
A General Framework for Representing, Reasoning and Querying with
Annotated Semantic Web Data

Antoine Zimmermannc, Nuno Lopesa, Axel Polleresa, Umberto Stracciab

aDigital Enterprise Research Institute, National University of Ireland Galway, Ireland
bIstituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR), Pisa, Italy

cINSA-Lyon, LIRIS, UMR5205, F-69621, France

Abstract

We describe a generic framework for representing and reasoning with annotated Semantic Web data, a task becoming
more important with the recent increased amount of inconsistent and non-reliable meta-data on the web. We formalise
the annotated language, the corresponding deductive system and address the query answering problem. Previous
contributions on specific RDF annotation domains are encompassed by our unified reasoning formalism as we show
by instantiating it on (i) temporal, (ii) fuzzy, and (iii) provenance annotations. Moreover, we provide a generic method
for combining multiple annotation domains allowing to represent, e.g., temporally-annotated fuzzy RDF. Furthermore,
we address the development of a query language – AnQL – that is inspired by SPARQL, including several features
of SPARQL 1.1 (subqueries, aggregates, assignment, solution modifiers) along with the formal definitions of their
semantics.

Keywords: RDF, RDFS, Annotations, SPARQL, query, temporal, fuzzy, provenance

1. Introduction

RDF (Resource Description Framework) [1] is the
widely used representation language for the Semantic
Web and the Web of Data. RDF exposes data as triples,
consisting of subject, predicate and object, stating that
subject is related to object by the predicate relation.
Several extensions of RDF were proposed in order to
deal with time [2, 3, 4], truth or imprecise informa-
tion [5, 6], trust [7, 8] and provenance [9]. All these
proposals share a common approach of extending the
RDF language by attaching meta-information about the
RDF graph or triples. RDF Schema (RDFS) [10] is the
specification of a restricted vocabulary that allows one
to deduce further information from existing RDF triples.
SPARQL [11] is the W3C-standardised query language
for RDF.

In this paper, we present an extension of the RDF
model to support meta-information in the form of an-
notations of triples. We specify the semantics by con-

Email addresses: E-mail:
antoine.zimmermann@insa-lyon.fr (Antoine
Zimmermann), nuno.lopes@deri.org (Nuno Lopes),
axel.polleres@deri.org (Axel Polleres),
straccia@isti.cnr.it (Umberto Straccia)

servatively extending the RDFS semantics and provide a
deductive system for Annotated RDFS. Further, we de-
fine a query language that extends SPARQL and include
advanced features such as aggregates, nested queries
and variable assignments, which are part of the not-yet-
standardised SPARQL 1.1 specification. The present
paper is based on and extends two previously published
articles introducing Annotated RDFS [12] and AnQL
(our SPARQL extension) [13]. In addition to improv-
ing the descriptions of this existing body of work, we
provide the following novelties:

1. we introduce a use case scenario that better reflects
a realistic example of how annotations can be used;

2. we detail three concrete domains of annotations
(temporal, fuzzy, provenance) that were only
sketched in our previous publications;

3. we present a detailed and systematic approach for
combining multiple annotation domains into a new
single complex domain; this represents the most
significant novel contribution of the paper;

4. we discuss the integration of annotated triples with
standard, non-annotated triples, as well as the inte-
gration of data using different annotation domains;

Preprint submitted to Journal of Web Semantics November 27, 2012

5. we describe a prototype implementation.

Section 2 gives preliminary definitions of the RDFS se-
mantics and query answering, restricting ourselves to
the sublanguage ρdf. Our extension of RDF is presented
in Section 3 together with essential examples of primi-
tive domains. Our extension of SPARQL, is presented
in Section 4. Furthermore, Section 5 presents a discus-
sion of important issues with respect to specific domains
and their combination. Finally, Section 6 describes our
prototype implementation.

Related Work
The basis for Annotated RDF were first established

by Udrea et al. [14, 15], where they define triples an-
notated with values taken from a finite partial order. In
their work, triples are of the form (s, p : λ, o), where
the property, rather than the triple is annotated. We in-
stead rely on a richer, not necessarily finite, structure
and provide additional inference capabilities to [15],
such as a more involved propagation of annotation val-
ues through schema triples. For instance, in the tempo-
ral domain, from (a, sc, b) : [2, 6] and (b, sc, c) : [3, 8],
we will infer (a, sc, c) : [3, 6] (sc is the subclass prop-
erty). Essentially, Udrea et al. do not provide an opera-
tion to combine the annotation in such inferences, while
the algebraic structures we consider support such op-
erations. Also, they require specific algorithms, while
we show that a simple extension to the classical RDF
inference rules is sufficient. The query language pre-
sented in this paper consists of conjunctive queries and,
while SPARQL’s Basic Graph Patterns are compared to
their conjunctive queries, they do not consider extend-
ing SPARQL with the possibility of querying annota-
tions. Furthermore, OPTIONAL, UNION and FILTER
SPARQL queries are not considered which results in a
subset of SPARQL that can be directly translated into
their previously presented conjunctive query system.

Adding annotations to logical statements was al-
ready proposed in the logic programming realm in
which Kifer & Subrahmanian [16] present a similar ap-
proach, where atomic formulas are annotated with a
value taken from a lattice of annotation values, an an-
notation variable or a complex annotation, i.e., a func-
tion applied to annotation values or variables. Sim-
ilarly, we can relate our work to annotated relational
databases, especially Green et al. [17] who provides a
similar framework for the relational algebra. After pre-
senting a generic structure for annotations, they focus
more specifically on the provenance domain. The speci-
ficities of the relation algebra, especially Closed World

Assumption, allows them to define a slightly more gen-
eral structure for annotation domains, namely semiring
(as opposed to the residuated lattice in our initial ap-
proach [12, 13]). In relation to our rule-based RDFS
Reasoning, it should be mentioned that Green et al. [17]
also provide an algorithm that can decide ground query
answers for annotated Datalog, which might be used for
RDFS rules; general query answering or materialisation
though might not terminate, due to the general structure
of annotations, in their case. Karvounarakis et al. [18]
extend the work of [17] towards various annotations –
not only provenance, but also confidence, rank, etc. –
but do not specifically discuss their combinations.

In a generic approach mostly focused on Semantic
Web ontologies, Baader et al. [19, 20] describe a frame-
work to delimit sub-ontologies according to access re-
strictions, where access rights are modelled by labels
from a finite lattice, attached to ontological axioms. The
approach is not tied to a particular ontology language,
thereby could be used on RDF datasets. As the alge-
braic structure is fully compatible with our framework,
we can consider that this case is covered by our work.
However, the goal of their work is not to provide means
to reason and query over the access right annotations
but rather to enforce the access rights on subsets of the
axioms.

For the Semantic Web, several extensions of RDF
were proposed in order to deal with specific domains
such as truth of imprecise information [5, 21, 22, 6],
time [2, 3, 4], trust [7, 8] and provenance [9]. These
approaches are detailed in the following paragraphs.

Straccia [6], presents Fuzzy RDF in a general set-
ting where triples are annotated with a degree of truth
in [0, 1]. For instance, “Rome is a big city to degree
0.8” can be represented with (Rome, type, BigCity) : 0.8;
the annotation domain is [0, 1]. For the query lan-
guage, it formalises conjunctive queries. Other similar
approaches for Fuzzy RDF [5, 21, 22] provide the syn-
tax and semantics, along with RDF and RDFS interpre-
tations of the annotated triples. In [22] the author de-
scribes an implementation strategy that relies on trans-
lating the Fuzzy triples into plain RDF triples by using
reification. However these works focus mostly on the
representation format and the query answering problem
is not addressed.

Gutiérrez et al. [2] presents the definitions of Tempo-
ral RDF, including reduction of the semantics of Tem-
poral RDF graphs to RDF graphs, a sound and com-
plete inference system and shows that entailment of
Temporal graphs does not yield extra complexity than
RDF entailment. Our Annotated RDFS framework en-
compasses this work by defining the temporal domain.

2

They present conjunctive queries with built-in predi-
cates as the query language for Temporal RDF, although
they do not consider full SPARQL. Pugliese et al. [3]
presents an optimised indexing schema for Temporal
RDF, the notion of normalised Temporal RDF graph and
a query language for these graphs based on SPARQL.
The indexing scheme consists of clustering the RDF
data based on their temporal distance, for which sev-
eral metrics are given. For the query language they
only define conjunctive queries, thus ignoring some of
the more advanced features of SPARQL. Tappolet and
Bernstein [4] present another approach to the imple-
mentation of Temporal RDF, where each temporal in-
terval is represented as a named graph [23] containing
all triples valid in that time period. Information about
temporal intervals, such as their relative relations, start
and end points, is asserted in the default graph. The τ-
SPARQL query language allows to query the temporal
RDF representation using an extended SPARQL syn-
tax that can match the graph pattern against the snap-
shot of a temporal graph at any given time point and
allows to query the start and endpoints of a temporal in-
terval, whose values can then be used in other parts of
the query.

SPARQL extensions towards querying trust have
been presented by Hartig [7]. Hartig introduces a trust
aware query language, tSPARQL, that includes a new
constructor to access the trust value of a graph pattern.
This value can then be used in other statements such
as FILTERs or ORDER. Also in the setting of trust
management, Schenk [8] defines a bilattice structure to
model trust relying on the dimensions of knowledge and
truth. The defined knowledge about trust in informa-
tion sources can then be used to compute the trust of an
inferred statement. An extension towards OWL is pre-
sented but there is no query language defined. Finally,
this approach is used to resolve inconsistencies in on-
tologies arising from connecting multiple data sources.

In [9] the authors also present a generic extension of
RDF to represent meta information, mostly focused on
provenance and uncertainty. Such meta information is
stored using named graphs and their extended semantics
of RDF, denoted RDF+, assumes a predefined vocabu-
lary to be interpreted as the meta information. However
they do not provide an extension of the RDFS inference
rules or any operations for combining meta information.
The authors also provide an extension of the SPARQL
query language, considering an additional expression
that enables querying the RDF meta information.

Our initial approach of using residuated lattices as the
structure for representing annotations [12, 13] was ex-
tended to the more general semiring structure by Bune-

man & Kostylev [24]. This paper also shows that, once
the RDFS inferences of an RDF graph have been com-
puted for a specific domain, it is possible to reuse these
inferences if the graph is annotated with a different do-
main. Based on this result the authors define a universal
domain which is possible to transform to other domains
by applying the corresponding transformations.

Aidan Hogan’s thesis [25, Chapter 6] provides a
framework for a specific combination of annotations
(authoritativeness, rank, blacklisting) within RDFS and
(a variant of) OWL 2 RL. This work is orthogonal to
ours, in that it does not focus on aspects of query an-
swering, or providing a generic framework for combina-
tions of annotations, but rather on scalable and efficient
algorithms for materialising inferences for the specific
combined annotations under consideration.

2. Preliminaries – Classical RDF and RDFS

In this section we present notions and definitions that
are necessary for our discussions later. First we give a
short overview of RDF and RDFS.

2.1. Syntax
Consider pairwise disjoint alphabets U, B, and L de-

noting, respectively, URI references, blank nodes and
literals.1 We call the elements in UBL (B) terms (vari-
ables, denoted x, y, z). An RDF triple is τ = (s, p, o) ∈
UBL × U × UBL.2 We call s the subject, p the pred-
icate, and o the object. A graph G is a set of triples,
the universe of G, universe(G), is the set of elements in
UBL that occur in the triples of G, the vocabulary of G,
voc(G), is universe(G) ∩ UL.

We rely on a fragment of RDFS, called ρdf [26],
that covers essential features of RDFS. ρdf is de-
fined as the following subset of the RDFS vocabu-
lary: ρdf = {sp, sc, type, dom, range}. Informally, (i)
(p, sp, q) means that property p is a subproperty of
property q; (ii) (c, sc, d) means that class c is a subclass
of class d; (iii) (a, type, b) means that a is of type b; (iv)
(p, dom, c) means that the domain of property p is c;
and (v) (p, range, c) means that the range of property
p is c. In what follows we define a map as a function
µ : UBL → UBL preserving URIs and literals, i.e.,
µ(t) = t, for all t ∈ UL. Given a graph G, we define
µ(G) = {(µ(s), µ(p), µ(o)) | (s, p, o) ∈ G}. We speak of
a map µ from G1 to G2, and write µ : G1 → G2, if µ is
such that µ(G1) ⊆ G2.

1We assume U,B, and L fixed, and for ease we will denote unions
of these sets simply concatenating their names.

2As in [26] we allow literals for s.

3

2.2. Semantics
An interpretation I over a vocabulary V is a tu-

ple I = 〈∆R,∆P,∆C ,∆L, P[[·]],C[[·]], ·I〉, where ∆R,∆P,
∆C ,∆L are the interpretation domains of I, which are
finite non-empty sets, and P[[·]],C[[·]], ·I are the inter-
pretation functions of I. They have to satisfy:

1. ∆R are the resources (the domain or universe of I);

2. ∆P are property names (not necessarily disjoint from
∆R);

3. ∆C ⊆ ∆R are the classes;

4. ∆L ⊆ ∆R are the literal values and contains L ∩ V;

5. P[[·]] is a function P[[·]] : ∆P → 2∆R×∆R ;

6. C[[·]] is a function C[[·]] : ∆C → 2∆R ;

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪ ∆P, and
such that ·I is the identity for plain literals and assigns
an element in ∆R to each element in L;

An interpretation I is a model of a ground graph G, de-
noted I |= G, if and only if I is an interpretation over
the vocabulary ρdf ∪ universe(G) that satisfies the fol-
lowing conditions:

Simple:

1. for each (s, p, o) ∈ G, pIA ∈ ∆P and (sIA , oIA) ∈ P[[pIA]];

Subproperty:

1. P[[spIA]] is transitive over ∆P;

2. if (p, q) ∈ P[[spIA]] then p, q ∈ ∆P and P[[p]] ⊆ P[[q]];

Subclass:

1. P[[scIA]] is transitive over ∆C ;

2. if (c, d) ∈ P[[scIA]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d]];

Typing I:

1. x ∈ C[[c]] if and only if (x, c) ∈ P[[typeIA]];

2. if (p, c) ∈ P[[domIA]] and (x, y) ∈ P[[p]] then x ∈ C[[c]];

3. if (p, c) ∈ P[[rangeIA]] and (x, y) ∈ P[[p]] then y ∈ C[[c]];

Typing II:

1. For each e ∈ ρdf, eIA ∈ ∆P

2. if (p, c) ∈ P[[domIA]] then p ∈ ∆P and c ∈ ∆C

3. if (p, c) ∈ P[[rangeIA]] then p ∈ ∆P and c ∈ ∆C

4. if (x, c) ∈ P[[typeIA]] then c ∈ ∆C

Entailment among ground graphs G and H is as usual.
Now, G |= H, where G and H may contain blank nodes,
if and only if for any grounding G′ of G there is a
grounding H′ of H such that G′ |= H′.3

3A grounding G′ of graph G is obtained, as usual, by replacing
variables in G with terms in UL.

Remark 2.1. In [26], the authors define two variants
of the semantics: the default one includes reflexivity
of P[[spI]] (resp. C[[scI]]) over ∆P (resp. ∆C) but
we are only considering the alternative semantics pre-
sented in [26, Definition 4] which omits this require-
ment. Thus, we do not support an inference such as
G |= (a, sc, a), which anyway are of marginal interest.

Remark 2.2. In a First-Order Logic (FOL) setting, we
may interpret classes as unary predicates, and (RDF)
predicates as binary predicates. Then

1. a subclass relation between class c and d may be
encoded as the formula ∀x.c(x)⇒ d(x)

2. a subproperty relation between property p and q
may be encoded as ∀x∀y.p(x, y)⇒ q(x, y)

3. domain and range properties may be represented
as: ∀x∀y.p(x, y)⇒ c(x) and ∀x∀y.p(x, y)⇒ c(y)

4. the transitivity of a property can be represented as
∀x∀y∃z.(p(x, z) ∧ p(z, y))⇒ p(x, y)

Although this remark is trivial, we will see that it will
play an important role in the formalisation of annotated
RDFS.

2.3. Deductive system

In what follows, we provide the sound and complete
deductive system for our language derived from [26].
The system is arranged in groups of rules that cap-
tures the semantic conditions of models. In every rule,
A, B,C, X, and Y are meta-variables representing ele-
ments in UBL and D, E represent elements in UL. The
rules are as follows:

1. Simple:

(a) G
G′ for a map µ : G′ → G (b) G

G′ for G′ ⊆ G

2. Subproperty:

(a) (A,sp,B),(B,sp,C)
(A,sp,C) (b) (D,sp,E),(X,D,Y)

(X,E,Y)

3. Subclass:

(a) (A,sc,B),(B,sc,C)
(A,sc,C) (b) (A,sc,B),(X,type,A)

(X,type,B)

4. Typing:

(a) (D,dom,B),(X,D,Y)
(X,type,B) (b) (D,range,B),(X,D,Y)

(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B),(D,sp,A),(X,D,Y)
(X,type,B) (b) (A,range,B),(D,sp,A),(X,D,Y)

(Y,type,B)

A reader familiar with [26] will notice that these rules
are as rules 1-5 of [26] (which has 7 rules). We ex-
cluded the rules handling reflexivity (rules 6-7) which
are not needed to answer queries. Furthermore, as noted

4

in [26], the “Implicit Typing” rules are a necessary ad-
dition to the rules presented in [27] for complete RDFS
entailment. These represent the case when variable A in
(D, sp, A) and (A, dom, B) or (A, range, B), is a property
implicitly represented by a blank node.

We denote with {τ1, . . . , τn} `RDFS τ that the conse-
quence τ is obtained from the premise τ1, . . . , τn by ap-
plying one of the inference rules 2-5 above. Note that
n ∈ {2, 3}. `RDFS is extended to the set of all RDFS rules
as well, in which case n ∈ {1, 2, 3}.

If a graph G′ can be obtained by recursively applying
rules 1-5 from a graph G, the sequence of applied rules
is called a proof, denoted G ` G′, of G′ from G. The
following proposition shows that our proof mechanism
is sound and complete w.r.t. the ρdf semantics:

Proposition 2.1 (Soundness and completeness [26]).
Inference ` based on rules 1-5 as of [26] and applied to
our semantics defined above is sound and complete for
|=, that is, G ` G′ if and only if G |= G′.

Proposition 2.2 ([26]). Assume G ` G′ then there is a
proof of G′ from G where the rule (1a) is used at most
once and at the end.

Finally, the closure of a graph G is defined as cl(G) =

{τ | G `∗ τ}, where `∗ is as ` except that rule (1a) is
excluded. Note that the size of the closure of G is poly-
nomial in the size of G and that the closure is unique.
Now we can prove that:

Proposition 2.3. G ` G′ if and only if G′ ⊆ cl(G) or G′

is obtained from cl(G) by applying rule (1a).

2.4. Query Answering
Concerning query answering, we are inspired by [28]

and the Logic Programming setting and we assume that
a RDF graph G is ground, that is, all blank nodes have
been skolemised, i.e., replaced with terms in UL.

A query is of the rule-like form

q(x̄)← ∃ȳ.ϕ(x̄, ȳ)

where q(x̄) is the head and ∃ȳ.ϕ(x̄, ȳ) is the body of
the query, which is a conjunction (we use the symbol
“,′′ to denote conjunction in the rule body) of triples τi

(1 6 i 6 n). x̄ is a vector of variables occurring in
the body, called the distinguished variables, ȳ are so-
called non-distinguished variables and are distinct from
the variables in x̄, each variable occurring in τi is either
a distinguished or a non-distinguished variable. If clear
from the context, we may omit the existential quantifi-
cation ∃ȳ.

In a query, we allow built-in triples of the form
(s, p, o), where p is a built-in predicate taken from a re-
served vocabulary and having a fixed interpretation. We
generalise the built-ins to any n-ary predicate p, where
p’s arguments may be ρdf variables, values from UL,
and p has a fixed interpretation. We will assume that the
evaluation of the predicate can be decided in finite time.
For convenience, we write “functional predicates”4 as
assignments of the form x := f (z̄) and assume that the
function f (z̄) is safe. We also assume that a non func-
tional built-in predicate p(z̄) should be safe as well.

A query example is:

q(x, y)← (y, created, x), (y, type, Italian),
(x, exhibitedAt, Uffizi)

having intended meaning to retrieve all the artefacts x
created by Italian artists y, being exhibited at Uffizi
Gallery.

In order to define an answer to a query we introduce
the following:

Definition 2.1 (Query instantiation). Given a vector
x̄ = 〈x1, . . . , xk〉 of variables, a substitution over x̄ is a
vector of terms t̄ replacing variables in x̄ with terms of
UBL. Then, given a query q(x̄) ← ∃ȳ.ϕ(x̄, ȳ), and two
substitutions t̄, t̄′ over x̄ and ȳ, respectively, the query
instantiation ϕ(t̄, t̄′) is derived from ϕ(x̄, ȳ) by replacing
x̄ and ȳ with t̄ and t̄′, respectively.

Note that a query instantiation is an RDF graph.

Definition 2.2 (Entailment). Given a graph G, a query
q(x̄) ← ∃ȳ.ϕ(x̄, ȳ), and a vector t̄ of terms in
universe(G), we say that q(t̄) is entailed by G, denoted
G |= q(t̄), if and only if in any model I of G, there is a
vector t̄′ of terms in universe(G) such that I is a model
of the query instantiation ϕ(t̄, t̄′).

Definition 2.3. If G |= q(t̄) then t̄ is called an answer to
q. The answer set of q w.r.t. G is defined as ans(G, q) =

{t̄ | G |= q(t̄)}.

We next show how to compute the answer set. The fol-
lowing can be shown:

Proposition 2.4. Given a graph G, t̄ is an answer to q
if and only if there exists an instantiation ϕ(t̄, t̄′) that is
true in the closure of G (i.e., all triples in ϕ(t̄, t̄′) are in
cl(G)).

4A predicate p(x̄, y) is functional if for any t̄ there is unique t′ for
which p(t̄, t′) is true.

5

(youtubeEmp, sc, googleEmp) : [2006, 2011]
(steveChen, type, youtubeEmp) : [2005, 2011]
(chadHurley, type, youtubeEmp) : [2005, 2010]
(jawedKarim, type, youtubeEmp) : [2005, 2011]
(jawedKarim, type, paypalEmp) : [2000, 2005]
(paypalEmp, sc, ebayEmp) : [2002, 2011]
(chadHurley, type, paypalEmp) : [2002, 2005]
(skypeEmp, sc, ebayEmp) : [2005, 2011]
(SkypeCollab, sc, EbayCollab) : [2005, 2009]
(SkypeCollab, sc, EbayCollab) : [2009, 2011]
(niklasZennstrom, ceo, skype) : [2003, 2007]
(ceo, sp, worksFor) : [−∞,+∞]
(larryPage, worksFor, google) : [1998, 2011]
(sergeyBrin, worksFor, google) : [1998, 2011]

Figure 1: Company acquisition dataset example

Therefore, we have a simple method to determine
ans(G, q). Compute the closure cl(G) of G and store
it into a database, e.g., using the method [29]. It is eas-
ily verified that any query can be mapped into an SQL
query over the underlying database schema. Hence,
ans(G, q) can be determined by issuing such an SQL
query to the database.

3. RDFS with Annotations

This section presents the extension to RDF towards
generic annotations. Throughout this paper we will use
an RDF dataset describing companies, acquisitions be-
tween companies and employment history. This dataset
is partially presented in Figure 1. We consider this data
to be annotated with the temporal domain, which intu-
itively means that the annotated triple is valid in dates
contained in the annotation interval (the exact mean-
ing of the annotations will be explained later). Also,
the information in this example can be derived from
Wikipedia and thus we can consider this data also anno-
tated with the provenance domain (although not explic-
itly represented in the example). We follow the mod-
elling of employment records proposed by DBpedia,
for instance a list of employees of Google is available
as members of the class http://dbpedia.org/
class/yago/GoogleEmployees. For presenta-
tion purposes we use the shorter name googleEmp. We
also introduce SkypeCollab (resp. EbayCollab) to rep-
resent Skype’s (resp. Ebay’s) collaborators.

3.1. Syntax

Our approach is to extend triples with annotations,
where an annotation is taken from a specific domain.5

An annotated triple is an expression τ : λ, where τ is
a triple and λ is an annotation value (defined below).
An annotated graph is a finite set of annotated triples.
The intended semantics of annotated triples depends of
course on the meaning we associate to the annotation
values. For instance, in a temporal setting [2],

(niklasZennstrom, ceoOf, skype) : [2003, 2007]

has intended meaning “Niklas was CEO of Skype dur-
ing the period 2003 to 2007”, while in the fuzzy set-
ting [6] (skype, ownedBy, bigCompany) : 0.3 has intended
meaning “Skype is owned by a big company to a degree
not less than 0.3”.

3.2. RDFS Annotation Domains

To start with, let us consider a non-empty set L. El-
ements in L are our annotation values. For example, in
a fuzzy setting, L = [0, 1], while in a typical tempo-
ral setting, L may be time points or time intervals. In
our annotation framework, an interpretation will map
statements to elements of the annotation domain. Our
semantics generalises the formulae in Remark 2.2 by
using a well known algebraic structure.

We say that an annotation domain for RDFS is an
idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉 ,

where ⊕ is >-annihilating [24]. That is, for λ, λi ∈ L

1. ⊕ is idempotent, commutative, associative;

2. ⊗ is commutative and associative;

3. ⊥ ⊕ λ = λ, > ⊗ λ = λ, ⊥ ⊗ λ = ⊥, and > ⊕ λ = >;

4. ⊗ is distributive over ⊕, i.e., λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗

λ2) ⊕ (λ1 ⊗ λ3);

It is well-known that there is a natural partial order on
any idempotent semi-ring: an annotation domain D =

〈L,⊕,⊗,⊥,>〉 induces a partial order � over L defined
as:

λ1 � λ2 if and only if λ1 ⊕ λ2 = λ2 .

5The readers familiar with the annotated logic programming
framework [16], will notice the similarity of the approaches.

6

http://dbpedia.org/class/yago/GoogleEmployees
http://dbpedia.org/class/yago/GoogleEmployees

The order � is used to express redun-
dant/entailed/subsumed information. For in-
stance, for temporal intervals, an annotated triple
(s, p, o) : [2000, 2006] entails (s, p, o) : [2003, 2004], as
[2003, 2004] ⊆ [2000, 2006] (here, ⊆ plays the role of
�).

Remark 3.1. In previous work [12, 13], an annota-
tion domain was assumed to be a more specific struc-
ture, namely a residuated bounded lattice D = 〈L,�
,∧,∨,⊗,⇒,⊥,>〉. That is,

1. 〈L,�,∧,∨,⊥,>〉 is a bounded lattice, where⊥ and
> are bottom and top elements, and ∧ and ∨ are
meet and join operators;

2. 〈L,⊗,>〉 is a commutative monoid.

3. ⇒ is the so-called residuum of ⊗, i.e., for all
λ1, λ2, λ3, λ1 ⊗ λ3 � λ2 if and only if λ3 � (λ1 ⇒

λ2).

Note that any bounded residuated lattice satisfies the
conditions of an annotation domain. In [24] it was
shown that we may use a slightly weaker structure than
residuated lattices for annotation domains.

Remark 3.2. Observe that 〈L,�,⊕,⊥,>〉 is a bounded
join semi-lattice.

Remark 3.3. Note that the domain D01 =

〈{0, 1},max,min, 0, 1〉 corresponds to the boolean
case. In fact, in this case annotated RDFS will turn out
to be the same as classical RDFS.

Remark 3.4. We use ⊕ to combine information about
the same statement. For instance, in temporal logic,
from τ : [2000, 2006] and τ : [2003, 2008], we infer
τ : [2000, 2008], as [2000, 2008] = [2000, 2006] ∪
[2003, 2008]; here, ∪ plays the role of ⊕. In the fuzzy
context, from τ : 0.7 and τ : 0.6, we infer τ : 0.7, as
0.7 = max(0.7, 0.6) (here, max plays the role of ⊕).

Remark 3.5. We use ⊗ to model the “conjunction” of
information. In fact, a ⊗ is a generalisation of boolean
conjunction to the many-valued case. In fact, ⊗ satisfies
also that

1. ⊗ is bounded: i.e., λ1 ⊗ λ2 � λ1.

2. ⊗ is �-monotone, i.e., for λ1 � λ2, λ ⊗ λ1 � λ ⊗ λ2

For instance, on interval-valued temporal logic, from
(a, sc, b) : [2000, 2006] and (b, sc, c) : [2003, 2008], we
will infer (a, sc, c) : [2003, 2006], as [2003, 2006] =

[2000, 2006] ∩ [2003, 2008]; here, ∩ plays the role of
⊗.6 In the fuzzy context, one may chose any t-norm [30,
31], e.g., product, and, thus, from (a, sc, b) : 0.7 and
(b, sc, c) : 0.6, we will infer (a, sc, c) : 0.42, as 0.42 =

0.7 · 0.6) (here, · plays the role of ⊗).

Remark 3.6. Observe that the distributivity condition
is used to guarantee that e.g., we obtain the same anno-
tation λ ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2) ⊕ (λ1 ⊗ λ3) of the triple
(a, sc, c) that can be inferred from triples (a, sc, b) : λ1,
(b, sc, c) : λ2 and (b, sc, c) : λ3.

Finally, note that, conceptually, in order to build an an-
notation domain, one has to:

1. determine the set of annotation values L (typically
a countable set7), identify the top and bottom ele-
ments;

2. define suitable operations ⊗ and ⊕ that acts as
“conjunction” and “disjunction” function, to sup-
port the intended inference over schema axioms,
such as

“from (a, sc, b) : λ and (b, sc, c) : λ′ in-
fer (a, sc, c) : λ ⊗ λ′”

and

“from τ : λ and τ : λ′ infer τ : λ ⊕ λ′”

3.3. Semantics

Fix an annotation domain D = 〈L,⊕,⊗,⊥,>〉. In-
formally, an interpretation I will assign to a triple τ an
element of the annotation domain λ ∈ L. Formally, an
annotated interpretation I over a vocabulary V is a tu-
ple

I = 〈∆R,∆P,∆C ,∆L, P[[·]],C[[·]], ·I〉

where ∆R,∆P,∆C ,∆L are interpretation domains of I
and P[[·]],C[[·]], ·I are interpretation functions of I.

They have to satisfy:

1. ∆R is a nonempty finite set of resources, called the
domain or universe of I;

2. ∆P is a finite set of property names (not necessarily
disjoint from ∆R);

3. ∆C ⊆ ∆R is a distinguished subset of ∆R identifying
if a resource denotes a class of resources;

6As we will see, ⊕ and ⊗ may be more involved.
7Note that one may use XML decimals in [0, 1] in place of real

numbers for the fuzzy domain.

7

4. ∆L ⊆ ∆R, the set of literal values, ∆L contains all
plain literals in L ∩ V;

5. P[[·]] maps each property name p ∈ ∆P into a func-
tion P[[p]] : ∆R × ∆R → L, i.e., assigns an annota-
tion value to each pair of resources;

6. C[[·]] maps each class c ∈ ∆C into a function
C[[c]] : ∆R → L, i.e., assigns an annotation value
representing class membership in c to every re-
source;

7. ·I maps each t ∈ UL∩ V into a value tI ∈ ∆R ∪∆P

and such that ·I is the identity for plain literals and
assigns an element in ∆R to each element in L.

An interpretation I is a model of an annotated ground
graph G, denoted I |= G, if and only if I is an interpre-
tation over the vocabulary ρdf ∪ universe(G) that satis-
fies the following conditions:
Simple:

1. (s, p, o) : λ ∈ G implies pI ∈ ∆P and P[[pI]](sI, oI) � λ;

Subproperty:

1. P[[spI]](p, q) ⊗ P[[spI]](q, r) � P[[spI]](p, r);
2. P[[pI]](x, y) ⊗ P[[spI]](p, q) � P[[qI]](x, y);

Subclass:

1. P[[scI]](c, d) ⊗ P[[scI]](d, e) � P[[scI]](c, e);
2. C[[cI]](x) ⊗ P[[scI]](c, d) � P[[dI]](x);

Typing I:

1. C[[c]](x) = P[[typeI]](x, c);
2. P[[domI]](p, c) ⊗ P[[p]](x, y) � C[[c]](x);
3. P[[rangeI]](p, c) ⊗ P[[p]](x, y) � C[[c]](y);

Typing II:

1. For each e ∈ ρdf, eI ∈ ∆P;
2. P[[spI]](p, q) is defined only for p, q ∈ ∆P;
3. C[[scI]](c, d) is defined only for c, d ∈ ∆C ;
4. P[[domI]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C ;
5. P[[rangeI]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C ;
6. P[[typeI]](s, c) is defined only for c ∈ ∆C .

Intuitively, a triple (s, p, o) : λ is satisfied by I if (s, o)
belongs to the extension of p to a “wider” extent than λ.
Note that the major differences from the classical setting
relies on items 5 and 6.

We further note that the classical setting is as the case
in which the annotation domain is D01 where L = {0, 1}.

Finally, entailment among annotated ground graphs
G and H is as usual. Now, G |= H, where G and H may
contain blank nodes, if and only if for any grounding G′

of G there is a grounding H′ of H such that G′ |= H′.

Remark 3.7. Note that we always have that G |= τ : ⊥.
Clearly, triples of the form τ : ⊥ are uninteresting and,
thus, in the following we do not consider them as part
of the language.

As for the crisp case, it can be shown that:

Proposition 3.1. Any annotated RDFS graph has a fi-
nite model.

Proof 3.1. Let G be an annotated graph over domain
D. Let Lit = L∩universe(G) be the set of literals present
in G and l0 ∈ Lit. We define the interpretation I over V
as follows:

1. ∆R = ∆P = ∆C = Lit = ∆L = Lit;

2. ∀x, y, p P[[p]](x, y) 7→ >;

3. ∀x, c C[[c]](x) 7→ >;

4. (a) ∀l ∈ L, lI = l

(b) ∀x ∈ V, lI = l0

It is easy to see that I satisfies all the conditions of
RDF-satisfiability and thus is a model of G.

Therefore, we do not have to care about consistency.

3.4. Examples of primitive domains

To demonstrate the power of our approach, we illustrate
its application to some domains: fuzzy [6], temporal [2]
and provenance.

3.4.1. The fuzzy domain
To model fuzzy RDFS [6] we may define the annotation
domain as D[0,1] = 〈[0, 1],max,⊗, 0, 1〉 where ⊗ is any
continuous t-norm on [0, 1].

Example 3.1. Adapting our example of employment
records to the fuzzy domain we can state the follow-
ing: Skype collaborators are also Ebay collaborators
to some degree since Ebay possesses 30% of Skype’s
shares, and also that Toivo is a part-time Skype collab-
orator:

(SkypeCollab, sc, EbayCollab) : 0.3
(toivo, type, SkypeCollab) : 0.5

Then, e.g., under the product t-norm ⊗, we can infer the
following triple:

(toivo, type, EbayCollab) : 0.15

8

3.4.2. The temporal domain
Most of the semantic information on the Web deals

with time in an implicit or explicit way. Social relation
graphs, personal profiles, information about various en-
tities continuously evolve and do not remain static. This
dynamism can take various forms: certain information
is only valid in a specific time interval (e.g., somebody’s
address), some data talks about events that took place at
a specific time point in the past (e.g., beginning of a con-
ference), some data describe eternal truth (e.g., tigers
are mammals), or truth that is valid from a certain point
of time onwards forever (e.g Elvis is dead), or creation
or change dates of online information items (e.g., the
edit history of a wiki page). We believe that treating
web data in a time-sensitive way is one of the biggest
steps towards turning the Semantic Web idea into real-
ity.

Precise temporal information. For our representation
of the temporal domain we aim at using non-discrete
time as it is necessary to model temporal intervals with
any precision. however, for presentation purposes we
will show the dates as years only.

Modelling the temporal domain. To start with, time
points are elements of the value space Q ∪ {−∞,+∞}.
A temporal interval is a non-empty interval [α1, α2],
where αi are time points. An empty interval is de-
noted as ∅. We define a partial order on intervals as
I1 6 I2 if and only if I1 ⊆ I2. The intuition here is that
if a triple is true at time points in I2 and I1 6 I2 then, in
particular, it is true at any time point in I1 , ∅.

Now, apparently the set of intervals would be a can-
didate for L, which however is not the case. The reason
is that, e.g., in order to represent the upper bound inter-
val of τ : [1, 5] and τ : [8, 9] we rather need the union of
intervals, denoted {[1, 5], [8, 9]}, meaning that a triple is
true both in the former as well as in the latter interval.
Now, we define L as (where ⊥ = {∅},> = {[−∞,+∞]})

L = {t | t is a finite set of disjoint temporal intervals}∪{⊥,>} .

Therefore, a temporal term is an element t ∈ L, i.e.,
a set of pairwise disjoint time intervals. We allow to
write [α] as a shorthand for [α, α], τ : α as a shorthand
of τ : {[α]} and τ : [α, α′] as a shorthand of τ : {[α, α′]}.
Furthermore, on L we define the following partial order:

t1 � t2 if and only if∀I1 ∈ t1∃I2 ∈ t2, such that I1 6 I2 .

Please note that � is the Hoare order on power sets [32],
which is a pre-order. For the anti-symmetry property,
assume that t1 � t2 and t2 � t1: so for I1 ∈ t1, there is
I2 ∈ t2 for which there is I3 ∈ t1 such that I1 ⊆ I2 ⊆ I3.

But, t1 is maximal and, thus, I1 = I3 = I2. So, t1 = t2
and, thus, � is a partial order. Similarly as for time
intervals, the intuition for � is that if a triple is true
at time points in intervals in t2 and t1 � t2, then, in
particular, it is true at any time point in intervals in
t1. Essentially, if t1 � t2 then a temporal triple τ2 : t2
is true to a larger “temporal extent” than the temporal
triple τ1 : t1. It can also be verified that 〈L,�,⊥,>〉
is a bounded lattice. Indeed, to what concerns us, the
partial order � induces the following join (⊕) opera-
tion on L. Intuitively, if a triple is true at t1 and also
true at t2 then it will be true also for time points spec-
ified by t1 ⊕ t2 (a kind of union of time points). As an
example, if τ : {[2, 5], [8, 12]} and τ : {[4, 6], [9, 15]} are
true then we expect that this is the same as saying that
τ : {[2, 6], [8, 15]} is true. The join operator will be de-
fined in such way that {[2, 5], [8, 12]}⊕ {[4, 6], [9, 15]} =
{[2, 6], [8, 15]}. Operationally, this means that t1⊕t2 will
be obtained as follows: (i) take the union of the sets of
intervals t = t1 ∪ t2; and (ii) join overlapping intervals
in t until no more overlapping intervals can be obtained.
Formally,

t1 ⊕ t2 = inf{t | t � ti, i = 1, 2} .

It remains to define the meet ⊗ over
sets of intervals. Intuitively, we would
like to support inferences such as “from
(a, sc, b) : {[2, 5], [8, 12]} and (b, sc, c) : {[4, 6], [9, 15]}
infer (a, sc, b) : {[4, 5], [9, 12]}”, where {[2, 5], [8, 12]} ⊗
{[4, 6], [9, 15]} = {[4, 5], [9, 12]}. We get it by means of

t1 ⊗ t2 = sup{t | t � ti, i = 1, 2} .

Note that here the t-norm used for modelling “conjunc-
tion” coincides with the lattice meet operator.

Example 3.2. Using the data from our running exam-
ple, we can infer that

(chadHurley, type, googleEmp) : [2006, 2010]

where

{[2005, 2010]} ⊗ {[2006, 2011]} = {[2006, 2010]}

In [2] are described some further features such as a
“Now” time point (which is just a defined time point in
DT) and anonymous time points, allowing to state that
a triple is true at some point. Adding anonymous time
points would require us to extend the lattice by appro-
priate operators, e.g., [4,T]⊕ [T, 8] = [4, 8] (where T is
an anonymous time point), etc.

3.4.3. Provenance domain
Identifying provenance of triples is regarded as an im-

portant issue for dealing with the heterogeneity of Web

9

Data, and several proposals have been made to model
provenance [33, 34, 35, 36]. Typically, provenance is
identified by a URI, usually the URI of the document in
which the triples are defined or possibly a URI identi-
fying a name graph. However, provenance of inferred
triples is an issue that have been little tackled in the lit-
erature [37, 35]. We propose to address this issue by
introducing an annotation domain for provenance.

The intuition behind our approach is similar to
the one of [37] and [35] where provenance of
an inferred triple is defined as the aggregation of
provenances of documents that allow to infer that
triple. For instance, if a document d1 defines
(youtubeEmp, sc, googleEmp):d1 and a second document
d2 defines (chadHurley, type, youtubeEmp):d2, then we
can infer (chadHurley, type, googleEmp):d1 ∧ d2.

Such a mechanism makes sense and would fit well as
a meet operator, but these approaches do not address the
join operation which should take place when identical
triples are annotated differently. We improve this with
the following formalisation.

Modelling the provenance domain. We start from a
countably infinite set of atomic provenances P which, in
practice, can be represented by URIs. We consider the
propositional formulae made from symbols in P (atomic
propositions), logical or (∨) and logical and (∧), for
which we have the standard entailment |=. A provenance
value is an equivalent class for the logical equivalence
relation, i.e., the set of annotation values is the quotient
set of P by the logical equivalence. The order relation
is |=, ⊗ and ⊕ are ∧ and ∨ respectively. We set > to true
and ⊥ to false.

Example 3.3. Consider the following data:

(chadHurley, worksFor, youtube) : chad
(chadHurley, type, Person) : chad
(youtube, type, Company) : chad
(Person, sc, Agent) : foaf
(worksFor, dom, Person) : workont
(worksFor, range, Company) : workont

We can deduce that chadHurley is an Agent in two dif-
ferent ways: using the first, fourth and fifth statement or
using the second and fourth statement. So, it is possible
to infer the following annotated triple:

(chadHurley, type, Agent):(chad∧foaf∧workont)
∨(chad∧foaf)

However, since (chad∧foaf∧workont)∨ (chad∧foaf)
is logically equivalent to chad ∧ foaf, the aggregated
inference can be collapsed into:

(chadHurley, type, Agent) : chad ∧ foaf

Intuitively, a URI denoting a provenance can also denote
a RDF graph, either by using a named graph approach,
or implicitly by getting a RDF document by dereferenc-
ing the URI. In this case, we can see the conjunction
operation as a union of graphs and disjunction as an in-
tersection of graphs.

Comparison with other approaches. [37] does not for-
malise the semantics and properties of his aggregation
operation (simply denoted by ∧) nor the exact rules that
should be applied to correctly and completely reason
with provenance. Query answering is not tackled either.

The authors of [35] are providing more insight on the
formalisation and actually detail the rules by reusing
(tacitly) [26]. They also provide a formalisation of a
simple query language. However, the semantics they
define is based on a strong restriction of ρdf8.

As an example, they define the answers to the query
(?x, type, ?y, ?c) as the tuples (X,Y,C) such that there is
a triple (X, type,Y,C) which can be inferred from only
the application of rules (3a) and (3b). This means that a
domain or range assertion would not provide additional
answers to that type of query.

Provenance also relates to the Named Graphs formal-
ism [23] where one can identify distinct graphs with a
URI. The name can be seen as an atomic provenance an-
notation. However, Named Graphs do not provide oper-
ations to combine the provenances. Yet, the formalism
could be used as a possible syntactic solution for repre-
senting annotated triples.

Finally, none of those papers discuss the possibility
of universally true statements (the > provenance) or the
statements from unknown provenance (⊥). They also
do not consider mixing non-annotated triples with an-
notated ones as we do in Section 5.3.

3.5. Deductive system

An important feature of our framework is that we are
able to provide a deductive system in the style of the one
for classical RDFS. Moreover, the schemata of the rules
are the same for any annotation domain (only support
for the domain dependent ⊗ and ⊕ operations has to be
provided) and, thus, are amenable to an easy implemen-
tation on top of existing systems. The rules are arranged
in groups that capture the semantic conditions of mod-
els, A, B,C, X and Y are meta-variables representing ele-
ments in UBL and D, E represent elements in UL. The
rule set contains two rules, (1a) and (1b), that are the
same as for the crisp case, while rules (2a) to (5b) are

8Remember that ρdf is already a restriction of RDFS.

10

the annotated rules homologous to the crisp ones. Fi-
nally, rule (6) is specific to the annotated case.

Please note that rule (6) is destructive i.e., this rule
removes the premises as the conclusion is inferred. We
also assume that a rule is not applied if the consequence
is of the form τ : ⊥ (see Remark 3.7). It can be shown
that:

1. Simple:

(a) G
G′ for a map µ : G′ → G

(b) G
G′ for G′ ⊆ G

2. Subproperty:

(a) (A, sp, B) : λ1 ,(B, sp,C) : λ2
(A, sp,C) : λ1 ⊗ λ2

(b) (D, sp, E) : λ1 ,(X,D,Y) : λ2
(X, E,Y) : λ1 ⊗ λ2

3. Subclass:

(a) (A, sc, B) : λ1 ,(B, sc,C) : λ2
(A, sc,C) : λ1 ⊗ λ2

(b) (A, sc, B) : λ1 ,(X, type, A) : λ2
(X, type, B) : λ1 ⊗ λ2

4. Typing:

(a) (D, dom, B) : λ1 ,(X,D,Y) : λ2
(X, type, B) : λ1 ⊗ λ2

(b) (D, range, B) : λ1 ,(X,D,Y) : λ2
(Y, type, B) : λ1 ⊗ λ2

5. Implicit Typing:

(a) (A, dom, B) : λ1 ,(D, sp, A) : λ2 ,(X,D,Y) : λ3
(X, type, B) : λ1 ⊗ λ2 ⊗ λ3

(b) (A, range, B) : λ1 ,(D, sp, A) : λ2 ,(X,D,Y) : λ3
(Y, type, B) : λ1 ⊗ λ2 ⊗ λ3

6. Generalisation:

(X, A,Y) : λ1 ,(X, A,Y) : λ2
(X, A,Y) : λ1 ⊕ λ2

Proposition 3.2 (Soundness and completeness). For
an annotated graph, the proof system ` is sound and
complete for |=, that is, (1) if G ` τ : λ then G |= τ : λ
and (2) if G |= τ : λ then there is λ′ � λ with G ` τ : λ′.

Proof 3.2 (Sketch). The notion of proof is as usual.
In order to explain more the rational of the rules, we
address rule (a) of the sub-class category, as all the
rules of categories 1-4 follow the same schema. To do
so, consider inference schemas (??) and (??). Let us
show that the rule is sound, if I |= (A, sc, B) : λ1 and
I |= (B, sc,C) : λ2 then I |= (A, sc,C) : λ1 ⊗ λ2.

1. As P[[scI]] is transitive, we have that

P[[scI]](AI,CI) � P[[scI]](AI, BI) ⊗ P[[scI]](BI,CI) .

2. As I |= (A, sc, B) : λ1, it follows that

P[[scI]](AI, BI) = inf
x∈∆R

C[[AI]](x)⇒ C[[BI]](x) � λ1 ;

3. As I |= (B, sc,C) : λ2, it follows that

P[[scI]](BI,CI) = inf
x∈∆R

C[[BI]](x)⇒ C[[CI]](x) � λ2 ;

4. From 1-3, it follows immediately that

P[[scI]](AI,CI) > λ1 ⊗ λ2

and, thus I |= (A, sc,C) : λ1 ⊗ λ2.

We point out that rules 2−5 can be represented concisely
using the following inference rule:

(AG) τ1 : λ1, ..., τn : λn, {τ1, . . . τn} `RDFS τ
τ :

⊗
i λi

Essentially, this rule says that if a classical RDFS triple
τ can be inferred by applying a classical RDFS infer-
ence rule to triples τ1, . . . τn (denoted {τ1, . . . , τn} `RDFS

τ), then the annotation term of τ will be
⊗

i λi, where λi

is the annotation of triple τi. It follows immediately that,
using rule (AG), in addition to rules (1) and (6) from the
deductive system above, it is easy to extend these rules
to cover complete RDFS.

Finally, like for the classical case, the closure is de-
fined as cl(G) = {τ : λ | G `∗ τ : λ}, where `∗ is as `
without rule (1a). Note again that the size of the clo-
sure of G is polynomial in |G| and can be computed in
polynomial time, provided that the computational com-
plexity of operations ⊗ and ⊕ are polynomially bounded
(from a computational complexity point of view, it is as
for the classical case, plus the cost of the operations ⊗
and ⊕ in L). Eventually, similar propositions as Propo-
sitions 2.2 and 2.3 hold.

Example 3.4. As an example, consider the following
triples from Figure 1:

(youtubeEmp, sc, googleEmp) : [2006, 2011]
(chadHurley, worksFor, youtubeEmp) : [2005, 2010]

we infer the following triple:

(chadHurley, type, googleEmp) : [2006, 2010]

3.6. Query Answering
Informally, queries are as for the classical case where

triples are replaced with annotated triples in which an-
notation variables (taken from an appropriate alphabet
and denoted Λ) may occur. We allow built-in triples of
the form (s, p, o), where p is a built-in predicate taken
from a reserved vocabulary and having a fixed interpre-
tation on the annotation domain D, such as (λ,�, l) stat-
ing that the value of λ has to be � than the value l ∈ L.

11

We generalise the built-ins to any n-ary predicate p,
where p’s arguments may be annotation variables, ρdf
variables, domain values of D, values from UL, and p
has a fixed interpretation. We will assume that the eval-
uation of the predicate can be decided in finite time. As
for the crisp case, for convenience, we write “functional
predicates” as assignements of the form x := f (z̄) and as-
sume that the function f (z̄) is safe. We also assume that
a non functional built-in predicate p(z̄) should be safe
as well.

For instance, informally for a given time interval
[t1, t2], we may define x :=length([t1, t2]) as true if and
only if the value of x is t2 − t1.

Example 3.5. Considering our dataset from Figure 1
as input and the query asking for people that work for
Google between 2002 and 2011 and the temporal term
at which this was true:

q(x,Λ)← (x, worksFor, google) : Λ′,

Λ :=(Λ′ ∧ [2002, 2011])

will get the following answers:

〈steveChen, [2006, 2011]〉
〈chadHurley, [2006, 2010]〉
〈jawedKarim, [2006, 2011]〉
〈larryPage, [2002, 2011]〉
〈sergeyBrin, [2002, 2011]〉.

Formally, an annotated query is of the form

q(x̄, Λ̄)← ∃ȳ∃Λ′.ϕ(x̄, Λ̄, ȳ, Λ̄′)

in which ϕ(x̄, Λ̄, ȳ, Λ̄′) is a conjunction (as for the
crisp case, we use “,” as conjunction symbol) of an-
notated triples and built-in predicates, x̄ and Λ̄ are the
distinguished variables, ȳ and Λ̄′ are the vectors of
non-distinguished variables (existential quantified vari-
ables), and x̄, Λ̄, ȳ and Λ̄′ are pairwise disjoint. Vari-
ables in Λ̄ and Λ̄′ can only appear in annotations or
built-in predicates. The query head contains at least one
variable.

Given an annotated graph G, a query q(x̄, Λ̄) ←
∃ȳ∃Λ′.ϕ(x̄, Λ̄, ȳ, Λ̄′), a vector t̄ of terms in universe(G)
and a vector λ̄ of annotated terms in L, we say that q(t̄, λ̄)
is entailed by G, denoted G |= q(t̄, λ̄), if and only if
in any model I of G, there is a vector t̄′ of terms in
universe(G) and a vector λ̄′ of annotation values in L
such that I is a model of ϕ(t̄, λ̄, t̄′, λ̄′). If G |= q(t̄, λ̄)
then 〈t̄, λ̄〉 is called an answer to q. The answer set of q
w.r.t. G is (� extends to vectors point-wise)

ans(G, q) = {〈t̄, λ̄〉 | G |= q(t̄, λ̄), λ̄ , ⊥̄ and
for any λ̄′ , λ̄ such that G |= q(t̄, λ̄′), λ̄′ � λ̄ holds} .

That is, for any tuple t̄, the vector of annotation values
λ̄ is as large as possible. This is to avoid that redun-
dant/subsumed answers occur in the answer set. The
following can be shown:

Proposition 3.3. Given a graph G, 〈t̄, λ̄〉 is an answer
to q if and only if ∃ȳ∃Λ′.ϕ(t̄, λ̄, ȳ, Λ̄′) is true in the clo-
sure of G and λ is �-maximal.9

Therefore, we may devise a similar query answering
method as for the crisp case by computing the closure,
store it into a database and then using SQL queries with
the appropriate support of built-in predicates and do-
main operations.

3.7. Queries with aggregates
As next, we extend the query language by allowing

so-called aggregates to occur in a query. Essentially,
aggregates may be like the usual SQL aggregate func-
tions such as SUM,AVG,MAX,MIN. But, we have also
domain specific aggregates such as ⊕ and ⊗.

The following examples present some queries that
can be expressed with the use of built-in queries and
aggregates.

Example 3.6. Using a built-in aggregate we can pose
a query that, for each employee, retrieves his maximal
time of employment for any company in the following
way:

q(x,maxL) ← (x, worksFor, y) : λ,
maxL :=maxlength(λ)

Here, the maxlength built-in predicate returns, given a
set of temporal intervals, the maximal interval in the set.

Example 3.7. Suppose we are looking for employees
that work for some companies for a certain time period.
We would like to know the average length of their em-
ployment. Then such a query will be expressed as

q(x, avgL) ← (x, worksFor, y) : λ,
GroupedBy(x),
avgL :=AVG[length(λ)]

Essentially, we group by the employee, compute for each
employee the time he worked for a company by means
of the built-in function length, and compute the average
value for each group. That is, g = {〈t, t1〉, . . . , 〈t, tn〉} is

9∃ȳ∃Λ′.ϕ(t̄, λ̄, ȳ, Λ̄′) is true in the closure of G if and only if for
some t̄′, λ̄′ for all triples in ϕ(t̄, λ̄, t̄′, λ̄′) there is a triple in cl(G) that
subsumes it and the built-in predicates are true, where an annotated
triple τ : λ1 subsumes τ : λ2 if and only if λ2 � λ1.

12

a group of tuples with the same value t for employee x,
and value ti for y, where each length of employment for
ti is li (computed as length(·)), then the value of avgL
for the group g is (

∑
i li)/n.

Formally, let @ be an aggregate function with @ ∈

{SUM,AVG,MAX,MIN,COUNT,⊕,⊗} then a query
with aggregates is of the form

q(x̄, Λ̄, α) ← ∃ȳ∃Λ′.ϕ(x̄, Λ̄, ȳ, Λ̄′),
GroupedBy(w̄),
α :=@[f (z̄)]

where w̄ are variables in x̄, ȳ or Λ̄ and each variable in
x̄ and Λ̄ occurs in w̄ and any variable in z̄ occurs in ȳ or
Λ̄′.

From a semantics point of view, we say that I is a
model of (satisfies) q(t̄, λ̄, a), denoted I |= q(t̄, λ̄, a) if
and only if

a = @[a1, . . . , ak] where g = {〈t̄, λ̄, t̄′1, λ̄
′
1〉, . . . , 〈t̄, λ̄, t̄

′
k, λ̄
′
k〉},

is a group of k tuples with identical projection
on the variables in w̄, ϕ(t̄, λ̄, t̄′r, λ̄′r) is true in I
and ar = f (¯̄t) where ¯̄t is the projection of 〈t̄′r, λ̄′r〉
on the variables z̄ .

Now, the notion of G |= q(t̄, λ̄, a) is as usual: any model
of G is a model of q(t̄, λ̄, a).

Eventually, we further allow to order answers accord-
ing to some ordering functions.

Example 3.8. Consider Example 3.7. We additionally
would like to order the employee according to the av-
erage length of employment. Then such a query will be
expressed as

q(x, avgL) ← (x, worksFor, y) : λ,
GroupedBy(x),
avgL :=AVG[length(λ)],
OrderBy(avgL)

Formally, a query with ordering is of the form

q(x̄, Λ̄, z) ← ∃ȳ∃Λ′.ϕ(x̄, Λ̄, ȳ, Λ̄′),OrderBy(z)

or, in case grouping is allowed as well, it is of the form

q(x̄, Λ̄, z, α) ← ∃ȳ∃Λ′.ϕ(x̄, Λ̄, ȳ, Λ̄′),
GroupedBy(w̄),
α :=@[f (z̄)],
OrderBy(z)

From a semantics point of view, the notion of G |=

q(t̄, λ̄, z, a) is as before, but the notion of answer set has

to be enforced with the fact that the answers are now
ordered according to the assignment to the variable z.
Of course, we require that the set of values over which
z ranges can be ordered (like string, integers, reals). In
case the variable z is an annotation variable, the order is
induced by �. In case, � is a partial order then we may
use some linearisation method for posets, such as [38].
Finally, note that the additional of the SQL-like state-
ment LIMIT(k) can be added straightforwardly.

4. AnQL: Annotated SPARQL

Our introduced query language so far allows for con-
junctive queries. Languages like SQL and SPARQL
allow to pose more complex queries including built-
in predicates to filter solutions, advanced features such
as negation or aggregates. In this section we will
present an extension of the SPARQL [11] query lan-
guage, called AnQL, that enables querying annotated
graphs. We will begin by presenting some preliminaries
on SPARQL.

4.1. SPARQL

SPARQL [11] is the W3C recommended query lan-
guage for RDF. A SPARQL query is defined by a triple
Q = (P,G,V), where P is a graph pattern and the
dataset G is an RDF graph and V is the result form. We
will restrict ourselves to SELECT queries in this work
so it is sufficient to consider the result form V as a list
of variables.

Remark 4.1. Note that, for presentation purposes, we
simplify the notion of datasets by excluding named
graphs and thus GRAPH queries. Our definitions can
be straightforwardly extended to named graphs and we
refer the reader to the SPARQL W3C specification [11]
for details.

We base our semantics of SPARQL on the semantics
presented by Pérez et al. [39], extending the multiset
semantics to lists, which are considered a multiset with
“default” ordering. RDF triples, possibly with variables
in subject, predicate or object positions, are called triple
patterns. In the basic case, graph patterns are sets of
triple patterns, also called basic graph patterns (BGP).
Let U, B, L be defined as before and let V denote a set
of variables, disjoint from UBL. We further denote by
var(P) the set of variables present in a graph pattern P.

Definition 4.1 (Solution [11, Section 12.3.1]). Given
a graph G and a BGP P, a solution θ for P over
G is a mapping over a subset V of var(P), i.e.,

13

θ : V → term(G) such that G |= Pθ where Pθ represents
the triples obtained by replacing the variables in graph
pattern P according to θ, and where G |= Pθ means that
any triple in Pθ is entailed by G. We call V the domain
of θ, denoted by dom(θ). For convenience, sometimes
we will use the notation θ = {x1/t1, . . . , xn/tn} to
indicate that θ(xi) = ti, i.e., variable xi is assigned to
term ti.

Two mappings θ1 and θ2 are considered compatible if
for all x ∈ dom(θ1)∩dom(θ2), θ1(x) = θ2(x). We call the
evaluation of a BGP P over a graph G, denoted [[P]]G,
the set of solutions.

Remark 4.2. Note that variables in the domain of θ
play the role of distinguished variables in conjunctive
queries and there are no non-distinguished variables.

The notion of solution for BGPs is the same as the no-
tion of answers for conjunctive queries:

Proposition 4.1. Given a graph G and a BGP P, then
the solutions of P are the same as the answers of the
query q(var(P)) ← P (where var(P) is the vector of
variables in P), i.e., ans(G, q) = [[P]]G.

We present the syntax of SPARQL based on [39]
and present graph patterns similarly. A triple pat-
tern (s, p, o) is a graph pattern where s, o ∈ ULV and
p ∈ UV.10 Sets of triple patterns are called Basic Graph
Patterns (BGP). A generic graph pattern is defined in a
recursive manner: any BGP is a graph pattern; if P and
P′ are graph patterns, R is a filter expression (see [11]),
then (P AND P′), (P OPTIONAL P′), (P UNION P′),
(P FILTER R) are graph patterns. As noted in Re-
mark 4.1 we do not consider GRAPH patterns.

Evaluations of more complex patterns including FIL-
TERs, OPTIONAL patterns, AND patterns, UNION
patterns, etc. are defined by an algebra that is built on
top of this basic graph pattern matching (see [11, 39]).

Definition 4.2 (SPARQL Relational Algebra). Let
Ω1 and Ω2 be sets of mappings:

Ω1 ./ Ω2 = {θ1 ∪ θ2 | θ1 ∈ Ω1, θ2 ∈ Ω2, θ1 and θ2 compatible}
Ω1 d Ω2 = {θ | θ ∈ Ω1 or θ ∈ Ω2}

Ω1 −Ω2 = {θ1 ∈ Ω1 | for all θ2 ∈ Ω2, θ1 and θ2 not compatible}
Ω1A./ Ω2 = (Ω1 ./ Ω2) d (Ω1 −Ω2)

Definition 4.3 (Evaluation [39, Definition 2.2]). Let
τ = (s, p, o) be a triple pattern, P, P1, P2 graph patterns
and G an RDF graph, then the evaluation [[·]]G is
recursively defined as follows:

10We do not consider blank nodes in triple patterns since they can
be considered as variables.

[[t]]G = {θ | dom(θ) = var(P) and G |= τθ}
[[P1 AND P2]]G = [[P1]]G ./ [[P2]]G

[[P1 UNION P2]]G = [[P1]]G d [[P2]]G

[[P1 OPTIONAL P2]]G = [[P1]]G A./ [[P2]]G

[[P FILTER R]]G = {θ ∈ [[P]]G | Rθ is true }

Let R be a FILTER11 expression, u, v ∈ V∪UBL. The
valuation of R on a substitution θ, written Rθ, is true if:

(1) R = BOUND(v) with v ∈ dom(θ);
(2) R = isBLANK(v) with v ∈ dom(θ) and θ(v) ∈ B;
(3) R = isIRI(v) with v ∈ dom(θ) and θ(v) ∈ U;
(4) R = isLITERAL(v) with v ∈ dom(θ) and θ(v) ∈ L;
(5) R = (u = v) with u, v ∈ dom(θ) ∪ UBL ∧ θ(u) = θ(v);
(6) R = (¬R1) with R1θ is false;
(7) R = (R1 ∨ R2) with R1θ is true or R2θ is true;
(8) R = (R1 ∧ R2) with R1θ is true and R2θ is true.

Rθ yields an error (denoted ε), if:

(1) R = isBLANK(v),R = isIRI(v), or R =

isLITERAL(v) and v < dom(θ) ∪ T ;
(2) R = (u = v) with u < dom(θ)∪T or v < dom(θ)∪T ;
(3) R = (¬R1) and R1θ = ε;
(4) R = (R1 ∨ R2) and (R1θ , > and R2θ , >) and

(R1θ = ε or R2θ = ε);
(5) R = (R1 ∧ R2) and R1θ = ε or R2θ = ε.

Otherwise Rθ is false.

In order to make the presented semantics compliant with
the SPARQL specification [11], we need to introduce an
extension to consider unsafe FILTERs (also presented
in [40]):

Definition 4.4 (OPTIONAL with FILTER Evaluation).
Let P1, P2 be graph patterns R a FILTER expression. A
mapping θ is in [[P1 OPTIONAL (P2 FILTER R)]]DS if
and only if:

• θ = θ1 ∪ θ2, s.t. θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]G are
compatible and Rθ is true, or

• θ ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G, θ and θ2 are not
compatible, or

• θ ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G s.t. θ and θ2 are
compatible, and Rθ3 is false for θ3 = θ ∪ θ2.

11For simplicity, we will omit from the presentation FILTERs such
as comparison operators (‘<’, ‘>’,‘6’,‘>’), data type conversion and
string functions and refer the reader to [11, Section 11.3] for details.

14

4.2. AnQL
We are now ready to extend SPARQL for query-

ing annotated RDF. We call the novel query language
AnQL. For the rest of this Section we fix a specific an-
notation domain, D = 〈L,⊕,⊗,⊥,>〉, as defined in Sec-
tion 3.2.

4.2.1. Syntax
We take inspiration on the notion of conjunctive an-

notated queries discussed in Section 3.6. A simple
AnQL query is defined – analogously to a SPARQL
query – as a quadruple Q = (P,G,V, A) with the dif-
ferences that (1) G is an annotated RDF graph; (2) we
allow annotated graph patterns as presented in Defini-
tion 4.5 and (3) A is the set of annotation variables taken
from an infinite set A (distinct from V). We further de-
note by avar(P) the set of annotation variables present
in a graph pattern P.

Definition 4.5 (Annotated Graph Pattern). Let λ be
an annotation value from L or an annotation variable
from A. We call λ an annotation label. Triple pat-
terns in annotated AnQL are defined the same way as in
SPARQL. For a triple pattern τ, we call τ : λ an anno-
tated triple pattern and sets of annotated triple patterns
are called basic annotated patterns (BAP). A generic
annotated graph pattern is defined in a recursive man-
ner: any BAP is an annotated graph pattern; if P and
P′ are annotated graph patterns, R is a filter expres-
sion (see [11]), then (P AND P′), (P OPTIONAL P′),
(P UNION P′), (P FILTER R) are annotated graph pat-
terns.

Example 4.1. Suppose we are looking for Ebay em-
ployees during some time period and that optionally
owned a car during that period. This query can be
posed as follows:

SELECT ?p ?l ?c WHERE {
(?p type ebayEmp):?l
OPTIONAL{(?p hasCar ?c):?l}

}

Assuming our example dataset from Figure 1 extended
with the following triples:

(toivo, type, paypalEmp) : [2000, 2009]
(toivo, hasCar, peugeot) : [1999, 2005]
(toivo, hasCar, renault) : [2005, 2010]

we will get the following answers:

θ1 = {?p/toivo, ?l/[2002, 2009]}
θ2 = {?p/toivo, ?l/[2002, 2005], ?c/peugeot}
θ3 = {?p/toivo, ?l/[2005, 2009], ?c/renault} .

The first answer corresponds to the answer in which
the OPTIONAL pattern is not satisfied, so we get the
annotation value [2002, 2009] that corresponds to the
time toivo is an Ebay employee. In the second and third
answers, the OPTIONAL pattern is also matched and,
in this case, the annotation value is restricted to the time
when Toivo is employed by Paypal and has a car.

Note that – as we will see – this first query will return
as a result for the annotation variable the periods where
a car was owned.

Example 4.2. A slightly different query can be the em-
ployees of Ebay during some time period and optionally
owned a car at some point during their stay. This query
– which will rather return the time periods of employ-
ment – can be written as follows:

SELECT ?p ?l ?c WHERE {
(?p type ebayEmp):?l
OPTIONAL {(?p hasCar ?c):?l2
FILTER (?l2 � ?l)}

}

Using the input data from Example 4.1, we obtain the
following answers:

θ1 = {?p/toivo, ?l/[2002, 2009]}
θ2 = {?p/toivo, ?l/[2002, 2009], ?c/renault}

In this example the FILTER behaves as in SPARQL by
removing from the answer set the mappings that do not
make the FILTER expression true.

This query also exposes the issue of unsafe filters, noted
in [40] and we presented the semantics to deal with this
issue in Definition 4.4.

4.2.2. Semantics
We are thus ready to define the semantics of AnQL

queries by extending the notion of SPARQL BGP
matching. As for the SPARQL query language, we are
going to define the notion of solutions for BAP as the
equivalent notion of answers set of annotated conjunc-
tive queries. Just as matching BGPs against RDF graphs
is at the core of SPARQL semantics, matching BAPs
against annotated RDF graphs is the heart of the evalu-
ation semantics of AnQL.

We extend the notion of substitution to include a sub-
stitution of annotation variables in which we do not al-
low any assignment of an annotation variable to ⊥ (of
the domain D). An annotation value of ⊥, although it is
a valid answer for any triple, does not provide any addi-
tional information and thus is of minor interest. Further-
more this would contribute to increasing the number of
answers unnecessarily.

15

Definition 4.6 (BAP evaluation). Let P be a BAP and
G an annotated RDF graph. We define evaluation [[P]]G

as the list of substitutions that are solutions of P, i.e.,
[[P]]G = {θ | G |= θ(P)}, and where G |= θ(P) means that
any annotated triple in θ(P) is entailed by G.

As for SPARQL, we have:

Proposition 4.2. Given an annotated graph G and a
BAP P, the solutions of P are the same as the answers
of the annotated query q(var(P)) ← P (where var(P) is
the vector of variables in P), i.e., ans(G, q) = [[P]]G.

For the extension of the SPARQL relational algebra to
the annotated case we introduce – inspired by the defi-
nitions in [39] – definitions of compatibility and union
of substitutions:

Definition 4.7 (⊗-compatibility). Two substitutions θ1
and θ2 are ⊗-compatible if and only if (i) θ1 and θ2
are compatible for all the non-annotation variables,
i.e., θ1(x) = θ2(x) for any non-annotation variable
x ∈ dom(θ1) ∩ dom(θ2); and (ii) θ1(λ) ⊗ θ2(λ) , ⊥ for
any annotation variable λ ∈ dom(θ1) ∩ dom(θ2).

Definition 4.8 (⊗-union of substitutions). Given two
⊗-compatible substitutions θ1 and θ2, the ⊗-union of θ1
and θ2, denoted θ1 ⊗ θ2, is as θ1 ∪ θ2, with the exception
that any annotation variable λ ∈ dom(θ1) ∩ dom(θ2) is
mapped to θ1(λ) ⊗ θ2(λ).

We now present the notion of evaluation for generic
AnQL graph patterns. This consists of an extension of
Definition 4.3:

Definition 4.9 (Evaluation, extends [39, Definition 2]).
Let P be a BAP, P1, P2 annotated graph patterns, G
an annotated graph and R a filter expression, then the
evaluation [[·]]G, i.e., set of answers,12 is recursively
defined as:

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}

[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]G, θ1 and
θ2 ⊗-compatible}

[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G

[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}

[[P1 OPTIONAL P2[R]]]G =
{θ | and θ meets one of the following conditions:

12 Strictly speaking, we consider sequences of answers – note that
SPARQL allows duplicates and imposes an order on solutions, cf.
Section 4.2.3 below for more discussion – but we stick with set no-
tation representation here for illustration. Whenever we mean “real”
sets where duplicates are removed we write {. . .}DISTINCT.

1. θ = θ1 ⊗ θ2 if θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]G, θ1 and θ2⊗-
compatible, and Rθ is true;

2. θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G such that θ1 and θ2

⊗-compatible, R(θ1 ⊗ θ2) is true, and for all annotation
variables λ ∈ dom(θ1) ∩ dom(θ2), θ2(λ) ≺ θ1(λ);

3. θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G such that θ1 and θ2

⊗-compatible, R(θ1 ⊗ θ2) is false }

Let R be a FILTER expression and x, y ∈ A ∪ L, in
addition to the FILTER expressions presented in Def-
inition 4.3 we further allow the expressions presented
next. The valuation of R on a substitution θ, denoted Rθ
is true if:13

(9) R = (x � y) with x, y ∈ dom(θ) ∪ L ∧ θ(x) � θ(y);
(10) R = p(z̄) with p(z̄)θ = true if and only if p(θ(z̄)) =

true, where p is a built-in predicate.
Otherwise Rθ is false.

In the FILTER expressions above, a built-in predicate p
is any n-ary predicate p, where p’s arguments may be
variables (annotation and non-annotation ones), domain
values of D, values from UL, p has a fixed interpreta-
tion and we assume that the evaluation of the predicate
can be decided in finite time. Annotation domains may
define their own built-in predicates that range over an-
notation values as in the following query:

Example 4.3. Consider our example dataset from Fig-
ure 1 and that we want to know where chadHurley was
working before 2005. This query can be expressed in
the following way:

SELECT ?city WHERE {
(chadHurley worksFor ?comp):?l
FILTER(before(?l, [2005]))

}

Remark 4.3. For practical convenience, we retain in
[[·]]G only “domain maximal answers”. That is, let us
define θ′ � θ if and only if (i) θ′ , θ; (ii) dom(θ) =

dom(θ′); (iii) θ(x) = θ′(x) for any non-annotation vari-
able x; and (iv) θ′(λ) � θ(λ) for any annotation variable
λ. Then, for any θ ∈ [[P]]G we remove any θ′ ∈ [[P]]G

such that θ′ � θ.

Remark 4.4. Please note that the cases for the evalua-
tion of the OPTIONAL are compliant with the SPAR-
QL specification [11], covering the notion of unsafe
FILTERs as presented in [40]. However, there are
some peculiarities inherent to the annotated case. More

13We consider a simple evaluation of filter expressions where the
“error” result is ignored, see [11, Section 11.3] for details.

16

specifically case 2.) introduces the side effect that anno-
tation variables that are compatible between the map-
pings may have different values in the answer depend-
ing if the OPTIONAL is matched or not. This is the
behaviour demonstrated in Example 4.1.

The following proposition shows that we have a conser-
vative extension of SPARQL:

Proposition 4.3. Let Q = (P,G,V) be a SPARQL query
over an RDF graph G. Let G′ be obtained from G by
annotating triples with >. Then [[P]]G under SPARQL
semantics is in one-to-one correspondence to [[P]]G′ un-
der AnQL semantics such that for any θ ∈ [[P]]G there is
a θ′ ∈ [[P]]G′ with θ and θ′ coinciding on var(P).

4.2.3. Further Extensions of AnQL
In this section we will present extensions of Defini-

tion 4.9 to include variable assignments, aggregates and
solution modifiers. These are extensions similar to the
ones presented in Section 3.7.

Definition 4.10. Let P be an annotated graph pat-
tern and G an annotated graph, the evaluation of an
ASSIGN statement is defined as:

[[P ASSIGN f (z̄) AS z]]G = {θ | θ1 ∈ [[P]]G,

θ = θ1[z/ f (θ1(z̄))]}

where

θ[z/t] =

{
θ ∪ {z/t} if z < dom(θ)
(θ \ {z/t′}) ∪ {z/t} otherwise .

Essentially, we assign to the variable z the value
f (θ1(z̄)), which is the evaluation of the function f (z̄)
with respect to a substitution θ1 ∈ [[P]]G.

Example 4.4. Using a built-in function we can retrieve
for each employee the length of employment for any
company:

SELECT ?x ?y ?z WHERE {
(?x worksFor ?y):?l
ASSIGN length(?l) AS ?z

}

Here, the length built-in predicate returns, given a set of
temporal intervals, the overall total length of the inter-
vals.

Remark 4.5. Note that this definition is more general
than “SELECT expr AS ?var” project expressions in
current SPARQL 1.1 [41] due to not requiring that the
assigned variable be unbound.

We introduce the ORDERBY clause where the evalua-
tion of a [[P ORDERBY ?x]]G statement is defined as the
ordering of the solutions – for any θ ∈ [[P]]G – accord-
ing to the values of θ(?x). Ordering for non-annotation
variables follows the rules in [11, Section 9.1].

Similarly to ordering in the query answering setting,
we require that the set of values over which x ranges
can be ordered and some linearisation method for posets
may be applied if necessary, such as [38]. We can fur-
ther extend the evaluation of AnQL queries with aggre-
gate functions

@ ∈ {SUM,AVG,MAX,MIN,COUNT,⊕,⊗}

as follows:

Definition 4.11. The evaluation of a GROUPBY state-
ment is defined as:14

[[P GROUPBY(w̄) @̄f̄(z̄) AS ᾱ]]G = {θ | θ1 in [[P]]G,

θ = θ1|w̄[αi/@i fi(θi(z̄i))]}DISTINCT

where the variables αi < var(P), z̄i ∈ var(P) and none
of the GROUPBY variables w̄ are included in the ag-
gregation function variables z̄i. Here, we denote by θ|w̄
the restriction of variables in θ to variables in w̄. Us-
ing this notation, we can also straightforwardly intro-
duce projection, i.e., sub-SELECTs as an algebraic op-
erator in the language covering another new feature of
SPARQL 1.1:

[[SELECT V̄ {P}]]G = {θ | θ1 in [[P]]G, θ = θ1|v̄} .

Remark 4.6. Please note that the aggregator functions
have a domain of definition and thus can only be applied
to values of their respective domain. For example, SUM
and AVG can only be used on numeric values, while
MAX,MIN are applicable to any total order. Resolution
of type mismatches for aggregates is currently being de-
fined in SPARQL 1.1 [41] and we aim to follow those,
as soon as the language is stable. The COUNT aggre-
gator can be used for any finite set of values. The last
two aggregation functions, namely ⊕ and ⊗, are defined
by the annotation domain and thus can be used on any
annotation variable.

Remark 4.7. Please note that, unlike the current
SPARQL 1.1 syntax, assignment, solution modifiers
(ORDER BY, LIMIT) and aggregation are stand-alone
operators in our language and do not need to be tied

14In the expression, @̄f̄(z̄) AS ᾱ is a concise representation of n
aggregations of the form @i fi(z̄i) AS αi.

17

to a sub-SELECT but can occur nested within any pat-
tern. This may be viewed as syntactic sugar allowing for
more concise writing than the current SPARQL 1.1 [41]
draft.

Example 4.5. Suppose we want to know, for each em-
ployee, the average length of their employments with
different employers. Then such a query will be ex-
pressed as:

SELECT ?x ?avgL WHERE {
(?x worksFor ?y):?l
GROUPBY(?x)
AVG(length(?l)) AS ?avgL

}

Essentially, we group by the employee, compute for each
employee the time he worked for a company by means
of the built-in function length, and compute the average
value for each group. That is, if g = {〈t, t1〉, . . . , 〈t, tn〉}
is a group of tuples with the same value t for employee
x, and value ti for y, where each length of employment
for ti is li (computed as length(·)), then the value of avgL
for the group g is (

∑
i li)/n.

Proposition 4.4. Assuming the built-in predicates are
computable in finite time, the answer set of any AnQL is
finite and can also be computed in finite time.

This proposition can be demonstrated by induction over
all the constructs we allow in AnQL.

4.3. Constraints vs Filters
Please note that FILTERs do not act as constraints

over the query. Given the data from our dataset example
and for the following query:

SELECT ?l1 ?l2 WHERE {
(?p type youtubeEmp):?l1 .
(steveChen type youtubeEmp):?l2

}

with an additional constraint that requires ?l1 to be “be-
fore” ?l2, we could expect the answer

{?l1/[2005, 2010], ?l2/[2011, 2011]}.

This answer matches the following triples of our
dataset:

(steveChen, type, youtubeEmp) : [2005, 2011]
(chadHurley, type, youtubeEmp) : [2005, 2010]

and satisfies the proposed constraint. However, we
require maximality of the annotation values in the an-
swers, which in general, do not exist in presence of con-
straints. For this reason, we do not allow general con-
straints.

4.4. Union of annotations
The SPARQL UNION operator may also introduce

some discussion when considering shared annotations
between graph patterns. Take for example the following
query:

SELECT ?l WHERE {
{(chadHurley type youtubeEmp):?l}
UNION
{(chadHurley type paypalEmp):?l}

}

and assume our dataset from Figure 1 as input. Con-
sidering the temporal domain, the intuitive meaning of
the query is “retrieve all time periods when chadHurley
was an employee of Youtube or PayPal”. In the case
of UNION patterns the two instances of the variable ?l
are treated as two different variables. If the intended
query would rather require treating both instances of
the variable ?l as the same, for instance to retrieve the
time periods when chadHurley was an employee of ei-
ther Youtube or PayPal but assuming we may not have
information for one of the patterns, the query should
rather look like:

SELECT ?l WHERE {
{(chadHurley type youtubeEmp):?l1}
UNION
{(chadHurley type paypalEmp):?l2}
ASSIGN ?l1 ∨ ?l2 as ?l

}

where ∨ represents the domain specific built-in predi-
cate for union of annotations.

5. On primitive domains and their combinations

In this section we discuss some practical issues re-
lated to (i) the representation of the temporal domain
(Section 5.1); (ii) the combination of several domains
into one compound domain (Section 5.2); (iii) the inte-
gration of differently annotated triples or non-annotated
triples in the data or query (Section 5.3).

5.1. Temporal issues
Let us highlight some specific issues inherent to the

temporal domain. Considering queries using Allen’s
temporal relations [42] (before, after, overlaps, etc.) as
allowed in [4], we can pose queries like “find persons
who were employees of PayPal before toivo”. This
query raises some ambiguity when considering that per-
sons may have been employed by the same company at
different disjoint intervals. We can model such situa-
tions – relying on sets of temporal intervals modelling

18

the temporal domain. Consider our dataset triples from
Figure 1 extended with the following triple:

(toivo, type, paypalEmp) : {[1999, 2004], [2006, 2008]}

Tappolet and Bernstein [4] consider this triple as two
triples with disjoint intervals as annotations. For the fol-
lowing query in their language τSPARQL:

SELECT ?p WHERE {
[?s1,?e1] ?p type youtubeEmp .
[?s2,?e2] chadHurley type youtubeEmp .
[?s1,?e1] time:intervalBefore [?s2,?e2]

}

we would get chadHurley as an answer although toivo
was already working for PayPal when chadHurley
started. This is one possible interpretation of “before”
over a set of intervals. In AnQL we could add different
domain specific built-in predicates, representing differ-
ent interpretations of “before”. For instance, we could
define binary built-ins (i) beforeAny(?A1, ?A2) which is
true if there exists any interval in annotation ?A1 before
an interval in ?A2, or, respectively, a different built-in
beforeAll(?A1, ?A2) which is only true if all intervals in
annotation ?A1 are before any interval in ?A2. Using the
latter, an AnQL query would look as follows:

SELECT ?p WHERE {
(?p type youtubeEmp):?l1 .
(toivo type youtubeEmp):?l2 .
FILTER(beforeAll(?l1,?l2))

}

This latter query gives no result, which might comply
with people’s understanding of “before” in some cases,
while we also have the choice to adopt the behaviour
of [4] by use of beforeAny instead.

More formally, if we consider an Allen relation r that
holds between individual intervals, we can define a re-
lation r over sets of intervals in five different ways:

Definition 5.1. Let T1 and T2 be two non-empty sets of
disjoint intervals. We define the following relations:
• r∃∃ = {〈T1,T2〉 | ∃t1 ∈ T1,∃t2 ∈ T2 such that 〈t1, t2〉 ∈ r};
• r∃∀ = {〈T1,T2〉 | ∃t1 ∈ T1,∀t2 ∈ T2 such that 〈t1, t2〉 ∈ r};
• r∀∃ = {〈T1,T2〉 | ∀t1 ∈ T1,∃t2 ∈ T2 such that 〈t1, t2〉 ∈ r};
• r∃∀∧∀∃ = r∃∀ ∩ r∀∃;
• r∀∀ = {〈T1,T2〉 | ∀t1 ∈ T1,∀t2 ∈ T2 such that 〈t1, t2〉 ∈ r}.

These relations are illustrated by the following exam-
ples, taking the Allen relation before:

Example 5.1. Figure 2 is an example of time intervals
that make each of the relations introduced in Defini-
tion 5.1 true for the before Allen relation.

It should be noticed that if one sticks to one choice
of quantifier, the resulting set of relations does not form
a proper relation algebra. Indeed, it is easy to see that,
in the first 3 cases, the relations are not disjoint. For
instance, two sets of intervals can be involved in both
a before∃∃ and an after∃∃ relation. On the other hand,
the last 4 cases are incomplete, that is, there are pairs of
sets of intervals that cannot be related with any of the
r∃∀, r∀∃, r∀∀ or r∃∀∧∀∃.

r∃∃

r∃∀ r∀∃

r∃∀∧∀∃

r∀∀

⊆

⊆
⊇

⊇
⊆

Figure 3: Hierarchy of relations.

5.2. Extensions to multiple domains

Since annotations in our framework can range over
different domains in different applications, one may
be interested in combining several annotation domains
such as annotating triples with a temporal term and a
truth degree or degree of trust, etc. In [12], we pro-
posed an approach for easily combining multiple do-
mains, based on the pointwise extension of domain op-
erators to a product of domains. Here, we criticise this
approach and propose a revised approach that better fits
the intuition.

5.2.1. Former approach and criticism
The approach described in [12] is the following. In

general, assuming having domains D1, . . . ,Dn, where
Di = 〈Li,⊕i,⊗i,⊥i,>i〉, we may build the domain D =

D1 × . . .×Dn = 〈L,⊕,⊗,⊥,>〉, where L = L1 × . . .× Ln,
⊥ = 〈⊥1, . . . ,⊥n〉, > = 〈>1, . . . ,>n〉 and the meet and
join operations ⊗ and ⊕ are extended pointwise to L,
e.g., 〈λ1, . . . , λn〉⊗ 〈λ

′
1, . . . , λn〉

′ = 〈λ1⊗λ
′
1, . . . , λn⊗λ

′
n〉.

For instance,

(SkypeCollab, sc, EbayCollab) : 〈[2009, 2011], 0.3〉

may indicate that during 2009-2011, the collaborators
of Skype were also considered collaborators of Ebay to
degree 0.3 (here we combine a temporal domain and a

19

T1

2001 2003 2007 2009

T2

2000 2002 2005 2009

(a) before∃∃

T1

2001 2003 2006 2008

T2

2004 2006 2007 2009

(b) before∃∀

T1

2001 2003 2004 2006

T2

2000 2002 2007 2009

(c) before∀∃

T1

2000 2002 2005 2007

T2

2003 2004 2008 2009

(d) before∃∀∧∀∃

T1

2000 2002 2003 2004

T2

2005 2007 2008 2009

(e) before∀∀

Figure 2: Temporal relations

fuzzy domain). The interesting point of our approach
is that the rules of the deductive systems need not be
changed, nor the query answering mechanism (except
to provide the support to compute ⊗ and ⊕ accordingly).

The problem with this approach is that the annota-
tions are dealt with independently from each others. As
a result, e.g., the truth value 0.3 does not apply to the
time range [2009, 2011]. This problem is made very ap-
parent when one observes the unexpected consequences
of our ⊕ operator on such a combination:

(SkypeCollab, sc, EbayCollab) : 〈[2005, 2009], 1〉
(SkypeCollab, sc, EbayCollab) : 〈[2009, 2011], 0.3〉

Applying the point-wise operation ⊕, this leads to the
conclusion:

(SkypeCollab, sc, EbayCollab) : 〈[2005, 2011], 1〉

This defies the intuition that, between 2005 and 2009,
Skype collaborators where also Ebay employees (col-
laborate to degree 1), but from 2009 to 2011 Skype col-
laborators were Ebay collaborators to the degree 0.3.
The pointwise aggregation does not follow this intu-
ition and levels up everything. In the example above,
we would like to say that the fuzzy value itself has
a duration, so that the temporal interval corresponds
more to an annotation of a quadruple. Note that this
problem is not specific to the combination of time and
fuzziness. We observe a similar issue when combining

provenance, for instance, with other domains:

(skypeEmp, sc, ebayEmp) : 〈[2005, 2009], wikipedia〉
(skypeEmp, sc, ebayEmp) : 〈[1958, 2012], wrong〉

Using a point-wise aggregation method, the result
would be:

(skypeEmp, sc, ebayEmp) : 〈[1958, 2012],
wikipedia ∨ wrong〉

which entails:

(skypeEmp, sc, ebayEmp) : 〈[1958, 2012], wikipedia〉

Again, the problem is that provenance here does not de-
fine the provenance of the temporal annotation and the
temporal annotation is not local to a certain provenance.

In order to match the intuition, we devise a systematic
construction that defines a new compound domain out
of two existing domains.

5.2.2. Improved Formalisation
In this section, we propose a generic construction that

builds an annotation domain by combining two prede-
fined domains in a systematic way. To achieve this, we
will assume the existence of two annotation domains
D1 = 〈L1,⊕1,⊗1,⊥1,>1〉 and D2 = 〈L2,⊕2,⊗2,⊥2,>2〉

which will be instantiated in examples with the tem-
poral domain for D1 (abbreviated Dt) and either the
fuzzy domain (Df) or the provenance domain (Dp) for
D2. We denote the temporal and fuzzy combination
time+fuzzy, and the temporal and provenance combina-
tion time+provenance.

20

Intuition and desired properties. In our former ap-
proach, we remarked that some information is lost in the
join operation. Considering time+fuzzy, we see that the
join should represent temporary changes in the degree
of truth of the triple. Yet, it is clear that representing
such changes cannot be done with a simple pair (inter-
vals,value). So, as a first extension of our previous naı̈ve
solution, we suggest using sets of pairs of primitive an-
notations, as exemplified below.

(SkypeCollab, sc, EbayCollab) : {〈[2005, 2009], 1〉,
〈[2009, 2011], 0.3〉}

Starting from this, we devise an annotation domain that
correctly matches the intuitive meaning of the com-
pound annotations. The annotated triple above can be
interpreted as follows: for each pair in the annotation,
for each time point in the temporal value of the pair,
the triple holds to at least the degree given by the fuzzy
value of the pair. The time+provenance combination is
interpreted analogously, except that the triple holds (at
least) in the context given by the provenance value of
the pair.

This interpretation of the compound annotations im-
plies that multiple sets of pairs can convey the ex-
act same information. For example, the following
time+fuzzy annotated triples are equivalent:

(SkypeCollab, sc, EbayCollab) : {〈[2005, 2009], 1〉}
(SkypeCollab, sc, EbayCollab) : {〈[2005, 2009], 0.3〉,

〈[2005, 2009], 1〉}

From this observation, we postulate the following de-
sired property:

Property 1. For all x ∈ L1, y, y′ ∈ L2 and for all ρdf
triples τ, τ : {〈x, y〉, 〈x, y′〉} is semantically equivalent to
τ : {〈x, y ⊕2 y′〉}.

Consequently, it is always possible to assign a unique
element y ∈ L2 to a given element of L1. Thus, an
arbitrary set of pairs in L1 × L2 is equivalently repre-
sentable as a partial mapping from L1 to L2. Addition-
ally, given a certain time interval, we can easily com-
pute the maximum known degree to which a time+fuzzy
annotated triple holds. For instance, with the annota-
tion {〈[2005, 2009], 0.3〉, 〈[2008, 2011], 1〉}, we can as-
sign the degree 1 to any subset of [2008, 2011]; the de-
gree 0.3 to any subset of [2005, 2009] which is not con-
tained in [2008, 2009]; the degree 0 to any other tempo-
ral value.

This remark justifies that we can consider a com-
pound annotation A as a total function from L1 and

L2. From now on, whenever A is a finite set of
pairs, we will denote by A the function that maps ele-
ments of L1 to an element of L2 that, informally, mini-
mally satisfies the constraints imposed by the pairs in
A. This is formalised below. For instance, if A =

{〈[2005, 2009], 0.3〉, 〈[2008, 2011], 1〉}, then:

A(x) =

1 if x ⊆ [2008, 2011]
0.3 if x ⊆ [2005, 2009] and x * [2008, 2009]
0 otherwise

Whereas in this example, for the time+fuzzy domain
the value of A for a particular interval seems to follow
quite intuitively, let us next turn to the less obvious com-
bination of time+provenance. Here, we postulate that
the following triples

τ : { 〈[2005, 2009], wikipedia〉,
〈[2008, 2011], wrong〉}

τ : { 〈[2005, 2007], wikipedia〉,
〈[2007, 2009], wikipedia〉,
〈[2008, 2011], wrong〉}

τ : { 〈[2005, 2008], wikipedia〉,
〈[2008, 2009], wikipedia ∨ wrong〉,
〈[2009, 2011], wrong〉}

represent in fact equivalent annotations. Let us
check the intuition behind this on a particular interval,
[2005, 2009], which for the first triple has unambigously
associated the provenance value wikipedia. Consid-
ering the second annotated triple, we observe that the
provenance wikipedia can likewise be associated with
the interval [2005, 2009] because this provenance is as-
sociated with two intervals that – when joined – cover
the time span [2005, 2009]. In the case of the last an-
notated triple, the provenance wikipedia∨wrong means
that the triple holds in wikipedia as well as in wrong

(notice that x ∨ y means that the assertion holds in x
and in y likewise, see Section 3.4.3 for details). In-
tuitively, we expect for the last triple that the prove-
nance associated with the joined interval [2005, 2009]
is obtained from applying the meet operator over the
respective provenance annotations wikipedia (for the
partial interval [2005, 2008]) and wikipedia ∨ wrong

(for the partial interval [2008, 2009]), i.e., (wikipedia∨
wrong) ∧ wikipedia which – again – is equivalent to
wikipedia in the provenance domain. Besides, consid-
ering now the interval [2005, 2011], the triple is true in
either wikipedia.org or wrong, which is modelled as
(wikipedia ∧ wrong) in the provenance domain. Let us
cast this intuition into another property we want to en-
sure on the function A:

21

Property 2. Given a set of annotation pairs A, for all
x0 ∈ L1 whenever ∃J ⊆ A with x0 �1

⊕
1

〈x, y〉 ∈ J
x, we have

A(x0) �2

⊗
2

〈x, y〉 ∈ J
y.

Our goal in what follows is to characterise the set of
functions associated with a finite set of pairs, that is {A |
A ⊆ L1 × L2}, in a manner such that Property 1 and
Property 2 are satisfied.

Formalisation. As mentioned before, a compound an-
notation can be seen as a function that maps values of
the first domain to values of the second domain. In or-
der to get the desired properties above established, we
restrict this function to a particular type of functions that
we call quasihomomorphism because it closely resem-
bles a semiring homomorphism.

Definition 5.2 (Quasihomomorphism). Let f be a
function from D1 = 〈L1,⊕1,⊗1,⊥1,>1〉 to D2 =

〈L2,⊕2,⊗2,⊥2,>2〉. f is a quasihomomorphism of do-
mains if and only if for all x, y ∈ L1: (i) f (x ⊕1 y) �2
f (x) ⊗2 f (y) and (ii) f (x ⊗1 y) �2 f (x) ⊕2 f (y).

We now use quasihomomorphisms to define – on an ab-
stract level – a compound domain of annotations.

Definition 5.3 (Compound annotation domain).
Given two primitive annotation domains D1 and D2,
the compound annotation domain of D1 and D2 is the
tuple 〈L12,⊕12,⊗12,⊥12,>12〉 defined as follows:

• L12 is the set of quasihomomorphisms from D1 to
D2;

• ⊥12 is the function defined such that for all x ∈ L1,
⊥12(x) = ⊥2;

• >12 is the function defined such that for all x ∈ L1,
>12(x) = >2;

• for all λ, µ ∈ L12, for all x ∈ L1, (λ ⊕12 µ)(x) =

λ(x) ⊕2 µ(x);

• for all λ, µ ∈ L12, for all x ∈ L1, (λ ⊗12 µ)(x) =

λ(x) ⊗2 µ(x);

This definition yields again a valid RDF annotation do-
main, as stated in the following proposition:

Proposition 5.1. 〈L12,⊕12,⊗12,⊥12,>12〉 is an idempo-
tent, commutative semiring and ⊕12 is >12-annihilating.

Remark 5.1. It can be noticed that, a priori, the order
of the primitive annotations matters to the definition of
compound annotations.

Quasihomomorphisms are abstract values that may not
be representable syntactially. By analogy with XML
datatypes [43], we can say that they represent the value
space of the compound domain. In the following, we
want to propose a finite representation of some of these
functions. Indeed, as we have seen in the examples
above, we intend to represent compound annotations
just as finite sets of pairs of primitive annotations. Thus,
continuing the analogy, the lexical space is merely con-
taining finite sets of pairs of primitive annotation val-
ues. To complete the definition, we just have to define
a mapping from such finite representation to a corre-
sponding quasihomomorphism. That is, we have to de-
fine the lexical-to-value mapping.

Consider again the (primitive) domains D1 and D2
and let A ⊆ L1 × L2 be a finite set of pairs of primitive
annotations. We define the function A : D1 → D2 as
follows:15

∀z ∈ L1, A(z) = lub{
⊗

2
〈x, y〉 ∈ J

y | J ⊆ A and z �1

⊕
1

〈x, y〉 ∈ J
x} .

Theorem 5.2. If A ⊆ L1 × L2 is a finite set of pairs of
primitive annotations, then A is a quasihomomorphism.

The proof is mostly a sequence of manipulation of no-
tations with little subtlety, so we refer the reader to Ap-
pendix A for details.

Now, we know that we can translate an arbitrary finite
set of pairs of primitive annotations into a compound an-
notation. However, using arbitrary sets of pairs is prob-
lematic in practice for two reasons: (1) several sets of
pairs have equivalent meaning,16 that is, the function
induced by the two sets are identical; (2) the approach
does neither gives a programmatic way of computing
the operations (⊗12,⊕12) on compound annotations, nor
gives us a tool to finitely represent the results of these
operations.

Thus, we next turn towards how to choose a canonical
finite representative for a finite set annotation pairs. To
this end, we need a normalising function N : 2L1×L2 →

2L1×L2 such that for all A, A′ ⊆ L1 × L2, A = A′ if and
only if N(A) = N(A′). This will in turn also allow us
to define the operations ⊕12 and ⊗12 over the set of nor-
malised annotations.

Normalisation. We propose a normalisation algorithm
based on two main operations:

15Note that as D2 is an annotation domain, the lub operation is well
defined.

16Particularly, we note that there can still be an infinite set of finite
representations of the same compound annotation.

22

Saturate: informally, the saturate function increases
the size of a set of pairs of annotations by adding
any redundant pairs that “result from the applica-
tion of ⊗ and ⊕ to values existing in the initial
pairs”;

Reduce: takes the output of the saturation step and re-
moves “subsumed” pairs.

In particular, the Saturate algorithm is adding pairs of
annotations to the input such that in the end, all primi-
tive annotations that can be produced by the use of ex-
isting values and operators ⊗ and ⊕ appear in the output.
The algorithm for Saturate, Reduce and Normalise are
given in Algorithm 1, Algorithm 2 and Algorithm 3 re-
spectively.

Algorithm 1 Saturate(A)
Input: A ⊆ L1 × L2 finite
Output: Saturate(A)

R := ∅;
for all X ⊆ 2A do

R := R ∪ {〈
⊕

1
J ∈ X

⊗
1

〈x, y〉 ∈ J
x,

⊗
2

J ∈ X

⊕
2

〈x, y〉 ∈ J
y〉};

R := R ∪ {〈
⊗

1
J ∈ X

⊕
1

〈x, y〉 ∈ J
x,

⊕
2

J ∈ X

⊗
2

〈x, y〉 ∈ J
y〉};

return R;

If the operations ⊗1 and ⊗2 are idempotent, Algorithm 1
ensures that given a value x ∈ L1 that is the result of us-
ing operators ⊗1 and ⊕1 on any number of primitive an-
notations of L1 appearing in A, then there exists y ∈ L2
such that 〈x, y〉 exists in the output of Saturate. Simi-
larly, given y ∈ L2 that can be obtained from combina-
tions of values of L2 appearing in A and operators ⊗2
and ⊕2, then there exists x ∈ L2 such that 〈x, y〉 exists in
the output of Saturate.

Example 5.2. Consider the following time+fuzzy anno-
tation:

{〈[2000, 2005], 0.7〉, 〈[2002, 2008], 0.5〉}

Application of the function saturate gives the following
result:

{〈[2000, 2005], 0.7〉, 〈[2002, 2008], 0.5〉,
〈[2000, 2008], 0.35〉, 〈[2002, 2005], 0.7〉,
〈[2000, 2005], 0.49〉, 〈[2002, 2005], 0.49〉}

Now we notice that this can introduce redundant infor-
mation, which should be eliminated. This is the goal of
the function Reduce which is defined by Algorithm 2.

Algorithm 2 Reduce(A)
Input: A ⊆ L1 × L2 finite and saturated
Output: Reduce(A)

while ∃〈x, y〉 ∈ A,∃〈x′, y′〉 ∈ A \ {〈x, y〉} such that
x �1 x′ and y �2 y′ do

R := R \ {〈x, y〉};
while ∃〈x, y〉 ∈ A such that x = ⊥1 or y = ⊥2 do

R := R \ {〈x, y〉};
return R;

Example 5.3. Considering Example 5.2 the output of
the Saturate algorithm above, the Reduce function
gives the following result:

{〈[2000, 2005], 0.7〉, 〈[2002, 2008], 0.5〉,
〈[2000, 2008], 0.35〉}

Algorithm 3 Normalise(A)
Input: A ⊆ L1 × L2 finite
Output: Normalise(A)

return Reduce(Saturate(A));

Example 5.4. Consider the following
time+provenance annotation:

{〈[1998, 2006], wikipedia〉, 〈[2001, 2011], wrong〉}

which normalises to:

{〈[1998, 2011], wikipedia ∧ wrong〉,

〈[1998, 2006], wikipedia〉, 〈[2001, 2011], wrong〉,
〈[2001, 2006], wikipedia ∨ wrong〉}

Note that the pair 〈[2001, 2006], wikipedia∨ wrong〉 is
introduced by Line 6 of Algorithm 1 and is not discarded
during the reduction phase.

The following property can be shown:

Proposition 5.3. If D1 = 〈L1,⊕1,⊗1,⊥1,>1〉 is a lat-
tice then, for all A ⊆ L1 × L2 finite, A = Normalise(A).

Notice that we must impose that the first primitive do-
main of annotation is a lattice for the normalisation to
work, that is, we need that z �1 x and z �1 y iff
z �1 x ⊗1 y. Details of the proof can be found in Ap-
pendix A.

The following theorem shows that the normalisation
is actually unique up to equivalence of the correspond-
ing functions.

23

Theorem 5.4. If D1 = 〈L1,⊕1,⊗1,⊥1,>1〉 is a lattice
then, for all A, B ⊆ L1 × L2 finite then A = B ⇔
Normalise(A) = Normalise(B).

Again, to improve readability, we put the proof in Ap-
pendix A.

Operations on normalised annotations. We can now
present the operations ⊕12 and ⊗12 on normalised finite
sets of pairs.

• A ⊕12 B = Normalise(A ∪ B);

• A ⊗12 B = Normalise({〈x ⊗1 x′, y ⊗2 y′〉 |
〈x, y〉, 〈x′, y′〉 ∈ A × B}).

Finally, with the proposed representation and opera-
tions, we devised a systematic approach to compute
combination of domains using existing primitive do-
mains. This implies that an implementation would not
need to include operators that are specific to a given
combination, as long as programmatic modules exist for
the primitive annotation domains.

5.2.3. Discussion
Our definition of a compound annotation domain

is, to the best of our knowledge, a novelty in set-
tings involving annotations: previous work on annotated
RDF [15, 12], annotated logic programmes [16] or an-
notated database relations [17] have not addressed this
issue. We present in this section some considerations
with respect to the chosen approach.

1. The normalisation algorithm is not optimised and
would prove inefficient if directly implemented “as
is”. In this part, we have provided a working so-
lution for normalising compound annotation as a
mere proof of existence of such a solution. By
observing the examples that we provide for the
time+fuzzy domain, it seems that the cost of nor-
malising can be reduced significantly with appro-
priate strategies.

2. As indicated by Theorem 5.4, we only ensure that
the normalisation is feasible for a combination of
annotation domains where at least one is a lat-
tice. Whether a normalisation function exists in
the more general case of two commutative, idem-
potent, >-annihilating semirings is an open ques-
tion.

3. The method we provide defines a new domain of
annotation in function of existing domains, such

that it is possible to reason and to query triples an-
notated with pairs of values. This does not mean
that it is possible to reason with a combination of
triples annotated with the values of the first do-
main, and triples annotated with values of the sec-
ond domain. For instance, reasoning with a combi-
nation of temporally annoted triples and fuzzy an-
notated triples does not boil down to reasonning
over time+fuzzy-annotated triples. The next sec-
tion discusses this issues and how non-annotated
triples can be combined with annotated triples.

5.3. Integrating differently annotated triples in data
and queries

While our approach conservatively extends RDFS,
we would like to be able to seamlessly reason with
and query together annotated triples and non-annotated
triples. Since non-annotated triples can be seen as
triples annotated with boolean values, we can gener-
alise this issue to reasoning and querying graphs anno-
tated with distinct domains. For instinct, let us assume
that a dataset provides temporally annotated triples, an-
other one contains fuzzy-annotated triples and yet an-
other is a standard RDF dataset. We want to provide a
uniform treatment of all these datasets and even handle
the merge of differently annotated triples. Moreover, we
expect to allow multiple annotation domains in AnQL
queries.

5.3.1. Multiple annotation domains in the data
Consider the following example:

(chadHurley, type, googleEmp) : [2006, 2010]
(chadHurley, type, googleEmp) : 0.7
(googleEmp, sc, Person) : 0.97

We can assume that the subclass relation has been de-
termined by ontology matching algorithms, which typi-
cally return confidence measures in the form of a num-
ber between 0 and 1. Consider as well the following
example queries:

Example 5.5.

SELECT ?a WHERE {
(chadHurley type googleEmp):?a

}

Example 5.6.

SELECT ?a WHERE {
(chadHurley type Person):?a

}

24

We propose two alternative approaches to deal with
multiple annotation domains. The first one simply seg-
gregates the domains of annotations, such that no infer-
ences are made across differently annotated triples. The
second one takes advantage of the compound domain
approach defined in Section 5.2.

Seggregation of domains. With this approach, dis-
tinct domains are not combined during reasoning,
such that the first annotated triple together with the
third one would not produce new results. The query
from Example 5.5 would have the following answers:
{?a/[2006, 2010]}, {?a/0.7}. The query from Exam-
ple 5.6 would have the answer {?a/0.679} (under prod-
uct t-norm ⊗).

The main advantage is that query answering is kept
very straightforward. Moreover, it is possible to com-
bine different annotation domains within the query by
simply joining results from the seggregated datasets.
The drawback is that reasoning would not complement
non-annotated knowledge with annotated one and vice
versa.

Using compound domains. The principle of this
approach is to assume that two primitive annotation
values from distinct domains actually represent a pair
with an implicit default value for the second element.
The default value can be domain dependent or generic,
such as using > or ⊥ systematically. An example
of domain specific default is found in [2] where the
value [−∞,Now] is used to fill the missing annotations
in standard, non-annotated RDF. It can be noticed
that using ⊥ as a default would boil down to having
seggregated datasets, as in the previous approach. The
use of > has the advantage of being generic and allows
one to combine knowledge from differently annotated
sources in inferences. So, the query in Example 5.5 has
answer {?a/{〈[2006, 2010], 1〉, 〈[−∞,+∞], 0.7〉}},
while Example 5.6 has the answer
{?a/{〈[2006, 2010], 0.97〉, 〈[−∞,+∞], 0.679〉}}.

The main advantage is the possibility to infer new
statements by combining various annotated or non-
annotated triples. The drawbacks are that (i) our com-
bination approach is, so far, limited to the case where
one domain is a lattice; (ii) if triples with a new annota-
tion domain are added, then it adds one dimension to the
answers, which obliges to recompute existing answers;
(iii) the combination of more than two domains may be
particularly complex and possibly non-commutative.

5.3.2. Multiple annotation domains in the query
When dealing with multiple domains in the query, we

face a similar choice as in the data, but we are also of-

fered the option to replace the default value with a vari-
able. If seggregation of domains has been chosen, then
distinct domains in the query are only used to match the
corresponding data, but it is still possible to combine the
results from differently annotated sources. For instance:

SELECT ?e ?c ?t ?f WHERE {
{(?c sc ebayEmp):?f}

UNION
{(?e type ?c):?t.}

FILTER{?t �t [2005,2011] OR ?f � f 0.5}

This query can be executed even on a dataset that
does not include fuzzy value. The fuzzy-annotated
triple pattern can be simply ignored and the temporally
annotated pattern evaluated. As mentioned in Defini-
tion 4.9, the comparators �t and � f return false when-
ever at least one of the operands is an unbound variable,
so that the FILTER is not influenced by a missing type
of annotations.

In the case of the second approach using compound
domains, the choices are as follow:

1. add a single fresh annotation variable for all triples
in the query that are missing a value for an annota-
tion domain; or

2. add a different fresh annotation variable for each
triple in the query; or

3. add a constant annotation such as > to all missing
annotation values.

In later discussions, we will use the meta-variable ΘD

to represent the default value of domain D assigned to
annotations in the query triples.

Example 5.7. For instance, if we again consider the
query (excluding the annotation variables) and input
data from Example 4.1, the query would look like:

SELECT ?p ?c WHERE {
(?p type :ebayEmp)
OPTIONAL{(?p :hasCar ?c)}

}

Now, given the above three approaches for transforming
this query we would get the following answers:

Approach 1
?p/toivo -
?p/toivo ?c/peugeot
?p/toivo ?c/renault

Approach 2
?p/toivo ?c/peugeot
?p/toivo ?c/renault

Approach 3 ∅

25

5.3.3. Querying multi-dimensional domains
Similarly to the discussion in the previous subsection,

we can encounter mismatches between the Annotated
RDF dataset and the AnQL query. In case the AnQL
query contains only variables for the annotations, the
query can be answered on any Annotated RDF dataset.
From a user perspective, the expected answers may dif-
fer from the actual annotation domain in the dataset,
e.g., the user may be expecting temporal intervals in
the answers when the answers actually contain a fuzzy
value. For this reason some built-in predicates to deter-
mine the type of annotation should be introduced, like
isTEMPORAL, isFUZZY, etc.

If the AnQL query contains annotation values and the
Annotated RDF dataset contains annotations from a dif-
ferent domain, one option is to not provide any answers.
Alternatively, we can consider combining the domain of
the query with the domain of the annotation into a multi-
dimensional domain, as illustrated in the next example.

Example 5.8. Assuming the following input data:

(chadHurley, type, youtubeEmp) : chad

When performing the following query:

SELECT ?p ?c WHERE {
(?p type ?c):[2009, 2010]

}

we would interpret the data to the form:

(chadhurley, type, youtubeEmp) : 〈chad,Ωtemporal〉

while the query would be interpreted as:

SELECT ?p ?c WHERE {
(?p type ?c):〈Θprovenance, [2009, 2010]〉

}

where Ωtemporal and Θprovenance are annotations corre-
sponding to the default values of their respective do-
mains, as discussed in Section 5.3.2. The semantics of
combining different domains into one multi-dimensional
domain has been discussed in Section 5.2.

6. Implementation Notes

Our prototype implementation is split into two dis-
tinct modules: one that implements the Annotated
RDFS inferencing and the second module is an imple-
mentation of the AnQL query language that relies on
the first module to retrieve the data. Our prototype im-
plementation is based on SWI-Prolog’s Semantic Web
library [44] and we present the architecture of the im-
plementation in Figure 4.

Figure 4: Annotated RDF implementation schema

Our Annotated RDFS module consists of a bottom-up
reasoner used to calculate the closure of a given RDF
dataset 1). The variable components comprise 2) the
specification of the given annotation domain; and 3)
the ruleset describing the inference rules and the way
the annotation values should be propagated. For 1) we
do not suggest a special RDF serialisation for tempo-
ral triples but rely on existing proposals using reifica-
tion [2]. Annotation domains in 2) are to be specified
by appropriate lattice operations and describing default
annotations for non-annotated triples.

The rules in 3) are specified using a high-level lan-
guage to specify domain independent rules that ab-
stracts from peculiarities of the reification syntax. For
example the following rule provides subclass inference
in the RDFS ruleset:

rdf(O, rdf:type, C2, V) <==
rdf(O, rdf:type, C1, V1),
rdf(C1, rdfs:subClassOf, C2, V2),
infimum(V1, V2, V).

2) and 3) are independent of each other: it is possible to
combine arbitrary rulesets and domains (see above).

The AnQL module also implemented in Prolog re-
lies on the SPARQL implementation provided by the
ClioPatria Semantic Web Server.17 For the AnQL im-
plementation, the domain specification needs to be ex-
tended with the grammar rules to parse an annotation
value and any built-in functions specific to the domain.

More information and downloads of the prototype
implementation can be found at http://anql.deri.
org/.

6.1. Implementation of specific domains
For example, for the fuzzy domain the default value

is considered to be 1 and the ⊗ and ⊕ operations are,
respectively, the min and max operations. The AnQL

17http://www.swi-prolog.org/web/ClioPatria/

26

http://anql.deri.org/
http://anql.deri.org/
http://www.swi-prolog.org/web/ClioPatria/

grammar rules consist simply of calling the parser pred-
icate that parses a decimal value.

As for the temporal domain, we are representing
triple annotations as ordered list of disjoint time inter-
vals. This implies some additional care in the construc-
tion of the ⊗ and ⊕ operations. For the representation
of −∞ and +∞ we are using the inf and sup Pro-
log atoms, respectively. Concrete time points are rep-
resented as integers and we use a standard constraint
solver over finite domains (CLPFD) in the ⊗ and ⊕ op-
erations. The default value for non-annotated triples is
[inf,sup]. The ⊗ operation is implemented as the re-
cursive intersection of all the elements of the annotation
values, i.e., temporal intervals. The ⊕ operation is han-
dled by constructing CLPFD expressions that evaluate
the union of all the temporal intervals.Again, the AnQL
grammar rules take care of adapting the parser to the
specific domain and we have defined the domain built-
in operations described in Section 5.1.

6.2. Use-case example: Sensor Data

As a use-case for Annotated RDF and AnQL, we
present the scenario of exposing sensor readings as RDF
data. Representing sensor data as RDF, more specifi-
cally as Annotated RDF, enables not only a precise and
correct representation for sensor data but also the possi-
bility of interlinking the data with other existing sources
on the Web.

Consider the scenario in which each person is as-
signed a sensor tag (mode) to use in a building that is
equipped with several sensor base-stations (that will be
responsible for recording the presence of tags). When-
ever sensor modes are detected in the proximity of a
base-station, sensor readings are created. Normally this
sensor reading will contain the time of the reading, the
identifier of the base-station and the tag. For our exam-
ple we used datasets publicly available, that represent
movements of persons in a conference. For our test pur-
poses we used a subset of the dataset available at http:
//people.openpcd.org/meri/openbeacon/
sputnik/data/24c3/ with a one hour time frame.

For the specific Annotated RDF domain, we can take
as starting point the temporal domain, where each triple
is annotated with a temporal validity. Conceptually, a
temporally annotated triple would look like the follow-
ing:

(tag4302 locatedIn room103):
[2010-07-28T16:52:00Z,2010-07-28T14:59:00Z]

stating that the tag represented by the URI tag4302 was
in the room identified by room103 during the specified

time period. For the URIs we can define a domain vo-
cabulary or rely on an already existing vocabulary.

Since a sensor mode can, at any time, be discovered
by several base-stations the issue arrises of how to detect
which base-station it is closer to. This can be viewed as
a data cleanup process that can be achieved as a post-
processing step over the stored data. In our specific
experiment, the sensor readings were of the following
format:

2010-10-11 14:57:51 10.254.2.15 4302 83
2010-10-11 14:57:51 10.254.3.1 4302 83
2010-10-11 14:57:51 10.254.2.6 4302 83

where the columns represent respectively:
1) timestamp when the record was created;
2) ip address of the base station; 3) tag identifier
and; 4) ssi. The ssi represents the signal strength of
the response from the tag. Each base station registers
each tag at the same timestamp with different signal
strengths, which can be interpreted as the lower the
signal strength value is, the closer the tag is to the base
station. This value can then be used in the data cleanup
process to discard the base station records in which the
tag is furthest from.

In the data cleanup process we start by group-
ing all the ips (with the lowest ssi) for a given
timestamp and tag. After this step we can merge
all records that share the tag and ip and have consec-
utive timestamp into a single interval.

6.3. Concrete syntax for Annotated RDFS

In this paper, we stay agnostic with respect to the con-
crete syntax used to serialise annotated graphs. How-
ever, we present here a suggested syntax based on
N-Quads [45]. Other possibilities, for instance using
Named Graphs, could be exploited as well, but we be-
lieve the following proposal is more straightforward.

We first present how primitive domains are repre-
sented, then extend it to combination of domains. In
the format N-Quads, the data structure is organised in
quadruples:

<subject> <predicate> <object> <context> .

where <subject> <predicate> <object> .
form a valid N-Triple [46] statement. The element
<context> is an optional context value that belongs
to the set UBL. In the case of Annotated RDFS,
<context> will be a typed literal that denotes the an-
notated value. The datatype of the literal represents the
domain of annotation. Consequently, in order to define
a concrete representation of an annotation domain, one

27

http://people.openpcd.org/meri/openbeacon/sputnik/data/24c3/
http://people.openpcd.org/meri/openbeacon/sputnik/data/24c3/
http://people.openpcd.org/meri/openbeacon/sputnik/data/24c3/

must at least define its associated datatype, which has
three components [47]:

• a lexical space, that is, a set of Unicode character
strings (e.g., the set of finite sequences of digits);

• a value space, that is, the set of values represented
by the annotations (e.g., the set of time points);

• a lexical-to-value mapping which maps each mem-
ber of the lexical space to a value in the value
space.

In addition to these components, which are mandated
by the XML Schema Datatypes specification, the spec-
ification of a concrete domain must provide the opera-
tions ⊗ and ⊕, from which the partial order �, the upper
and lower bounds are also derived. We give as an exam-
ple the specification of the fuzzy domain. The lexical
space, value space and lexical-to-value mapping are the
same as the XSD datatype xsd:decimal. However, it is
not possible to simply reuse this datatype, as it does not
specify which operations should be used. Since several
t-norms can be used as an ⊗ operation, it is necessary to
mint distinct URIs for distinct fuzzy semi-rings. Let us
call ex:fuzzy-min the fuzzy domain with the min t-
norm. A fuzzy-annotated triple would look as follows:18

<ex> <type> <EbayEmp> "0.3"ˆˆex:fuzzy-min .

With this approach, our framework is made compatible
with RDF stores that understand N-Quads. A typical
store would simply consider distinct annotation values
as different contexts. However, a store implementing
Annotated RDFS would be able to easily recognise the
annotation domains of the data and load an appropriate
reasoning engine dynamically. The reasoner could sim-
ply reason separately with different annotation domains.

As compound domains are annotation domains as
well, it is possible to use the same approach by pro-
viding a distinct lexical/value space for each pair of do-
mains. As an example, one could imagine the following
triple occuring in an N-Quads document:19

<s> <p> <o> "(0.3,[2001,2003])"ˆˆ:fuzzy-time .

Yet, the purpose of Section 5.2 was to define the com-
bination of domains in function of the primitive do-
mains. Thus, a smart implementation of Annotated

18For brevity, we simplify the URIs. A real N-Quads document
should have complete URIs all the time.

19This is again a fictitious example for the sake of illustration. A
more realistic syntax for the representation of time would use XSD
dateTime literals.

RDFS should be able to deal with arbitrary combina-
tions dynamically when they occur in the data. How-
ever, this means that there should be a generic syntax
for writing compound annotations. To that extent, we
propose to extend the N-Quads syntax to a generic tuple
syntax where each element of the tuple is in UBL. The
example above would then look as follows:

<s> <p> <o> "0.3"ˆˆ:fuzzy "[2001,2003]"ˆˆ:time .

Few RDF stores are able to parse arbitrary tuples with
the notable exception of YARS [48].

7. Conclusion

In this paper we have presented a generalised RDF
annotation framework that conservatively extends the
RDFS semantics, along with an extension of the
SPARQL query language to query annotated data. The
framework presented here is generic enough to cover
other proposals for RDF annotations and their query
languages. Our approach extends the classical case of
RDFS reasoning with features of different annotation
domains, such as temporality, fuzzyness, trust, etc. and
presents a uniform and programatic way to combine any
annotation domains.

Furthermore, we presented a semantics for an ex-
tension of the SPARQL query language, AnQL, that
enables querying RDF with annotations. Queries ex-
emplified in related literature for specific extensions of
SPARQL can be expressed in AnQL. Noticeably, our
semantics goes beyond the expressivity of the current
SPARQL specification and includes some features from
SPARQL 1.1 such as aggregates, variable assignments
and sub-queries. We also described our implementation
of AnQL based on constraint logic programming tech-
niques along with a practical experiment for represent-
ing sensor data as Annotated RDF.

Acknowledgement

We would like to thank Gergely Lukácsy for his
participation in the development of this work. The
work presented in this paper has been funded in
part by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lı́on-2) and supported by COST Ac-
tion IC0801 on Agreement Technologies.

References

[1] F. Manola, E. Miller, RDF Primer, W3C Recommendation,
World Wide Web consortium, available at http://www.w3.
org/TR/rdf-primer/ (Feb. 10 2004).

28

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/

[2] C. Gutiérrez, C. A. Hurtado, A. A. Vaisman, Introducing Time
into RDF, IEEE Transactions on Knowledge and Data Engineer-
ing 19 (2) (2007) 207–218.

[3] A. Pugliese, O. Udrea, V. S. Subrahmanian, Scaling RDF with
time, in: J. Huai, R. Chen, H.-W. Hon, Y. Liu, W.-Y. Ma,
A. Tomkins, X. Zhang (Eds.), Proceedings of the 17th Interna-
tional Conference on World Wide Web, WWW 2008, Beijing,
China, April 21-25, 2008, ACM, 2008, pp. 605–614.

[4] J. Tappolet, A. Bernstein, Applied Temporal RDF: Efficient
Temporal Querying of RDF Data with SPARQL, in: Aroyo et al.
[49], pp. 308–322.

[5] M. Mazzieri, A. F. Dragoni, A Fuzzy Semantics for the Re-
source Description Framework, in: Uncertainty Reasoning for
the Semantic Web I, ISWC International Workshops, URSW
2005-2007, Revised Selected and Invited Papers, no. 5327 in
Lecture Notes in Computer Science, Springer, 2008, pp. 244–
261.

[6] U. Straccia, A Minimal Deductive System for General Fuzzy
RDF, in: A. Polleres, T. Swift (Eds.), Web Reasoning and Rule
Systems, Third International Conference, RR 2009, Chantilly,
VA, USA, October 25-26, 2009, Proceedings, Vol. 5837 of Lec-
ture Notes in Computer Science, Springer, 2009, pp. 166–181.

[7] O. Hartig, Querying Trust in RDF Data with tSPARQL, in:
Aroyo et al. [49], pp. 5–20.

[8] S. Schenk, On the Semantics of Trust and Caching in the Seman-
tic Web, in: Proc. of 7th International Semantic Web Conference
(ISWC’2008), 2008, pp. 533–549.

[9] R. Q. Dividino, S. Sizov, S. Staab, B. Schueler, Querying for
Provenance, Trust, Uncertainty and other Meta Knowledge in
RDF, Journal of Web Semantics 7 (3) (2009) 204–219.

[10] D. Brickley, R. Guha, RDF Vocabulary Description Lan-
guage 1.0: RDF Schema, W3C Recommendation, World Wide
Web consortium, available at http://www.w3.org/TR/
rdf-schema/ (Feb. 10 2004).
URL http://www.w3.org/TR/rdf-schema/

[11] A. Seaborne, E. Prud’hommeaux, SPARQL Query Lan-
guage for RDF, W3C Recommendation, World Wide Web
consortium, available at http://www.w3.org/TR/
rdf-sparql-query/ (Jan. 15 2008).

[12] U. Straccia, N. Lopes, G. Lukacsy, A. Polleres, A General
Framework for Representing and Reasoning with Annotated Se-
mantic Web Data, in: Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-10), AAAI Press,
2010, pp. xxx–xxx.

[13] N. Lopes, A. Polleres, U. Straccia, A. Zimmermann, AnQL:
SPARQLing Up Annotated RDF, in: Proceedings of the In-
ternational Semantic Web Conference (ISWC-10), no. 6496 in
Lecture Notes in Computer Science, Springer-Verlag, 2010, pp.
518–533.

[14] O. Udrea, D. R. Recupero, V. S. Subrahmanian, Annotated RDF,
in: The Semantic Web: Research and Applications, 3rd Euro-
pean Semantic Web Conference, ESWC 2006, no. 4011 in Lec-
ture Notes in Computer Science, Springer, 2006, pp. 487–501.

[15] O. Udrea, D. R. Recupero, V. S. Subrahmanian, Annotated RDF,
ACM Transactions on Computational Logic 11 (2) (2010) 1–41.

[16] M. Kifer, V. Subrahmanian, Theory of Generalized Annotated
Logic Programming and its Applications, Journal of Logic Pro-
gramming 12 (1992) 335–367.

[17] T. J. Green, G. Karvounarakis, V. Tannen, Provenance Semir-
ings, in: L. Libkin (Ed.), Proceedings of the Twenty-Sixth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 11-13, 2007, Beijing, China, ACM
Press, 2007, pp. 31–40.

[18] G. Karvounarakis, Z. G. Ives, V. Tannen, Querying data prove-
nance, in: A. K. Elmagarmid, D. Agrawal (Eds.), SIGMOD

Conference, ACM, 2010, pp. 951–962.
[19] F. Baader, M. Knechtel, R. Peñaloza, A Generic Approach for

Large-Scale Ontological Reasoning in the Presence of Access
Restrictions to the Ontology’s Axioms, in: Bernstein et al. [50],
pp. 49–64.

[20] M. Knechtel, R. Peñaloza, A Generic Approach for Correcting
Access Restrictions to a Consequence, in: L. Aroyo, G. Anto-
niou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral,
T. Tudorache (Eds.), The Semantic Web: Research and Appli-
cations, 7th Extended Semantic Web Conference, ESWC 2010,
Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceed-
ings, Part I, Vol. 6088 of Lecture Notes in Computer Science,
Springer, 2010, pp. 167–182.

[21] M. Mazzieri, A. F. Dragoni, A Fuzzy Semantics for Semantic
Web Languages, in: P. C. G. da Costa, K. B. Laskey, K. J.
Laskey, M. Pool (Eds.), ISWC-URSW, 2005, pp. 12–22.

[22] M. Mazzieri, A Fuzzy RDF Semantics to Represent Trust Meta-
data, in: 1st Workshop on Semantic Web Applications and Per-
spectives (SWAP2004), Ancona, Italy, 2004, pp. 83–89.

[23] J. J. Carroll, C. Bizer, P. J. Hayes, P. Stickler, Named graphs,
Journal of Web Semantics 3 (4) (2005) 247–267.

[24] P. Buneman, E. Kostylev, Annotation Algebras for RDFS, in:
The Second International Workshop on the role of Semantic
Web in Provenance Management (SWPM-10), CEUR Work-
shop Proceedings, 2010.

[25] A. Hogan, Exploiting RDFS and OWL for Integrating Hetero-
geneous, Large-Scale, Linked Data Corpora, Ph.D. thesis, Dig-
ital Enterprise Research Institute, National University of Ire-
land, Galway, available from http://aidanhogan.com/
docs/thesis/; defended. (2011).

[26] S. Muñoz, J. Pérez, C. Gutiérrez, Minimal Deductive Systems
for RDF, in: E. Franconi, M. Kifer, W. May (Eds.), The Se-
mantic Web: Research and Applications, 4th European Seman-
tic Web Conference, ESWC 2007, Innsbruck, Austria, June 3-7,
2007, Proceedings, Vol. 4519 of Lecture Notes in Computer Sci-
ence, Springer, 2007, pp. 53–67.

[27] P. Hayes, RDF Semantics, W3C Recommendation, World Wide
Web consortium, available at http://www.w3.org/TR/
rdf-mt/ (Feb. 10 2004).

[28] C. Gutiérrez, C. Hurtado, A. O. Mendelzon, Foundations of
Semantic Web Databases, in: A. Deutsch (Ed.), Proceedings
of the Twenty-third ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, June 14-16, 2004,
Paris, France, ACM, 2004, pp. 95–106.

[29] G. Ianni, T. Krennwallner, A. Martello, A. Polleres, Dynamic
Querying of Mass-Storage RDF Data with Rule-Based Entail-
ment Regimes, in: Bernstein et al. [50], pp. 310–327.

[30] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic,
KluwerAcademic Publisher, 1998.

[31] E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Trends in
Logic - Studia Logica Library, Kluwer Academic Publishers,
2000.

[32] S. Abramsky, A. Jung, Domain Theory, in: S. Abramsky, D. M.
Gabbay, T. S. E. Maibaum (Eds.), Handbook of Logic in Com-
puter Science - Volume 3: Semantic Structures, Oxford Univer-
sity Press, 1994, pp. 1–168.

[33] L. Ding, T. Finin, Y. Peng, P. P. da Silva, D. L. McGuinness,
Tracking RDF Graph Provenance using RDF Molecules, Tech.
rep., Knowledge System Lab (2005).
URL ftp://ftp.ksl.stanford.edu/pub/KSL_
Reports/KSL-05-06.pdf

[34] J. Carroll, C. Bizer, P. J. Hayes, P. Stickler, Named graphs,
provenance and trust, in: A. Ellis, T. Hagino (Eds.), Proceed-
ings of the 14th International Conference on World Wide Web,
WWW 2005, Chiba, Japan, May 10-14, 2005, ACML Press,

29

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://aidanhogan.com/docs/thesis/
http://aidanhogan.com/docs/thesis/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
ftp://ftp.ksl.stanford.edu/pub/KSL_Reports/KSL-05-06.pdf
ftp://ftp.ksl.stanford.edu/pub/KSL_Reports/KSL-05-06.pdf
ftp://ftp.ksl.stanford.edu/pub/KSL_Reports/KSL-05-06.pdf

2005, pp. 613–622.
[35] G. Flouris, I. Fundulaki, P. Pediaditis, Y. Theoharis,

V. Christophides, Coloring RDF Triples to Capture Provenance,
in: Bernstein et al. [50], pp. 196–212.

[36] O. Hartig, Provenance Information in the Web of Data, in:
C. Bizer, T. Heath, T. Berners-Lee, K. Idehen (Eds.), Linked
Data on the Web (LDOW 2009), Proceedings of the WWW2009
Workshop on Linked Data on the Web, Madrid, Spain, April 20,
2009, Vol. 538 of CEUR Workshop Proceedings, CEUR, 2009.

[37] R. Delbru, A. Polleres, G. Tummarello, S. Decker, Context
Dependent Reasoning for Semantic Documents in Sindice, in:
A. Fokoue, Y. Guo, J. H. T. Liebig (Eds.), 4th International
Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS2008), 2008.

[38] N. M. Labrador, U. Straccia, Monotonic mappings invari-
ant linearisation of finite posets, Tech. rep., Computing Re-
search Repository, available as CoRR technical report at
http://arxiv.org/abs/1006.2679 (2010).

[39] J. Pérez, M. Arenas, C. Gutiérrez, Semantics and complexity of
SPARQL, ACM Transactions on Database Systems 34 (3).

[40] R. Angles, C. Gutierrez, The Expressive Power of SPARQL, in:
A. P. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. W.
Finin, K. Thirunarayan (Eds.), International Semantic Web Con-
ference, Vol. 5318, Springer, 2008, pp. 114–129.

[41] S. Harris, A. Seaborne, SPARQL 1.1 Query Language, W3C
Working Draft, W3C, http://www.w3.org/TR/2010/
WD-sparql11-query-20100601/ (2010).

[42] J. F. Allen, Maintaining knowledge about temporal intervals,
Communications of the ACM 26 (11) (1983) 832–843.

[43] D. Peterson, S. S. Gao, A. Malhotra, C. M. Sperberg-McQueen,
H. S. Thompson, W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes, W3C Working Draft, World Wide
Web consortium, available at http://www.w3.org/TR/
2009/WD-xmlschema11-2-20091203/ (Dec. 3 2009).

[44] J. Wielemaker, Z. Huang, L. van der Meij, SWI-Prolog and the
Web, Theory and Practice of Logic Programming 8 (3) (2008)
363–392.

[45] R. Cyganiak, A. Harth, A. Hogan, N-Quads: Enxtending N-
Triples with Context, available at http://sw.deri.org/
2008/07/n-quads/ (2009).
URL http://sw.deri.org/2008/07/n-quads/

[46] N-Triples, available at http://www.w3.org/2001/sw/
RDFCore/ntriples/ (2001).
URL http://www.w3.org/2001/sw/RDFCore/
ntriples/

[47] A. M. P. Biron, XML Schema Part 2: Datatypes Second Edition,
W3C recommendation, World Wide Web consortium (2004).

[48] A. Harth, J. Umbrich, A. Hogan, S. Decker, Yars2: A fed-
erated repository for querying graph structured data from the
web, in: K. Aberer, K.-S. Choi, N. F. Noy, D. Allemang, K.-I.
Lee, L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mi-
zoguchi, G. Schreiber, P. Cudré-Mauroux (Eds.), ISWC/ASWC,
Vol. 4825 of Lecture Notes in Computer Science, Springer,
2007, pp. 211–224.

[49] L. Aroyo, P. Traverso, F. Ciravegna, P. Cimiano, T. Heath,
E. Hyvönen, R. Mizoguchi, E. Oren, M. Sabou, E. P. B. Sim-
perl (Eds.), The Semantic Web: Research and Applications, 6th
European Semantic Web Conference, ESWC 2009, Heraklion,
Crete, Greece, May 31-June 4, 2009, Proceedings, Vol. 5554 of
Lecture Notes in Computer Science, Springer, 2009.

[50] A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. May-
nard, E. Motta, K. Thirunarayan (Eds.), The Semantic Web -
ISWC 2009, 8th International Semantic Web Conference, ISWC
2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings,
Vol. 5823 of Lecture Notes in Computer Science, Springer,

2009.

Appendix A. Proofs of theorems and propositions

Appendix A.1. Proof of Theorem 5.2
We start by proving that for all z, z′ ∈ L1, A(z ⊕1 z′) �2

A(z) ⊗2 A(z′).

Proof Appendix A.1. Let z, z′ ∈ L1. In order to prove the
proposition, we introduce the notation KA

z =def {J ⊆ A | z �1⊕
1

〈x, y〉 ∈ J
x}. The property that we want to prove can be rewritten:

lub{
⊗

2
〈x, y〉 ∈ J

y | J ∈ KA
z⊕1z′ } �2

lub{
⊗

2
〈x, y〉 ∈ J

y | J ∈ KA
z } ⊗2 lub{

⊗
2

〈x, y〉 ∈ J′
y | J′ ∈ KA

z′ } .

Let us introduce two intermediary lemmas:

Lemma Appendix A.1. For all z, z′ ∈ L1,KA
z⊕1z′ = KA

z ∩ KA
z′ .

Proof Appendix A.2. We simply prove each inclusion sepa-
rately:

⊆: let J ∈ KA
z⊕1z′ , which implies that z ⊕1 z′ �1

⊕
1

〈x, y〉 ∈ J
x. So,

z �1

⊕
1

〈x, y〉 ∈ J
x and z′

⊕
1

〈x, y〉 ∈ J
x, that is J ∈ KA

z and J ∈ KA
z′ .

⊇: let J ∈ KA
z ∩ KA

z′ , which implies that z �1

⊕
1

〈x, y〉 ∈ J
x and

z′ �1

⊕
1

〈x, y〉 ∈ J
x, so z ⊕1 z′ �1

⊕
1

〈x, y〉 ∈ J
x by definition of ⊕1.

Consequently, J ∈ KA
z⊕1z′ .

Lemma Appendix A.2. For all z, z′ ∈ L1,KA
z⊕1z′ = {J ∪ J′ |

(J, J′) ∈ KA
z × KA

z′ }.

Proof Appendix A.3. Again, we prove each inclusion sepa-
rately:

⊆: trivial since J ∈ KA
z⊕1z′ implies that J ∈ KA

z ∩ KA
z′ and

J = J ∪ J.

⊇: let J ∈ KA
z and J′ ∈ KA

z′ . Clearly,
⊕

1
〈x, y〉 ∈ J

x �1

⊕
1

〈x, y〉 ∈ J ∪ J′
x.

Consequently, J∪ J′ ∈ KA
z . Symmetrically, we prove that

J ∪ J′ ∈ KA
z′ .

This allows us to rewrite the problem into:

lub{
⊗

2
〈x, y〉 ∈ J ∪ J′

y | (J, J′) ∈ KA
z × KA

z′ } �2

lub{
⊗

2
〈x, y〉 ∈ J

y | J ∈ KA
z } ⊗2 lub{

⊗
2

〈x, y〉 ∈ J′
y | J′ ∈ KA

z′ }

which is more concisely written:⊕
2

(J, J′) ∈ KA
z × KA

z′

(⊗
2

〈x, y〉 ∈ J ∪ J′
y
)
�2

⊕
2

J ∈ KA
z

(⊗
2

〈x, y〉 ∈ J
y
)
⊗2

⊕
2

J′ ∈ KA
z′

(⊗
2

〈x, y〉 ∈ J′
y
)
.

This is easily established by distributivity of ⊗2 over ⊕2 in the
right hand side and by remarking that 20⊕

2

J′ ∈ KA
z′

(⊕
2

J ∈ KA
z

(
⊗

2

〈x, y〉 ∈ J
y ⊗2

⊗
2

〈x, y〉 ∈ J′
y)

)
�2

⊕
2

(J, J′) ∈ KA
z × KA

z′

(⊗
2

〈x, y〉 ∈ J ∪ J′
y
)
.

20Note that if ⊗2 is idempotent, then the inequality becomes an
equality.

30

http://www.w3.org/TR/2010/WD-sparql11-query-20100601/
http://www.w3.org/TR/2010/WD-sparql11-query-20100601/
http://www.w3.org/TR/2009/WD-xmlschema11-2-20091203/
http://www.w3.org/TR/2009/WD-xmlschema11-2-20091203/
http://sw.deri.org/2008/07/n-quads/
http://sw.deri.org/2008/07/n-quads/
http://sw.deri.org/2008/07/n-quads/
http://sw.deri.org/2008/07/n-quads/
http://sw.deri.org/2008/07/n-quads/
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/2001/sw/RDFCore/ntriples/

The second part of the proof demonstrates that for all z, z′ ∈
L1, A(z ⊗1 z′) �2 A(z) ⊕2 A(z′)

Proof Appendix A.4. Before giving the main arguments for
the proof, we rewrite the goal as follows: 21

lub{
⊗

2
〈x, y〉 ∈ J

y | J ∈ KA
z } ⊕2 lub{

⊗
2

〈x, y〉 ∈ J′
y | J′ ∈ KA

z′ }

�2 lub{
⊗

2
〈x, y〉 ∈ J

y | J ∈ KA
z⊗1z′ } ,

which again can be made more concise with the following no-
tation:⊕

2

J ∈ KA
z

(⊗
2

〈x, y〉 ∈ J
y
)
⊕2

⊕
2

J ∈ KA
z′

(⊗
2

〈x, y〉 ∈ J′
y
)
�2

⊕
2

J ∈ KA
z⊗1z′

(⊗
2

〈x, y〉 ∈ J
y
)
.

Associativity of ⊕2 simplifies the equation further:⊕
2

J ∈ KA
z ∪ KA

z′

(⊗
2

〈x, y〉 ∈ J
y
)
�2

⊕
2

J ∈ KA
z⊗1z′

(
⊗

2

〈x, y〉 ∈ J
y) .

We established the result by first proving the following lemma:

Lemma Appendix A.3. For all z, z′ ∈ L1,KA
z ∪ KA

z′ ⊆ KA
z⊗1z′ .

Proof Appendix A.5. Let J ∈ KA
z . It holds that z �1

⊕
1

〈x, y〉 ∈ J
x

and z ⊗1 z′ �1 z. So J ∈ KA
z⊗1z′ . Idem for any J ∈ KA

z′ .

This allows us now to easily see that⊕
2

J ∈ KA
z ∪ KA

z′

(⊗
2

〈x, y〉 ∈ J
y
)
�2

⊕
2

J ∈ KA
z⊗1z′

(
⊗

2

〈x, y〉 ∈ J
y) .

Notice that the opposite inequality does not hold in general.

Appendix A.2. Proof of Theorem 5.4
In order to prove the theorem, we first demonstrate the fol-

lowing proposition:

Proposition Appendix A.4. If D1 = 〈L1,⊕1,⊗1,⊥1,>1〉 is a
lattice then, for all A ⊆ L1 × L2 finite, A = Normalise(A).

Let us assume that D1 is a lattice. We show the proposition by
proving that at each step of the saturation and reduction, the set
R is such that R = A. This is trivially true at the initialisation
of Saturate. Now let us assume that R satisfies this property
at a certain step of the execution. We start by ensuring that

R = R ∪ {〈

⊕
1

J ∈ X

⊗
1

〈x, y〉 ∈ J
x,

⊗
2

J ∈ X

⊕
2

〈x, y〉 ∈ J
y〉}

and

R = R ∪ {〈

⊗
1

J ∈ X

⊕
1

〈x, y〉 ∈ J
x,

⊕
2

J ∈ X

⊗
2

〈x, y〉 ∈ J
y〉} .

We can decompose further the proof by simply showing that,
given 〈a, b〉, 〈c, d〉 ∈ R,

R = R ∪ {〈a ⊗1 c, b ⊕2 d〉}

and
R = R ∪ {〈a ⊕1 c, b ⊗2 d〉} .

To structure the proof better, we split the proof into several
lemmas corresponding to each of the aforementioned steps.

21We here reuse the notation KA
z introduced above.

Lemma Appendix A.5. Let z ∈ L1. The equality
R ∪ {〈a ⊗1 c, b ⊕2 d〉}(z) = R(z) holds.

Proof Appendix A.6. If the pair 〈a ⊗1 c, b ⊕2 d〉 already be-
longs to R, the equality is trivial. Let us assume 〈a ⊗1 c, b ⊕2

d〉 < R so that we can easily distinguish between sets that in-
clude 〈a⊗1 c, b⊕2 d〉 and sets that do not. Using the definition
of R ∪ {〈a ⊗1 c, b ⊕2 d〉}(z), we can write:

R ∪ {〈a ⊗1 c, b ⊕2 d〉}(z) = R(z) ⊕2

lub{(
⊗

2
〈x, y〉 ∈ J

y) ⊗2 (b ⊕2 d) | J ⊆ R and
z �1 (

⊕
1

〈x, y〉 ∈ J
x) ⊕1 (a ⊗1 c)} .

Further, due to distributivity,

(
⊗

2

〈x, y〉 ∈ J
y) ⊗2 (b ⊕2 d) = ((

⊗
2

〈x, y〉 ∈ J
y) ⊗2 b) ⊕2 ((

⊗
2

〈x, y〉 ∈ J
y) ⊗2 d) .

We can therefore rewrite the previous equality to:

R ∪ {〈a ⊗1 c, b ⊕2 d〉}(z) = R(z)
⊕2 lub{(

⊗
2

〈x, y〉 ∈ J
y) ⊗2 b | J ⊆ R and z �1 (

⊕
1

〈x, y〉 ∈ J
x) ⊕1 (a ⊗1 c)}

⊕2 lub{(
⊗

2
〈x, y〉 ∈ J

y) ⊗2 d | J ⊆ R and z �1 (
⊕

1
〈x, y〉 ∈ J

x) ⊕1 (a ⊗1 c)} .

Additionally, since D1 is a lattice, we have

(
⊕

1

〈x, y〉 ∈ J
x) ⊕1 (a ⊗1 c) = (

⊕
1

〈x, y〉 ∈ J
x) ⊕1 a) ⊗1 (

⊕
1

〈x, y〉 ∈ J
x) ⊕1 c) .

So z �1 (
⊕

1
〈x, y〉 ∈ J

x) ⊕1 (a ⊗1 c) implies z �1 (
⊕

1
〈x, y〉 ∈ J

x) ⊕1 a and

z �1 (
⊕

1
〈x, y〉 ∈ J

x) ⊕1 c. This means that J ∪ {〈a, b〉} ∈ {K ⊆ R |

z �1

⊗
1

〈x, y〉 ∈ J
x} so necessarily, (

⊗
2

〈x, y〉
y)⊗2 b �2 R(z). Analogically,

we conclude that (
⊗

2
〈x, y〉 ∈ J

y) ⊗2 d �2 R(z) and generalising to
any suitable J, we conclude, using the equation above, that
R ∪ {〈a ⊗1 c, b ⊕2 d〉}(z) = R(z).

Now let us prove this second equality:

Lemma Appendix A.6. Let z ∈ L1. The equality
R ∪ {〈a ⊕1 c, b ⊗2 d〉}(z) = R(z) holds.

Proof Appendix A.7. We apply a similar method as for
Lemma Appendix A.5 to get to the following equality:

R ∪ {〈a ⊕1 c, b ⊗2 d〉}(z) = R(z) ⊕2

lub{(
⊗

2
〈x, y〉 ∈ J

y) ⊗2 (b ⊗2 d) | J ⊆ R and
z �1 (

⊕
1

〈x, y〉 ∈ J
x) ⊕1 (a ⊕2 c)} .

This means that J ∪ {〈a, b〉, 〈c, d〉} ∈ {K ⊆ R | z �1

⊕
1

〈x, y〉 ∈ K
x},

which implies that (
⊗

2
〈x, y〉 ∈ J

y) ⊗2 (b ⊗2 d) �2 R(z). Generalising
this to any suitable J, we obtain the equality.

Now, let us prove that the reduce algorithm preserves the quasi
homomorphism.

Lemma Appendix A.7. A = Reduce(A).

31

Proof Appendix A.8. Let 〈a, b〉 ∈ R such that there exists
〈a′, b′〉 ∈ R such that a �1 a′ and b �2 b′. Using the same
approach as in Lemma Appendix A.5, we obtain the following
equality:

R(z) = R \ {〈a, b〉}(z) ⊕2

lub{(
⊗

2
〈x, y〉 ∈ J

y) ⊗2 b | J ⊆ R \ {〈a, b〉} and
z �1 (

⊕
1

〈x, y〉 ∈ J
x) ⊕1 a} .

From the hypothesis, we have that z �1 (
⊕

1
〈x, y〉 ∈ J

x) ⊕1 a′ for any

appropriate J. Moreover, for the same J, we have (
⊗

2
〈x, y〉 ∈ J

y)⊗2

b �2 b′. Generalising to all adequate J, we entail that:

R \ {〈a, b〉}(z) �2 lub{(
⊗

2
〈x, y〉 ∈ J

y) ⊗2 b | J ⊆ R \ {〈a, b〉} and
z �1 (

⊕
1

〈x, y〉 ∈ J
x) ⊕1 a}

and, thus, R(z) = R \ {〈a, b〉}(z). Similarly, every pair 〈⊥1, y〉
or 〈x,⊥2〉 does not affect the function R.

Now, the proof of Proposition Appendix A.4 follows from
an inductive application of Lemmas Appendix A.5, Ap-
pendix A.6 and Appendix A.7. Therefore, A = Normalise(A)
holds.

Proof of the theorem. The implication ⇐ is a direct conse-
quence of Proposition Appendix A.4.

Let us prove the other direction. Let A and B two finite sets
of pairs of primitive annotations in L1 × L2 such that A = B.
For A ⊆ L1 × L2 and x ∈ L1, let KA

x = {J ⊆ A | x �1

⊕
1

〈α, β〉 ∈ J
α}.

We also remind that:

A : L1 → L2

x 7→

⊕
2

J ∈ KA
x

⊗
2

〈α, β〉 ∈ J
β

Moreover, we introduce the following new notation:

Ã : L1 → L1

x 7→

⊗
1

J ∈ KA
x

⊕
1

〈α, β〉 ∈ J
α

We establish the proof through the support of several interme-
diary lemmas.

Lemma Appendix A.8. If 〈x, y〉 ∈ A then y �2 A(x).

Proof Appendix A.9. Let 〈x, y〉 ∈ A. We remark that x �1⊕
1

〈α, β〉 ∈ {〈x, y〉}
α and {〈x, y〉} ⊆ A, so:

y =

⊗
2

〈α, β〉 ∈ {〈x, y〉}
β �2

⊕
2

J ∈ KA
x

⊗
2

〈α, β〉 ∈ J
β = A(x) .

Lemma Appendix A.9. If 〈x, y〉 ∈ A then x �1 Ã(x).

Proof Appendix A.10. Let 〈x, y〉 ∈ A. For all J ∈ KA
x , x �1⊕

1
〈α, β〉 ∈ J

α so, since D1 is a lattice, x �1

⊗
1

J ∈ KA
x

⊕
1

〈α, β〉 ∈ J
α, that is,

x �1 Ã(x).

Lemma Appendix A.10. If D1 = 〈L1,⊕1,⊗1,⊥1,>1〉 is a lat-
tice, then a quasihomomorphism is an antitone function, with
respect to the orders induced by ⊕1 and ⊕2.

Proof Appendix A.11. Assume that D1 is a lattice. Let f be a
quasihomomorphism. Let x, x′ ∈ L1 be two annotation values
such that x �1 x′. Then f (x) = f (x⊗ x′) �2 f (x)⊕2 f (x′) and,
thus, f (x) �2 f (x′).

Using the previous lemmas, we can prove two additional lem-
mas that will bring us to the final proof:

Lemma Appendix A.11. If 〈x, y〉 ∈ Normalise(A) then x =

Ã(x) and y = A(x).

Proof Appendix A.12. Let 〈x, y〉 ∈ Normalise(A). Conse-
quently, 〈x, y〉 ∈ Saturate(A). Moreover, by definition of
Saturate, the pair 〈Ã(x), A(x)〉 must exist in Saturate(A).
Additionally, from Lemma Appendix A.8 and Lemma Ap-
pendix A.9, we have that x �1 Ã(x) and y = A(x), which im-
plies that 〈x, y〉 should be eliminated by the Reduce algorithm
during normalisation, unless x = Ã(x) and y = A(x).

Lemma Appendix A.12. For all x ∈ L1, there exists u ∈ L1

such that 〈u, A(x)〉 ∈ Normalise(A) and x �1 u.

Proof Appendix A.13. Let x ∈ L1. Again, 〈Ã(x), A(x)〉 ∈
Saturate(A). Then, due to the reduction algorithm, there
must exist 〈u, v〉 ∈ Normalise(A) such that u �1 Ã(x) and
v �2 A(x).We can consider the following assertions:

D1 is a lattice (by hypothesis) (H1)
Ã(x) �1 u (due to Reduce) (R1)
A(x) �2 v (due to Reduce) (R2)
A is antitone (from (H1) and Lemma Appendix A.10) (A1)
x �1 Ã(x) (from Lemma Appendix A.9) (A2)
A(x) �2 A(Ã(x)) (from (A1) and (A2)) (A3)
A(Ã(x)) �2 A(u) (from (R1) and (A1)) (A4)
A(u) �2 v (from Lemma Appendix A.8) (A5)
A(x) = v (from (A3), (A4), (A5) and (R2)) (C1)
x �1 u (from (A2) and (R1)) (C2)

Assertions (C1) and (C2) establish the lemma.

Proof Appendix A.14. (Of Theorem 5.4) Let 〈x, y〉 ∈

Normalise(A). From Lemma Appendix A.11, we know that
x = Ã(x) and y = A(x). Moreover, from the hypothesis of the
theorem, A(x) = B(x). Hence, due to Lemma Appendix A.12,
there exists u ∈ L1 such that 〈u, y〉 ∈ Normalise(B) and x �1 u.
By using the same reasoning, we can infer that there exists
v ∈ L1 such that 〈v, y〉 ∈ Normalise(A) and u �1 v. But due
to Lemma Appendix A.11, we have that y = v and therefore
〈x, y〉 ∈ Normalise(B).

The situation is symmetrical with respect to A and B, so
finally Normalise(A) = Normalise(B).

32

	Introduction
	Preliminaries – Classical RDF and RDFS
	Syntax
	Semantics
	Deductive system
	Query Answering

	RDFS with Annotations
	Syntax
	RDFS Annotation Domains
	Semantics
	Examples of primitive domains
	The fuzzy domain
	The temporal domain
	Provenance domain

	Deductive system
	Query Answering
	Queries with aggregates

	AnQL: Annotated SPARQL
	SPARQL
	AnQL
	Syntax
	Semantics
	Further Extensions of AnQL

	Constraints vs Filters
	Union of annotations

	On primitive domains and their combinations
	Temporal issues
	Extensions to multiple domains
	Former approach and criticism
	Improved Formalisation
	Discussion

	Integrating differently annotated triples in data and queries
	Multiple annotation domains in the data
	Multiple annotation domains in the query
	Querying multi-dimensional domains

	Implementation Notes
	Implementation of specific domains
	Use-case example: Sensor Data
	Concrete syntax for Annotated RDFS

	Conclusion
	Proofs of theorems and propositions
	Proof of Theorem 5.2
	Proof of Theorem 5.4

