. Retrieved September 24, 2012, from http://www.w3.org/TR/2012/WD-

prov-primer-20120724/

Benjelloun, O., Sarma, A. D., Halevy, A. Y., Theobald, M. and Widom, J. (2008). Databases with
uncertainty and lineage. VLDB Journal, 17 (2), 243–264.

Berners-Lee, T. (2005). Notation 3 Logic. W3C Design Issues. Retrieved March 27, 2012, from http:

//www.w3.org/DesignIssues/N3Logic

Berners-Lee, T., Fielding, R. T. and Masinter, L. (2005). Uniform Resource Identifier (URI): Generic
Syntax. RFC 3986. Retrieved March 27, 2012, from http://tools.ietf.org/html/rfc3986

160

http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2008/REC-rdf-sparql-XMLres-20080115/
http://www.w3.org/2009/12/rdf-ws/papers/ws11
http://www.w3.org/TeamSubmission/2011/SUBM-turtle-20110328/
http://www.w3.org/TR/2012/WD-prov-primer-20120724/
http://www.w3.org/TR/2012/WD-prov-primer-20120724/
http://www.w3.org/DesignIssues/N3Logic
http://www.w3.org/DesignIssues/N3Logic
http://tools.ietf.org/html/rfc3986

Bibliography 161

Berners-Lee, T., Hendler, J. and Lassila, O. (2001). The Semantic Web. Scientific American, 284 (5),
34–43.

Bernstein, P. A. and Haas, L. M. (2008). Information Integration in the Enterprise. Communications of
the ACM, 51 (9), 72–79.

Berrueta, D., Labra, J. E. and Herman, I. (2008). XSLT+SPARQL : Scripting the Semantic Web with
SPARQL embedded into XSLT stylesheets. In C. Bizer, S. Auer, G. A. Grimmes and T. Heath
(Eds.), 4th Workshop on Scripting for the Semantic Web. Tenerife.

Bikakis, N., Gioldasis, N., Tsinaraki, C. and Christodoulakis, S. (2009). Querying XML Data with SPARQL.
In S. S. Bhowmick, J. Küng and R. Wagner (Eds.), Database and Expert Systems Applications, 20th
International Conference, DEXA 2009, Linz, Austria, August 31 - September 4, 2009. Proceedings
(Vol. 5690, pp. 372–381). Springer.

Biron, P. V. and Malhotra, A. (Eds.). (2004). XML Schema Part 2: Datatypes Second Edition. W3C.
Retrieved March 27, 2012, from http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

Bischof, S., Decker, S., Krennwallner, T., Lopes, N. and Polleres, A. (2012). Mapping between RDF and
XML with XSPARQL. Journal on Data Semantics, 1, 147–185.

Bizer, C. (2003). D2R MAP - A Database to RDF Mapping Language. In World Wide Web Conference
2003 (Posters).

Bizer, C., Heath, T. and Berners-Lee, T. (2009). Linked Data - The Story So Far. International Journal
on Semantic Web and Information Systems, 5 (3), 1–22.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R. and Hellmann, S. (2009).
DBpedia - A Crystallization Point for the Web of Data. Journal of Web Semantics, 7 (3), 154–165.

Bohring, H. and Auer, S. (2005). Mapping XML to OWL Ontologies. In K. P. Jantke, K.-P. Fähnrich and
W. S. Wittig (Eds.), Marktplatz Internet: von E-Learning bis E-Payment, 13. Leipziger Informatik-
Tage, LIT 2005, 21.-23. September 2005, Leipzig (Vol. 72, pp. 147–156). GI.

Bonatti, P. A., De Coi, J. L., Olmedilla, D. and Sauro, L. (2009). Rule-Based Policy Representations and
Reasoning. In Semantic techniques for the web (Chap. 4, pp. 201–232).

Bonatti, P. A., Hogan, A., Polleres, A. and Sauro, L. (2011). Robust and scalable Linked Data reasoning
incorporating provenance and trust annotations. Journal of Web Semantics, 9 (2), 165–201.

Bradshaw, J. M., Dutfield, S., Benoit, P. and Woolley, J. D. (1997). KAoS: Toward an industrial-strength
open agent architecture. In Software Agents (pp. 375–418).

Bray, T., Hollander, D., Layman, A., Tobin, R. and Thompson, H. S. (Eds.). (2009). Namespaces in XML
1.0 (Third Edition). W3C. Retrieved March 27, 2012, from http://www.w3.org/TR/2009/REC-xml-

names-20091208/

Bray, T., Paoli, J. and Sperberg-McQueen, C. M. (Eds.). (2010). XML Path Language (XPath) 2.0
(Second Edition). World Wide Web consortium. Retrieved March 27, 2012, from http://www.w3.

org/TR/2010/REC-xpath20-20101214/

Bray, T., Paoli, J., Sperberg-Mcqueen, C. M., Maler, E. and Yergeau, F. (Eds.). (2008). Extensible Markup
Language (XML) 1.0 (Fifth Edition). W3C. Retrieved March 27, 2012, from http://www.w3.org/TR/

2008/REC-xml-20081126/

Brickley, D. and Guha, R. V. (Eds.). (2004). RDF Vocabulary Description Language 1.0: RDF Schema.
W3C. Retrieved March 27, 2012, from http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

Buneman, P. (1997). Semistructured Data. In Proceedings of the sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems (pp. 117–121). PODS ’97. New York, NY,
USA: ACM.

161

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2010/REC-xpath20-20101214/
http://www.w3.org/TR/2010/REC-xpath20-20101214/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

Bibliography 162

Buneman, P. and Kostylev, E. (2010). Annotation Algebras for RDFS. In The Second International
Workshop on the role of Semantic Web in Provenance Management (SWPM-10). CEUR Workshop
Proceedings.

Carroll, J. J., Bizer, C., Hayes, P. J. and Stickler, P. (2005). Named graphs. Journal of Web Semantics,
3 (4), 247–267.

Carroll, J. J. and Stickler, P. (2004). TriX, RDF Triples in XML (tech. rep. No. HPL-2003-268). HP
Labs. Retrieved March 27, 2012, from http://www.hpl.hp.com/techreports/2004/HPL-2004-56.html

Ceri, S. and Gottlob, G. (1985). Translating SQL Into Relational Algebra: Optimization, Semantics, and
Equivalence of SQL Queries. IEEE Transactions on Software Engineering, 11 (4), 324–345.

Chamberlin, D., Robie, J., Boag, S., Fernández, M. F., Siméon, J. and Florescu, D. (Eds.). (2010).
XQuery 1.0: An XML Query Language (Second Edition). W3C. Retrieved March 27, 2012, from
http://www.w3.org/TR/2010/REC-xquery-20101214/

Chinnici, R., Moreau, J.-J., Ryman, A. and Weerawarana, S. (Eds.). (2007). Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language. W3C Recommendation. Retrieved March
27, 2012, from http://www.w3.org/TR/2007/REC-wsdl20-20070626/

Clark, K. G., Feigenbaum, L. and Torres, E. (Eds.). (2008). SPARQL Protocol for RDF. W3C Recom-
mendation. Retrieved March 27, 2012, from http://www.w3.org/TR/2008/REC-rdf-sparql-protocol-

20080115/

Cluet, S., Delobel, C., Siméon, J. and Smaga, K. (1998). Your Mediators Need Data Conversion! In L. M.
Haas and A. Tiwary (Eds.), SIGMOD 1998, Proceedings ACM SIGMOD International Conference
on Management of Data, June 2-4, 1998, Seattle, Washington, USA (pp. 177–188). ACM Press.

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Communications of the
ACM, 13 (6), 377–387.

Codd, E. F. (1980). Data Models in Database Management. In M. L. Brodie and S. N. Zilles (Eds.),
Proceedings of the Workshop on Data Abstraction, Databases and Conceptual Modelling, Pingree
Park, Colorado, June 23-26, 1980 (Vol. 11, 2, pp. 112–114). ACM Press.

Connolly, D. (Ed.). (2007). Gleaning Resource Descriptions from Dialects of Languages (GRDDL). W3C
Recommendation. Retrieved March 27, 2012, from http://www.w3.org/TR/2007/REC-grddl-20070911/

Corby, O., Kefi-Khelif, L., Cherfi, H., Gandon, F. and Khelif, K. (2009). Querying the Semantic Web
of Data using SPARQL, RDF and XML (tech. rep. No. 6847). Institut National de Recherche en
Informatique et en Automatique.

Cowan, J. and Tobin, R. (Eds.). (2004). XML Information Set (Second Edition). W3C. Retrieved March
27, 2012, from http://www.w3.org/TR/2004/REC-xml-infoset-20040204/

Cui, Y., Widom, J. and Wiener, J. L. (2000). Tracing the Lineage of View Data in a Warehousing
Environment. ACM Transactions on Database Systems, 25 (2), 179–227.

Cyganiak, R. (2005). A relational algebra for SPARQL. HP-Labs. Retrieved March 27, 2012, from
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html

Cyganiak, R., Harth, A. and Hogan, A. (2009). N-Quads: Enxtending N-Triples with Context. Retrieved
March 27, 2012, from http://sw.deri.org/2008/07/n-quads/

Das, S. and Srinivasan, J. (2009). Database Technologies for RDF. In S. Tessaris, E. Franconi, T. Eiter,
C. Gutiérrez, S. Handschuh, M.-C. Rousset and R. A. Schmidt (Eds.), Reasoning Web. Semantic
Technologies for Information Systems, 5th International Summer School 2009, Brixen-Bressanone,
Italy, August 30 - September 4, 2009, Tutorial Lectures (Vol. 5689, pp. 205–221). Springer.

162

http://www.hpl.hp.com/techreports/2004/HPL-2004-56.html
http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2007/REC-wsdl20-20070626/
http://www.w3.org/TR/2008/REC-rdf-sparql-protocol-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-protocol-20080115/
http://www.w3.org/TR/2007/REC-grddl-20070911/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html
http://sw.deri.org/2008/07/n-quads/

Bibliography 163

Das, S., Sundara, S. and Cyganiak, R. (Eds.). (2012). R2RML: RDB to RDF Mapping Language. W3C
Recommendation. Retrieved September 27, 2012, from http://www.w3.org/TR/2012/REC-r2rml-

20120927/

Delbru, R., Polleres, A., Tummarello, G. and Decker, S. (2008). Context Dependent Reasoning for
Semantic Documents in Sindice. In A. Fokoue, Y. Guo and J. H. T. Liebig (Eds.), 4th International
Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS2008).

Deursen, D. V., Poppe, C., Martens, G., Mannens, E. and Walle, R. V. d. (2008). XML to RDF Conversion:
A Generic Approach. In International Conference on Automated Solutions for Cross Media Content
and Multi-Channel Distribution, 2008 (AXMEDIS ’08) (pp. 138–144). Washington, DC, USA: IEEE
Computer Society.

di Vimercati, S. D. C., Samarati, P. and Jajodia, S. (2005). Policies, Models, and Languages for Access
Control. In S. Bhalla (Ed.), Databases in Networked Information Systems, 4th International Work-
shop, DNIS 2005, Aizu-Wakamatsu, Japan, March 28-30, 2005, Proceedings (Vol. 3433, pp. 225–237).
Springer.

Dietzold, S. and Auer, S. (2006). Access Control on RDF Triple Stores from a Semantic Wiki Perspective.
In C. Bizer, S. Auer and L. Miller (Eds.), Proceedings of 2nd Workshop on Scripting for the Semantic
Web at ESWC, Budva, Montenegro. (Vol. 183).

Dillnut, R. (2006). Surviving the information explosion [knowledge management]. Engineering Management
Journal, 16 (1), 39–41.

Dividino, R. Q., Sizov, S., Staab, S. and Schueler, B. (2009). Querying for Provenance, Trust, Uncertainty
and other Meta Knowledge in RDF. Journal of Web Semantics, 7 (3), 204–219.

Doan, A. and Halevy, A. Y. (2005). Semantic Integration Research in the Database Community: A Brief
Survey. AI Magazine, 26 (1), 83–94.

Draper, D., Fankhauser, P., Fernández, M., Malhotra, A., Rose, K., Rys, M., . . . Wadler, P. (Eds.). (2010).
XQuery 1.0 and XPath 2.0 Formal Semantics (Second Edition). W3C. Retrieved March 27, 2012,
from http://www.w3.org/TR/2010/REC-xquery-semantics-20101214/

Draper, D., Halevy, A. Y. and Weld, D. S. (2001a). The Nimble Integration Engine. In SIGMOD
Conference (pp. 567–568).

Draper, D., Halevy, A. Y. and Weld, D. S. (2001b). The Nimble XML Data Integration System. In
D. Georgakopoulos and A. Buchmann (Eds.), Proceedings of the 17th International Conference on
Data Engineering, April 2-6, 2001, Heidelberg, Germany (pp. 155–160). IEEE Computer Society.

Droop, M., Flarer, M., Groppe, J., Groppe, S., Linnemann, V., Pinggera, J., . . . Zugal, S. (2008).
Embedding XPath Queries into SPARQL Queries. In J. Cordeiro and J. Filipe (Eds.), ICEIS 2008
- Proceedings of the Tenth International Conference on Enterprise Information Systems, Volume
DISI, Barcelona, Spain, June 12-16, 2008 (pp. 5–14).

Eisenberg, A. and Melton, J. (2001). SQL/XML and the SQLX Informal Group of Companies. SIGMOD
Record, 30 (3), 105–108.

Eisenberg, A. and Melton, J. (2004). Advancements in SQL/XML. SIGMOD Record, 33 (3), 79–86.

Erling, O. and Mikhailov, I. (2007). RDF Support in the Virtuoso DBMS. In S. Auer, C. Bizer, C. Müller
and A. V. Zhdanova (Eds.), The Social Semantic Web 2007, Proceedings of the 1st Conference on
Social Semantic Web (CSSW), September 26-28, 2007, Leipzig, Germany (Vol. 113, pp. 59–68). GI.

Fernández, M. F., Malhotra, A., Marsh, J., Nagy, M. and Walsh, N. (Eds.). (2010). XQuery 1.0 and
XPath 2.0 Data Model (XDM) (Second Edition). W3C. Retrieved March 27, 2012, from http:

//www.w3.org/TR/2010/REC-xpath-datamodel-20101214/

163

http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.w3.org/TR/2010/REC-xquery-semantics-20101214/
http://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/
http://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/

Bibliography 164

Fischer, P., Florescu, D., Kaufmann, M. and Kossmann, D. (2011). Translating SPARQL and SQL to
XQuery. In XML Prague 2011 (pp. 81–98).

Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y. and Christophides, V. (2009). Coloring RDF Triples
to Capture Provenance. In A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard,
E. Motta and K. Thirunarayan (Eds.), The Semantic Web - ISWC 2009, 8th International Semantic
Web Conference (Vol. 5823, pp. 196–212). Lecture Notes in Computer Science. Springer.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J. D., . . . Widom,
J. (1997). The TSIMMIS Approach to Mediation: Data Models and Languages. Journal of Intelligent
Information Systems, 8 (2), 117–132.

Gearon, P., Passant, A. and Polleres, A. (Eds.). (2012). SPARQL 1.1 Update. W3C. Retrieved March 27,
2012, from http://www.w3.org/TR/2012/WD-sparql11-update-20120105/

Glimm, B. and Ogbuji, C. (Eds.). (2012). SPARQL 1.1 Entailment Regimes. W3C. Retrieved March 27,
2012, from http://www.w3.org/TR/2012/WD-sparql11-entailment-20120105/

Goh, C. H., Madnick, S. E. and Siegel, M. D. (1994). Context Interchange: Overcoming the Challenges
of Large-Scale Interoperable Database Systems in a Dynamic Environment. In Proceedings of the
third international conference on Information and knowledge management (pp. 337–346). CIKM
’94. New York, NY, USA: ACM.

Grant, J. and Beckett, D. (Eds.). (2004). RDF Test Cases. World Wide Web consortium. Retrieved March
27, 2012, from http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/

Gray, A. J. G., Gray, N. and Ounis, I. (2009). Can RDB2RDF Tools Feasibily Expose Large Science
Archives for Data Integration? In L. Aroyo, P. Traverso, F. Ciravegna, P. Cimiano, T. Heath,
E. Hyvönen, . . . E. P. B. Simperl (Eds.), The Semantic Web: Research and Applications, 6th
European Semantic Web Conference, ESWC 2009, Heraklion, Crete, Greece, May 31-June 4, 2009,
Proceedings (Vol. 5554, pp. 491–505). Lecture Notes in Computer Science. Springer.

Green, T. J., Karvounarakis, G. and Tannen, V. (2007). Provenance Semirings. In L. Libkin (Ed.),
Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 11-13, 2007, Beijing, China (pp. 31–40). ACM Press.

Groppe, S., Groppe, J., Linnemann, V., Kukulenz, D., Hoeller, N. and Reinke, C. (2008). Embedding
SPARQL into XQuery/XSLT. In R. L. Wainwright and H. Haddad (Eds.), Proceedings of the
2008 ACM Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008
(pp. 2271–2278). ACM.

Grust, T., Mayr, M. and Rittinger, J. (2010). Let SQL Drive the XQuery Workhorse (XQuery Join Graph
Isolation). In I. Manolescu, S. Spaccapietra, J. Teubner, M. Kitsuregawa, A. Léger, F. Naumann, . . .
F. Özcan (Eds.), EDBT 2010, 13th International Conference on Extending Database Technology,
Lausanne, Switzerland, March 22-26, 2010, Proceedings (Vol. 426, pp. 147–158). ACM.

Grust, T., Rittinger, J. and Teubner, J. (2008). Pathfinder: XQuery Off the Relational Shelf. IEEE Data
Engineering Bulletin, 31 (4), 7–14.

Grust, T., Sakr, S. and Teubner, J. (2004). XQuery on SQL Hosts. In M. A. Nascimento, M. T. Özsu,
D. Kossmann, R. J. Miller, J. A. Blakeley and K. B. Schiefer (Eds.), (e)Proceedings of the Thirtieth
International Conference on Very Large Data Bases, Toronto, Canada, August 31 - September 3
2004 (pp. 252–263). Morgan Kaufmann.

Gutiérrez, C., Hurtado, C. A. and Mendelzon, A. O. (2004). Foundations of Semantic Web Databases. In
PODS (pp. 95–106).

Gutiérrez, C., Hurtado, C. A. and Vaisman, A. A. (2007). Introducing Time into RDF. IEEE Transactions
on Knowledge and Data Engineering, 19 (2), 207–218.

164

http://www.w3.org/TR/2012/WD-sparql11-update-20120105/
http://www.w3.org/TR/2012/WD-sparql11-entailment-20120105/
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/

Bibliography 165

Halevy, A. Y., Ashish, N., Bitton, D., Carey, M. J., Draper, D., Pollock, J., . . . Sikka, V. (2005). Enterprise
Information Integration: Successes, Challenges and Controversies. In F. Özcan (Ed.), Proceedings of
the ACM SIGMOD International Conference on Management of Data, Baltimore, Maryland, USA,
June 14-16, 2005 (pp. 778–787). ACM.

Halevy, A. Y., Rajaraman, A. and Ordille, J. J. (2006). Data Integration: The Teenage Years. In U.
Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, . . . Y.-K. Kim
(Eds.), Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006 (pp. 9–16). ACM.

Harris, S. and Seaborne, A. (Eds.). (2012). SPARQL 1.1 Query Language. W3C. Retrieved March 27,
2012, from http://www.w3.org/TR/2012/WD-sparql11-query-20120105/

Hartig, O. (2009). Querying Trust in RDF Data with tSPARQL. In L. Aroyo, P. Traverso, F. Ciravegna,
P. Cimiano, T. Heath, E. Hyvönen, . . . E. P. B. Simperl (Eds.), The Semantic Web: Research and
Applications, 6th European Semantic Web Conference, ESWC 2009, Heraklion, Crete, Greece, May
31-June 4, 2009, Proceedings (Vol. 5554, pp. 5–20). Lecture Notes in Computer Science. Springer.

Hayes, J. and Gutiérrez, C. (2004). Bipartite Graphs as Intermediate Model for RDF. In S. A. McIlraith,
D. Plexousakis and F. van Harmelen (Eds.), The Semantic Web - ISWC 2004: Third International
Semantic Web Conference,Hiroshima, Japan, November 7-11, 2004. Proceedings (Vol. 3298, pp. 47–
61). Springer.

Hayes, P. (Ed.). (2004). RDF Semantics. W3C. Retrieved March 27, 2012, from http://www.w3.org/TR/

2004/REC-rdf-mt-20040210/

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F. and Rudolph, S. (Eds.). (2009). OWL 2 Web
Ontology Language Primer. W3C. Retrieved September 18, 2012, from http://www.w3.org/TR/2009/

REC-owl2-primer-20091027/

Hollenbach, J., Presbrey, J. and Berners-Lee, T. (2009). Using RDF Metadata To Enable Access Control
on the Social Semantic Web. In T. Tudorache, G. Correndo, N. Noy, H. Alani and M. Greaves
(Eds.), Proceedings of the Workshop on Collaborative Construction, Management and Linking of
Structured Knowledge (CK2009) (Vol. 514). CEUR-WS.org.

ISO. (1986). ISO 8879:1986: Information processing — Text and office systems — Standard Generalized
Markup Language (SGML). Geneva, Switzerland: International Organization for Standardization.

Kagal, L. and Finin, T. (2003). A Policy Language for a Pervasive Computing Environment. In Proceedings
POLICY 2003. IEEE 4th International Workshop on Policies for Distributed Systems and Networks
(pp. 63–74). IEEE Computer Society.

Katz, H., Chamberlin, D., Kay, M., Wadler, P. and Draper, D. (2003). XQuery from the Experts: A Guide
to the W3C XML Query Language. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc.

Kay, M. (Ed.). (2007). XSL Transformations (XSLT) Version 2.0. W3C. Retrieved March 27, 2012, from
http://www.w3.org/TR/2007/REC-xslt20-20070123/

Kepser, S. (2004). A Simple Proof for the Turing-Completeness of XSLT and XQuery. In Extreme Markup
Languages R©.

Kifer, M. and Subrahmanian, V. S. (1992). Theory of Generalized Annotated Logic Programming and its
Applications. Journal of Logic Programming, 12, 335–367.

Klement, E. P., Mesiar, R. and Pap, E. (2000). Triangular Norms. Trends in Logic - Studia Logica Library.
Kluwer Academic Publishers.

Knechtel, M. and Stuckenschmidt, H. (2010). Query-Based Access Control for Ontologies. In P. Hitzler
and T. Lukasiewicz (Eds.), Web Reasoning and Rule Systems - Fourth International Conference,

165

http://www.w3.org/TR/2012/WD-sparql11-query-20120105/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://www.w3.org/TR/2007/REC-xslt20-20070123/

Bibliography 166

RR 2010, Bressanone/Brixen, Italy, September 22-24, 2010. Proceedings (Vol. 6333, pp. 73–87).
Springer.

Knublauch, H., Hendler, J. A. and Idehen, K. (2011). SPIN - Overview and Motivation. W3C Member
Submission. Retrieved March 27, 2012, from http://www.w3.org/Submission/2011/SUBM-spin-

overview-20110222/

Koch, C. (2006). On the Complexity of Nonrecursive XQuery and Functional Query Languages on
Complex Values. ACM Transactions on Database Systems, 31 (4), 1215–1256.

Koubarakis, M. and Kyzirakos, K. (2010). Modeling and Querying Metadata in the Semantic Sensor Web:
The Model stRDF and the Query Language stSPARQL. In L. Aroyo, G. Antoniou, E. Hyvönen,
A. ten Teije, H. Stuckenschmidt, L. Cabral and T. Tudorache (Eds.), The Semantic Web: Research
and Applications, 7th Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece,
May 30 - June 3, 2010, Proceedings, Part I (Vol. 6088, pp. 425–439). Springer.

Krennwallner, T., Lopes, N. and Polleres, A. (2009). XSPARQL: Semantics. W3C member submission.
Retrieved March 27, 2012, from http://www.w3.org/Submission/2009/SUBM-xsparql-semantics-

20090120/

Levy, A. Y., Rajaraman, A. and Ordille, J. J. (1996). Querying Heterogeneous Information Sources Using
Source Descriptions. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan and N. L. Sarda (Eds.),
VLDB’96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6,
1996, Mumbai (Bombay), India (pp. 251–262). Morgan Kaufmann.

Lloyd, J. W. (1987). Foundations of Logic Programming, 2nd Edition. Springer.

Lopes, N., Bischof, S., Decker, S. and Polleres, A. (2011). On the Semantics of Heterogeneous Querying of
Relational, XML and RDF Data with XSPARQL. In P. Moura and V. B. Nogueira (Eds.), Proceedings
of the 15th Portuguese Conference on Artificial Intelligence (EPIA2011) – Computational Logic
with Applications Track. Lisbon, Portugal.

Lopes, N., Bischof, S., Erling, O., Polleres, A., Passant, A., Berrueta, D., . . . Zaremba, M. (2010). RDF
and XML: Towards a unified query layer. In Proceedings of the W3C Workshop on RDF Next Steps.
Palo Alto, CA, USA.

Lopes, N., Kirrane, S., Zimmermann, A., Polleres, A. and Mileo, A. (2012). A Logic Programming approach
for Access Control over RDF. In A. Dovier and V. S. Costa (Eds.), Technical Communications of
the 28th International Conference on Logic Programming (ICLP’12) (Vol. 17, pp. 381–392). Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

Lopes, N., Krennwallner, T., Polleres, A., Akhtar, W. and Stéphane Corlosquet. (2009). XSPARQL:
Implementation and Test-cases. W3C Member Submission. Retrieved March 27, 2012, from http:

//www.w3.org/Submission/2009/SUBM-xsparql-implementation-20090120/

Lopes, N. and Polleres, A. (2011). Integrating RDF and XML with XSPARQL. 2011 Semantic Technology
Conference. Retrieved March 27, 2012, from http://semtech2011.semanticweb.com/sessionPop.cfm?

confid=62&proposalid=3897

Lopes, N., Polleres, A., Straccia, U. and Zimmermann, A. (2010). AnQL: SPARQLing Up Annotated
RDFS. In P. F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, . . . B. Glimm
(Eds.), International Semantic Web Conference (1) (Vol. 6496, pp. 518–533). Lecture Notes in
Computer Science. Springer.

Lopes, N., Zimmermann, A., Hogan, A., Lukácsy, G., Polleres, A., Straccia, U. and Decker, S. (2010).
RDF Needs Annotations. In Proceedings of the W3C Workshop on RDF Next Steps. Palo Alto, CA,
USA.

166

http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222/
http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222/
http://www.w3.org/Submission/2009/SUBM-xsparql-semantics-20090120/
http://www.w3.org/Submission/2009/SUBM-xsparql-semantics-20090120/
http://www.w3.org/Submission/2009/SUBM-xsparql-implementation-20090120/
http://www.w3.org/Submission/2009/SUBM-xsparql-implementation-20090120/
http://semtech2011.semanticweb.com/sessionPop.cfm?confid=62&proposalid=3897
http://semtech2011.semanticweb.com/sessionPop.cfm?confid=62&proposalid=3897

Bibliography 167

Lv, Y., Ma, Z. M. and Yan, L. (2008). Fuzzy RDF: A Data Model to Represent Fuzzy Metadata. In
FUZZ-IEEE 2008, IEEE International Conference on Fuzzy Systems, Hong Kong, China, 1-6 June,
2008, Proceedings (pp. 1439–1445). IEEE.

Ma, Z. M. and Yan, L. (2007). Fuzzy XML data modeling with the UML and relational data models.
Data & Knowledge Engineering, 63 (3), 972–996.

Ma, Z. M. and Yan, L. (2008). A Literature Overview of Fuzzy Database Models. Journal of Information
Science and Engineering, 24 (1), 189–202.

Malhotra, A., Melton, J., Walsh, N. and Kay, M. (Eds.). (2010). XQuery 1.0 and XPath 2.0 Functions and
Operators (Second Edition). W3C. Retrieved March 27, 2012, from http://www.w3.org/TR/2010/REC-

xpath-functions-20101214/

Manola, F. and Miller, E. (Eds.). (2004). RDF Primer. W3C. Retrieved March 27, 2012, from http:

//www.w3.org/TR/2004/REC-rdf-primer-20040210/

Manolescu, I., Florescu, D. and Kossmann, D. (2001). Answering XML Queries on Heterogeneous Data
Sources. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao and R. T.
Snodgrass (Eds.), VLDB 2001, Proceedings of 27th International Conference on Very Large Data
Bases, September 11-14, 2001, Roma, Italy (pp. 241–250). Morgan Kaufmann.

May, N., Helmer, S. and Moerkotte, G. (2003). Three Cases for Query Decorrelation in XQuery. In
Z. Bellahsene, A. B. Chaudhri, E. Rahm, M. Rys and R. Unland (Eds.), First International XML
Database Symposium, XSym 2003 (Vol. 2824, pp. 70–84). Springer.

Mazzieri, M. (2004). A Fuzzy RDF Semantics to Represent Trust Metadata. In 1st Workshop on Semantic
Web Applications and Perspectives (SWAP2004) (pp. 83–89). Ancona, Italy.

Mazzieri, M. and Dragoni, A. F. (2005). A Fuzzy Semantics for Semantic Web Languages. In P. C. G.
da Costa, K. B. Laskey, K. J. Laskey and M. Pool (Eds.), International Semantic Web Conference,
ISWC 2005, Galway, Ireland, Workshop 3: Uncertainty Reasoning for the Semantic Web, 7 November
2005 (pp. 12–22).

Mazzieri, M. and Dragoni, A. F. (2008). A Fuzzy Semantics for the Resource Description Framework. In
Uncertainty Reasoning for the Semantic Web I, ISWC International Workshops, URSW 2005-2007,
Revised Selected and Invited Papers (5327, pp. 244–261). Lecture Notes in Computer Science.
Springer.

Muñoz, S., Pérez, J. and Gutiérrez, C. (2007). Minimal Deductive Systems for RDF. In E. Franconi,
M. Kifer and W. May (Eds.), The Semantic Web: Research and Applications, 4th European Semantic
Web Conference, ESWC 2007, Innsbruck, Austria, June 3-7, 2007, Proceedings (Vol. 4519, pp. 53–
67). Springer.

Muñoz, S., Pérez, J. and Gutiérrez, C. (2009). Simple and Efficient Minimal RDFS. Journal of Web
Semantics, 7 (3), 220–234.

Musser, J. (2011). Open APIs & the Semantic Web: State of the Market. 2011 Semantic Technology
Conference. Retrieved March 27, 2012, from http://semtech2011.semanticweb.com/sessionPop.cfm?

confid=62&proposalid=3803

Navathe, S. B. (1992). Evolution of Data Modeling for Databases. Communications of the ACM, 35 (9),
112–123.

Negri, M., Pelagatti, G. and Sbattella, L. (1991). Formal Semantics of SQL Queries. ACM Transactions
on Database Systems, 16 (3), 513–534.

Oro, E., Ruffolo, M. and Staab, S. (2010). SXPath - Extending XPath towards Spatial Querying on Web
Documents. PVLDB, 4 (2), 129–140.

167

http://www.w3.org/TR/2010/REC-xpath-functions-20101214/
http://www.w3.org/TR/2010/REC-xpath-functions-20101214/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://semtech2011.semanticweb.com/sessionPop.cfm?confid=62&proposalid=3803
http://semtech2011.semanticweb.com/sessionPop.cfm?confid=62&proposalid=3803

Bibliography 168

Papakonstantinou, Y., Garcia-Molina, H. and Widom, J. (1995). Object Exchange Across Heterogeneous
Information Sources. In P. S. Yu and A. L. P. Chen (Eds.), Proceedings of the Eleventh International
Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan (pp. 251–260). IEEE Computer
Society.

Passant, A., Kopecký, J., Corlosquet, S., Berrueta, D., Palmisano, D. and Polleres, A. (2009). XSPARQL:
Use cases. W3C Member Submission. Retrieved March 27, 2012, from http : / / www . w3 . org /

Submission/2009/SUBM-xsparql-use-cases-20090120/

Patel-Schneider, P. F. and Siméon, J. (2003). The Yin/Yang Web: A Unified Model for XML Syntax and
RDF Semantics. IEEE Transactions on Knowledge and Data Engineering, 15 (4), 797–812.

Pérez, J., Arenas, M. and Gutiérrez, C. (2006). Semantics and Complexity of SPARQL. In I. F. Cruz,
S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, . . . L. Aroyo (Eds.), The Semantic Web -
ISWC 2006, 5th International Semantic Web Conference, ISWC 2006, Athens, GA, USA, November
5-9, 2006, Proceedings (Vol. 4273, pp. 30–43). Springer.

Pérez, J., Arenas, M. and Gutiérrez, C. (2008). nSPARQL: A Navigational Language for RDF. In A. P.
Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. W. Finin and K. Thirunarayan (Eds.), The
Semantic Web - ISWC 2008, 7th International Semantic Web Conference, ISWC 2008, Karlsruhe,
Germany, October 26-30, 2008. Proceedings (Vol. 5318, pp. 66–81). Springer.

Pérez, J., Arenas, M. and Gutiérrez, C. (2009). Semantics and complexity of SPARQL. ACM Transactions
on Database Systems, 34 (3), 1–45.

Perry, M., Jain, P. and Sheth, A. P. (2011). SPARQL-ST: Extending SPARQL to Support Spatiotemporal
Queries. In N. Ashish and A. P. Sheth (Eds.), Geospatial Semantics and the Semantic Web (Vol. 12,
pp. 61–86). Semantic Web And Beyond Computing for Human Experience. Springer.

Polleres, A. (2007). From SPARQL to Rules (and back). In Proceedings of the 16th World Wide Web
Conference (WWW2007). Banff, Canada.

Polleres, A., Krennwallner, T., Lopes, N., Kopecký, J. and Decker, S. (2009). XSPARQL Language
Specification. W3C Member Submission. Retrieved March 27, 2012, from http://www.w3.org/

Submission/2009/SUBM-xsparql-language-specification-20090120/

Prud’hommeaux, E. and Buil-Aranda, C. (Eds.). (2011). SPARQL 1.1 Federated Query. W3C. Retrieved
March 27, 2012, from http://www.w3.org/TR/2011/WD-sparql11-federated-query-20111117/

Prud’hommeaux, E. and Seaborne, A. (Eds.). (2008). SPARQL Query Language for RDF. W3C. Retrieved
March 27, 2012, from http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

Pugliese, A., Udrea, O. and Subrahmanian, V. S. (2008). Scaling RDF with time. In J. Huai, R. Chen,
H.-W. Hon, Y. Liu, W.-Y. Ma, A. Tomkins and X. Zhang (Eds.), Proceedings of the 17th International
Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008 (pp. 605–614).
ACM.

Rizzolo, F. and Vaisman, A. A. (2008). Temporal XML: modeling, indexing, and query processing. VLDB
Journal, 17 (5), 1179–1212.

Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J. and Siméon, J. (Eds.). (2011). XQuery
Update Facility 1.0. W3C. Retrieved March 27, 2012, from http://www.w3.org/TR/2011/REC-xquery-

update-10-20110317/

Rodrigues, T., Rosa, P. and Cardoso, J. (2008). Moving from syntactic to semantic organizations using
JXML2OWL. Computers in Industry, 59 (8), 808–819.

Schenk, S. (2008). On the Semantics of Trust and Caching in the Semantic Web. In Proceedings of 7th
International Semantic Web Conference (ISWC’2008) (pp. 533–549).

168

http://www.w3.org/Submission/2009/SUBM-xsparql-use-cases-20090120/
http://www.w3.org/Submission/2009/SUBM-xsparql-use-cases-20090120/
http://www.w3.org/Submission/2009/SUBM-xsparql-language-specification-20090120/
http://www.w3.org/Submission/2009/SUBM-xsparql-language-specification-20090120/
http://www.w3.org/TR/2011/WD-sparql11-federated-query-20111117/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/

Bibliography 169

Schmidt, A., Waas, F., Kersten, M. L., Carey, M. J., Manolescu, I. and Busse, R. (2002). XMark:
A Benchmark for XML Data Management. In VLDB 2002, Proceedings of 28th International
Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong, China (pp. 974–985).
Morgan Kaufmann.

Farrell, J. and Lausen, H. (Eds.). (2007). Semantic Annotations for WSDL and XML Schema. W3C
Recommendation. Retrieved March 27, 2012, from http://www.w3.org/TR/2007/REC- sawsdl-

20070828/

Sheth, A. P. and Larson, J. A. (1990). Federated Database Systems for Managing Distributed, Heterogen-
eous, and Autonomous Databases. ACM Computing Surveys, 22 (3), 183–236.

Silberschatz, A., Korth, H. F. and Sudarshan, S. (2005). Database System Concepts, 5th Edition. McGraw-
Hill Book Company.

Silberschatz, A., Korth, H. F. and Sudarshan, S. (1996). Data Models. ACM Computing Surveys, 28 (1),
105–108.

Siméon, J. and Wadler, P. (2003). The Essence of XML. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (pp. 1–13).

Snodgrass, R. T. (1990). Temporal Databases - Status and Research Directions. SIGMOD Record, 19 (4),
83–89.

Snodgrass, R. T. (1999). Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann.

Snodgrass, R. T., Ahn, I., Ariav, G., Batory, D. S., Clifford, J., Dyreson, C. E., . . . Sripada, S. M. (1994).
TSQL2 Language Specification. SIGMOD Record, 23 (1), 65–86.

Sporny, M., Inkster, T., Story, H., Harbulot, B. and Bachmann-Gmür, R. (2011). WebID 1.0 - Web
Identification and Discovery. W3C. Retrieved September 24, 2012, from http://www.w3.org/2005/

Incubator/webid/spec/drafts/ED-webid-20111212/

Stephens, S. (2007). The Enterprise Semantic Web. In J. Cardoso, M. Hepp and M. D. Lytras (Eds.),
The Semantic Web: Real-World Applications from Industry (Vol. 6, pp. 17–37). Semantic Web And
Beyond Computing for Human Experience. Springer.

Stonebraker, M. and Wong, E. (1974). Access Control in a Relational Data Base Management System by
Query Modification. In Proceedings of the 1974 annual conference - Volume 1 (pp. 180–186). ACM
’74. New York, NY, USA: ACM.

Straccia, U. (2009). A Minimal Deductive System for General Fuzzy RDF. In A. Polleres and T. Swift
(Eds.), Web Reasoning and Rule Systems, Third International Conference, RR 2009, Chantilly, VA,
USA, October 25-26, 2009, Proceedings (Vol. 5837, pp. 166–181). Springer.

Straccia, U., Lopes, N., Lukácsy, G. and Polleres, A. (2010). A General Framework for Representing and
Reasoning with Annotated Semantic Web Data. In M. Fox and D. Poole (Eds.), Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA,
July 11-15, 2010. AAAI Press.

Suciu, D. (1998). Semistructured Data and XML. In K. Tanaka and S. Ghandeharizadeh (Eds.), The 5th
International Conference of Foundations of Data Organization (FODO’98), Kobe, Japan, November
12-13, 1998 (pp. 1–12).

Swartz, A. (2002). MusicBrainz: A Semantic Web Service. IEEE Intelligent Systems, 17 (1), 76–77.

Tao, J., Sirin, E., Bao, J. and McGuinness, D. L. (2010). Integrity Constraints in OWL. In M. Fox and
D. Poole (Eds.), Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press.

Tappolet, J. and Bernstein, A. (2009). Applied Temporal RDF: Efficient Temporal Querying of RDF
Data with SPARQL. In L. Aroyo, P. Traverso, F. Ciravegna, P. Cimiano, T. Heath, E. Hyvönen, . . .

169

http://www.w3.org/TR/2007/REC-sawsdl-20070828/
http://www.w3.org/TR/2007/REC-sawsdl-20070828/
http://www.w3.org/2005/Incubator/webid/spec/drafts/ED-webid-20111212/
http://www.w3.org/2005/Incubator/webid/spec/drafts/ED-webid-20111212/

Bibliography 170

E. P. B. Simperl (Eds.), The Semantic Web: Research and Applications, 6th European Semantic Web
Conference, ESWC 2009, Heraklion, Crete, Greece, May 31-June 4, 2009, Proceedings (Vol. 5554,
pp. 308–322). Lecture Notes in Computer Science. Springer.

Thompson, H. S., Beech, D., Maloney, M. and Mendelsohn, N. (Eds.). (2004). XML Schema Part 1:
Structures Second Edition. W3C. Retrieved March 27, 2012, from http://www.w3.org/TR/2004/REC-

xmlschema-1-20041028/

Udrea, O., Recupero, D. R. and Subrahmanian, V. S. (2006). Annotated RDF. In The Semantic Web:
Research and Applications, 3rd European Semantic Web Conference, ESWC 2006 (4011, pp. 487–
501). Lecture Notes in Computer Science. Springer.

Udrea, O., Recupero, D. R. and Subrahmanian, V. S. (2010). Annotated RDF. ACM Transactions on
Computational Logic, 11 (2), 1–41.

Vrandecic, D., Dengler, F., Rudolph, S. and Erdmann, M. (2005). RDF Syntax Normalization Using
XML Validation. In L. Kagal, O. Lassila and T. Finin (Eds.), Proceedings of the SemRUs 2009:
Semantics for the Rest of Us – Variants of Semantic Web Languages in the Real World (Vol. 521).
CEUR-WS.org.

Walsh, N. (2003). RDF Twig: accessing RDF graphs in XSLT. In Proceedings of the Extreme Markup
Languages, 4-8 August 2003, Montréal, Quebec, Canada.

Widom, J. (2005). Trio: A System for Integrated Management of Data, Accuracy, and Lineage. In CIDR
(pp. 262–276).

Wiederhold, G. (1992). Mediators in the Architecture of Future Information Systems. IEEE Computer,
25 (3), 38–49.

Wiederhold, G., Fries, J. F. and Weyl, S. (1975). Structured organization of clinical data bases. In
American Federation of Information Processing Societies: 1975 National Computer Conference,
19-22 May 1975, Anaheim, CA, USA (Vol. 44, pp. 479–485). AFIPS Press.

Wielemaker, J., Huang, Z. and van der Meij, L. (2008). SWI-Prolog and the Web. Theory and Practice of
Logic Programming, 8 (3), 363–392.

Woodruff, A. and Stonebraker, M. (1997). Supporting Fine-grained Data Lineage in a Database Visu-
alization Environment. In W. A. Gray and P.-Å. Larson (Eds.), Proceedings of the Thirteenth
International Conference on Data Engineering, April 7-11, 1997 Birmingham U.K (pp. 91–102).
IEEE Computer Society.

Yu, C. and Popa, L. (2004). Constraint-Based XML Query Rewriting For Data Integration. In G. Weikum,
A. C. König and S. Deßloch (Eds.), Proceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004 (pp. 371–382). ACM.

Ziegler, P. and Dittrich, K. R. (2004). Three Decades of Data Integration - All Problems Solved? In
R. Jacquart (Ed.), Building the Information Society, IFIP 18th World Computer Congress, Topical
Sessions, 22-27 August 2004, Toulouse, France (pp. 3–12). Kluwer.

Zimmermann, A., Lopes, N., Polleres, A. and Straccia, U. (2012). A General Framework for Representing,
Reasoning and Querying with Annotated Semantic Web Data. Web Semantics: Science, Services
and Agents on the World Wide Web, 11, 72–95.

170

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

List of Figures

1.1. Overview of data models and query languages . 2

2.1. DTD definition for the bands XML data . 16
2.2. XML Schema definition for Bands XML data (partial) . 17

4.1. Schematic view of XSPARQL . 52
4.2. XSPARQLExpr syntax overview . 53
4.3. XSPARQL Type Definitions . 59
4.4. XSPARQL SQLForClause examples . 62
4.5. RDB2RDF mapping for tables “band” and “person” . 76

5.1. XSPARQL implementation architecture . 84
5.2. Implementation functions example . 88
5.3. Variants of benchmark query q9 . 110
5.4. Example output excerpts of queries q9 and q′9 . 110
5.5. Query response times for (variants of) q8 and q9 on all XMarkRDF datasets 112
5.6. Query response times for (variants of) q10 and q11 on all XMarkRDF datasets 113

6.1. Annotated RDFS implementation architecture . 138

7.1. RDF Data Integration and Access Control Enforcement Framework 149
7.2. Load and query execution times for the different Access Control datasets 153

171

List of Tables

2.1. Feature overview of data models . 29

3.1. Mapping from SQL to XML datatypes . 34

4.1. Overview of Related Work . 79

5.1. XMark (and variants) benchmark dataset description . 91
5.2. XMarkRDFS2XQ dataset and translation times . 91
5.3. Query response times (in seconds) of the 2MB dataset. 92
5.4. Query response times (in seconds) of the 100MB dataset. 93
5.5. Query response times (in seconds) of different optimisations for the 2MB datasets. 111

7.1. Access Control dataset description . 152
7.2. Access Control dataset generation and load times . 152
7.3. Query execution time in seconds for the different Access Control datasets. 153

172

List of Data

2.1. Bands in XML (bands.xml) . 15
2.2. Bands in JSON (bands.json) . 20
2.3. Bands in RDF/XML . 23
2.4. Bands in abbreviated RDF/XML . 24
2.5. Bands in Turtle (bands.ttl) . 25

4.1. XML representation of JSON data . 74
4.2. Output of algorithm rdb2rdf (Algorithm 1) . 78

6.1. Temporal Annotated RDFS . 119

7.1. Access Control Annotated RDFS . 148

173

List of Queries

4.1. Lifting using XQuery . 49
4.2. Lowering using XQuery . 51
4.3. Lowering using XSPARQL . 54
4.4. Lifting in XSPARQL . 55
4.5. Lifting from relational database . 57
4.6. Nested XSPARQL query . 63
4.7. Querying JSON using XSPARQL . 74

5.1. Querying a remote endpoint with XSPARQL . 87
5.2. Querying a remote endpoint with SPARQL . 87
5.3. Transformation between RDF representations in XSPARQL 114
5.4. Transformation between RDF representations in SPARQL 1.1 114

174

List of Examples

2.1. Use case data . 11
2.2. Relational Schema . 13
2.3. Database Instance . 13
2.4. Reified RDF statement . 21

3.1. SQL query . 33
3.2. SQL translation into Relational Algebra . 34
3.3. XPath expression . 35
3.4. XSLT template rules . 36
3.5. XQuery query . 37
3.6. SPARQL query . 41
3.7. RDF conjunctive query . 45

4.1. Lifting in XQuery . 49
4.2. Lowering in XQuery . 50
4.3. Lowering RDF data with XSPARQL . 54
4.4. Lifting XML data with XSPARQL . 55
4.5. Variable Name Generation . 56
4.6. Lifting Relational data with XSPARQL . 57
4.7. Translation of SQLForClauses into Relational Algebra . 62
4.8. Blank node injection in XSPARQL nested queries . 63
4.9. Querying JSON using XSPARQL . 75

5.1. select query generation . 86
5.2. Querying Remote SPARQL Endpoints . 86
5.3. Translation between RDF vocabularies . 115

6.1. Temporal domain ⊗ . 124
6.2. Fuzzy domain ⊗ . 124
6.3. Provenance domain ⊗ . 124
6.4. Generalisation operation . 126
6.5. Annotated query . 129
6.6. Assignment query . 130
6.7. Aggregation query . 130
6.8. Ordering query . 131
6.9. AnQL optional . 132
6.10. AnQL optional with filter . 132
6.11. AnQL query . 134
6.12. Assignment in AnQL . 135
6.13. Grouping in AnQL . 136
6.14. Constraints in AnQL . 136

175

List of Examples 176

6.15. Union of temporal annotations . 137
6.16. τSPARQL query . 137
6.17. RDFS subclass implementation rule . 139

7.1. Access Control List . 145
7.2. Datalog Representation of an ACL . 145
7.3. Credential Hierarchies . 146
7.4. Domain Operations . 146
7.5. AnQL Query Example . 148
7.6. XSPARQL+AnQL . 150
7.7. Domain Specific Rule . 151

176

List of Acronyms

RDF Resource Description Framework

SQL Structured Query Language

DTD Document Type Definition

WWW World Wide Web

W3C World Wide Web Consortium

HTML HyperText Markup Language

XML Extensible Markup Language

JSON JavaScript Object Notation

OEM Object Exchange Model

LOD Linking Open Data

URI Uniform Resource Identifier

RDFS RDF Schema

Infoset XML Information Set

XSLT XSL Transformations

XDM XQuery 1.0 and XPath 2.0 Data Model

XSD XML Schema

BGP Basic Graph Pattern

BAP Basic Annotated Pattern

XPath XML Path Language

GRDDL Gleaning Resource Descriptions from Dialects of Languages

SAWSDL Semantic Annotations for Web Services Description Language

FOAF Friend Of A Friend

OWL Web Ontology Language

ACL Access Control List

177

	1 Introduction
	1.1 Problem Statement
	1.2 A Model for Integrated Data
	1.3 Hypothesis
	1.4 Contributions
	1.4.1 Impact
	1.4.2 Other Contributions

	1.5 Thesis Outline

	I State of the Art
	2 Data Models
	2.1 Relational Model
	2.2 Extensible Markup Language (XML)
	2.2.1 XML Namespaces
	2.2.2 XML Validation
	2.2.3 XML Abstract Representations

	2.3 JavaScript Object Notation (JSON)
	2.4 Resource Description Framework (RDF)
	2.4.1 Representation Syntaxes
	2.4.2 Semantics
	2.4.3 RDF Schema

	2.5 Comparison of the Data Models
	2.6 Conclusion

	3 Query Languages
	3.1 Querying Relational Databases
	3.1.1 Conjunctive queries
	3.1.2 SQL

	3.2 Querying XML
	3.2.1 XPath
	3.2.2 XSLT
	3.2.3 XQuery

	3.3 Querying RDF with SPARQL
	3.4 Conclusion

	II Contributions
	4 The XSPARQL Language
	4.1 Syntax
	4.1.1 SparqlForClause
	4.1.2 ConstructClause
	4.1.3 SQLForClause

	4.2 Semantics
	4.2.1 XSPARQL Types
	4.2.2 XSPARQL Semantics for Querying Relational and RDF data
	4.2.3 Extensions to the XQuery Semantics
	4.2.4 Semantics Rules for XSPARQL Expressions

	4.3 Semantic Correspondence between XSPARQL, SQL, XQuery, and SPARQL
	4.4 Consuming JSON Data
	4.5 Processing RDB2RDF Mappings in XSPARQL
	4.5.1 Direct Mapping
	4.5.2 The R2RML mapping language
	4.5.3 R2RML Implementation in XSPARQL

	4.6 Related Work
	4.7 Conclusion

	5 XSPARQL Evaluation and Optimisations
	5.1 Implementation
	5.1.1 SQLForClause and SparqlForClause
	5.1.2 ConstructClause
	5.1.3 Soundness & Completeness of the Implementation

	5.2 The XMarkRDF benchmark
	5.2.1 Experimental Setup
	5.2.2 Base System Results

	5.3 Optimisations of Nested for Expressions
	5.3.1 Dependent Join implementation in XQuery
	5.3.2 Dependent Join implementation in SPARQL
	5.3.3 Nested Queries in XMarkRDF
	5.3.4 Evaluation of the Proposed Optimisations

	5.4 Related Work
	5.5 Conclusion

	6 An Extension of RDF and SPARQL towards Meta-Information
	6.1 RDF(S) with Annotations
	6.1.1 Syntax
	6.1.2 Annotation Domain Specification
	6.1.3 Semantics
	6.1.4 Examples of Annotation Domains
	6.1.5 Deductive system
	6.1.6 Query Answering

	6.2 AnQL: Annotated SPARQL
	6.2.1 Syntax
	6.2.2 Semantics
	6.2.3 Further Extensions of AnQL

	6.3 AnQL Issues and Pitfalls
	6.3.1 Constraints vs Filters
	6.3.2 Union of Annotations
	6.3.3 Temporal Issues

	6.4 Implementation Notes
	6.5 Related Work
	6.6 Conclusion

	III An Integrated Use case
	7 A Secure RDF Data Integration Framework
	7.1 The Access Control Annotation Domain
	7.1.1 Entities and Annotations
	7.1.2 Annotation Domain
	7.1.3 Domain Implementation

	7.2 An Access Control Aware Data Integration Architecture
	7.2.1 Combining XSPARQL and AnQL
	7.2.2 Access Control Enforcement Framework
	7.2.3 Experimental Evaluation

	7.3 Related Work
	7.4 Conclusion

	IV Conclusion
	8 Conclusions
	8.1 Critical Assessment
	8.2 Future Directions
	List of Figures
	List of Tables
	Listings

